Math 244 - Sample Exam 1 - Professor Feehan

(100 points - 1 hour and 20 minutes)

1 (20 points). Consider the initial value problem $t y^{\prime}+2 y=4 t^{2}, y(1)=2$.
(a) What type of first-order differential equation is this?
(b) What is the interval on which the solution exists?
(c) Find the solution.

2 (10 points). Consider the equation $y^{\prime}+y^{2} \sin x=0$.
(a) What type of first-order differential equation is this?
(b) Find a solution other than $y=0$.

3 (15 points). Consider the equation $t^{2} y^{\prime}+2 t y-y^{3}=0, t>0$.
(a) What type of first-order differential equation is this?
(b) Find a solution other than $y=0$. [Hint: Use the substitution $v=y^{-2}$ and first solve the resulting equation for v.]
4 (20 points). Consider the equation $y^{\prime}=\frac{y}{y \sin y-x}$.
(a) When is an equation of the form $M(x, y)+N(x, y) y^{\prime}=0$ exact?
(b) Is the given equation exact? Explain using your answer to (a).
(c) Solve the given equation. [Hint: If it is not exact, use an integrating factor of the form $\mu(y)$ to solve a related exact equation.]

5 (15 points). Euler's method can be used to approximate the solution to first-order differential equations of the form $y^{\prime}=f(t, y)$ at times t_{n} by a sequence of solutions y_{n} to the first-order difference equation

$$
y_{n+1}=y_{n}+f\left(t_{n}, y_{n}\right) h, \quad y_{0}=y(0), \quad n=0,1,2, \ldots,
$$

where $h=t_{n+1}-t_{n}$ is the step size.
Use Euler's method to find approximate values to the initial value problem

$$
y^{\prime}=5(t+1)-3 \sqrt{y}, \quad y(0)=1
$$

at times $t=1,2$ using $h=1$. It is not necessary to simplify your answer for y_{2}.
6 (20 points). Consider the initial value problem $y^{\prime \prime}+y^{\prime}-2 y=0, y(0)=1, y^{\prime}(0)=1$.
(a) Find two solutions, y_{1}, y_{2}, to the equation $y^{\prime \prime}+y^{\prime}-2 y=0$.
(b) Compute the Wronskian determinant $W\left(y_{1}, y_{2}\right)$ of the solutions you found in (a). What property must $W\left(y_{1}, y_{2}\right)$ satisfy in order that y_{1}, y_{2} form a fundamental set of solutions?
(c) Find the solution to the given initial value problem.

