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Abstract

We introduce a new concept, called « Experimental Probabilistic Hypersurface » (in 
short EPH). It allows us to represent the information obtained from any number of 
measures, in a physical experiment or in a computational code. This information is 
stored as a density of probability, « above » each point in the configuration space. If the 
experiment depends upon K parameters 1( , , )Kx x , the EPH consists in the collection 
of the density functions 1( ; ,..., )Kf t x x .

These densities are built from the existing information (the measures that have already 
been made). The existing information « propagates » all over the space, with the 
following rule : the entropy should always be maximal. The principle of maximal entropy 
thus governs the whole construction, which allows us a construction with no artificial 
rules or probability laws. If you are close to a place where the experiment has been 
performed, the density will be more concentrated ; if you are far away, the density will be 
less concentrated, because you know less.

The applications are multiple. The EPH is a « storage » of information, which grows and 
becomes more precise when more and more experiments are performed. It allows you to 
get immediately « local » results : which regions or points are dangerous, which are safe, 
and so on. The EPH is intended to replace both the deterministic methods (for instance 
interpolation between existing values), which are artificial, and the statistical methods, 
which are only global. The EPH gives local results, but still keeps the global 
characteristics.

The EPH was initially constructed in order to meet a request from Framatome-ANP 
(Commande Framatome-ANP no 12A/1003006066 / 17.12.2003 / PSC), concerning the 
results given by a computational code, named « CATHARE ». This code computes a 
temperature in a nuclear reactor, in case of a breach. What conclusions can be drawn 
from a limited number of computations (the number is limited because the computation 
takes several hours), when the number of parameters is quite high (around 50) ? We 
present here the theory in its full extend.
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First Part

Introduction and description of the need
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Any physical experiment usually brings many measures, which may concern various 
quantities, at a given time or over an interval of time. The results themselves depend 
upon various parameters, and the choice of these parameters is usually unclear : should 
we take into account the atmospheric temperature ? the speed of wind ? personal 
characteristics linked with the experimenter ? If we think a little bit, we see that the list 
may grow indefinitely, and we usually do not know which parameters are mostly 
influential.

But conversely, the number of data that are collected is usually extremely small, no 
matter what topic we are in. This comes from the fact that the experiment is always 
delicate : the preparation takes time, it requires human and technical resources. In some 
cases, the experiment may be dangerous, or the favourable circumstances are rare. In all 
cases, it is costly. For instance,

 To fly a missile, in order to study the trajectography, is both dangerous and quite 
costly ;

 In ecotoxicology, the toxicity experiments are usually made upon a small number 
of species, over a small number of days : this comes from the fact that only few 
species are available for laboratory work. One wishes to « extrapolate » the results, 
to a larger number of species and to longer periods (see our work [Ecotox]).

But we immediately come to a fundamental difficulty, which is of mathematical nature, 
linked to the size of the configuration space. Let’s imagine, for the sake of simplicity, 
that we take into account 50K  parameters, and that each of them may take 10 values
(this is obviously oversimplified : in general, the parameters vary continuously and may 
take infinitely many values). So we get 5010 possible values, for all possible 
configurations. Even if the experiment is purely on a computer (for instance a 
computational code), even if the computer performs a billion operations per second, we 
will need more than 333.10 years to perform it, and we see that a few more GHz change 
nothing !

So we see that one can never explore completely the space of all configurations, and even 
not explore it in a significant manner. The amount of information we gather can be only 
infinitesimal, compared to the global exploration. So we are led to this fundamental 
question : how can we exploit the information we got, and, since it is so rare, how can we 
exploit it at best ?

I. Two methods : interpolation or statistics

We may distinguish globally between two methods, or, more exactly, between two « ways 
of thought ». The first one is totally deterministic : one tries to alleviate the missing data, 
using the existing one, for instance using linear interpolation. If we succeed, then we 
have data are every point of the configuration space.

