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Algebraic geometry is the study of geometric figures defined by polynomial equa-
tions, also called algebraic varieties. Much classical algebraic geometry was moti-
vated by enumerative geometry, which aims to predict how many geometric figures
of a specified type satisfy a given list of conditions. For example, how many curves
of a specified degree contain a given list of points in the plane?

A modern strategy is to construct an algebraic variety called a moduli space
that has one point for each of the figures of the given type, and interpret the list of
conditions as a set of polynomial equations on the moduli space. The enumerative
geometric problem then becomes equivalent to deciding the number of common
solutions to a list of polynomial equations, or to counting the number of points in
the intersection of a list of subvarieties of the moduli space.

The main tool for counting the number of intersection points of subvarieties in
an algebraic variety X is the (Chow) cohomology ring of X. Each subvariety of
X defines a class in this ring, and the class of the intersection of two (transversal)
subvarieties is equal to the product of their individual classes. For example, if two
subvarieties intersect transversally in 7 points, then the product of their classes is
equal to 7 times the class of a single point.

A successful solution to an enumerative geometric problem may involve several
steps, including: (1) construct a well behaved moduli space, (2) understand the
cohomology ring of this moduli space, e.g. in terms of generators and relations, (3)
calculate the classes of the relevant subvarieties representing the list of conditions,
(4) multiply these classes and extract the number of solutions. Ideally one would
like to understand the moduli space and its cohomology so well that the whole
process can be expressed in combinatorial terms. This gives rise to rich interplay
between enumerative geometry and combinatorics.

One of the simplest examples of a moduli space is the Grassmann variety of
subspaces in a complex vector space. Here the rich theory of Schubert calculus
is available to account for geometric as well as combinatorial aspects of all of the
above steps. The Schubert calculus of Grassmannians can be studied without much
background, which makes it an excellent subject for a reading course. While this
is my first suggestion, I would also consider reading courses in other topics within
algebraic geometry and the parts of combinatorics that I am interested in.
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