The problem is that these data are artificial : they depend completely upon the method of 
interpolation or extrapolation that has been chosend. Another difficulty, as we see later, 
is that the methods used for such extensions are quite inefficient when the dimension is 
high (as it is always the case for real-life problems).
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The second approach consists in a global, statistical, information. If we perform 300N 
measures, we may take the average, the standard deviation, and so on. All this is quite 
useful, but does not answer the question : if I perform a new experience, with new values 

1x ,…, Kx of the parameters (a configuration which has never been met), what may I 
expect as a result of the experiment ?

II. The Experimental Probabilistic Hypersurface

The concept we introduce here, « Experimental Probabilistic Hypersurface », precisely 
answers this question. If N experiments have already been performed, upon N
configurations, the Hypersurface gives a result, as a density of probability : for any new 
configuration 1x ,…, Kx ,  here is the density of probability of the expected result. 

If the configuration has already been tested, the result is a certainty, and the density is a 
Dirac measure. Othewise, it is a true density, and this density is less and less 
concentrated if the points where the experiment has already been performed are further. 
In other words, if you are interested in a set of parameters close to another where the 
experiment has already been performed, the Hypersurface gives you a very concentrated 
density, and if you consider a configuration far from the known ones, the density is quite 
« flat ».

So, what we get is not a deterministic result, as was the case with the interpolation 
methods, but a probabilistic result. This result is local, in the sense that this density is 
given at every point of the configuration space : this differs from global statistics.

The Experimental Probabilistic Hypersurface is constructed using, in a very strict 
manner, the principle of minimal information, that is, the principle of maximum entropy. 
Using this principle, we show how each measure « propagates » an information over the 
whole configuration space. Indeed, the concept of entropy will be the key-concept for our 
construction. It allows us to ensure that we do not introduce (as one sees quite often in 
probabilistic approaches) unjustified or arbitrary laws.

III. Applications

The applications of the hypersurface are numerous, since it is intended to replace both 
deterministic and statistical methods. It keeps, obviously, the global statistical 
information (means, standard deviation, and so on), but it allows a local treatment : we 
may observe the probability density above each point, see how it changes from one point 
to the next, find the regions in which it is concentrated near high values, or near low 
values, in which the variance is high, or is small, and so on. 

We may decide to have an exploitation which is different in each region. For instance, we 
may find what are the dangerous regions, in the space of configurations, in order to 
concentrate the future experiments on these zones.

The Hypersurface meets a need connected with the representation of the information 
that has been obtained, no matter how it has been obtained. The measure points may 
have been chosen at random, or in a deterministic way.
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IV. The dangers of a random exploration

Indeed, it may be tempting, in order to explore the space of configurations, to rely solely 
upon chance. Each parameter will be affected precise values, randomly chosen 
(experimental design), and the set of results is supposed to represent a good exploration 
of the configuration space. 

Indeed, if we divide the configuration space into 20 « boxes », each of them of probability
0.05, and if we perform 300 random samples, independently, the probability that one of 
the boxes should be ignored is only 300 -60.95 0.2 10  ; in other words, we are quite 
certain that all boxes have been penetrated. If, for instance, the result of the experiment 
is a temperature, we are quite sure that the highest observed temperature, in the 300 
experiments, is among the 5 % highest of all possible temperatures.

This information is interesting in itself ; however, it depends in an essential manner on 
the probability laws which have been introduced on each of the parameters. But these 
laws are necessarily artificial, since, by definition ! very little is known about the whole 
experiment. If we assume these laws to be quite concentrated, or conversely quite flat, 
we modify the final probability. This is explained quite in detail in our book [BB2].

The Experimental Probabilistic Hypersurface does not answer this difficulty, but it turns
around. It will allow us to represent the information, no matter how it has been 
obtained. Perhaps, our sampling was made using absurd laws : no problem, still some 
results have been obtained, and these result bring some information, which will be 
incorporated into the EPH, which can be built. If, later, we want to change the laws upon 
the parameters, we can easily do so. To represent the information and to treat it are two 
different things.
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Second Part

The concept of 

Experimental Probabilistic Hypersurface 
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The result of an experiment may be described, mathematically speaking, as a function 
1( ,..., )KCT x x ; the variables 1x ,…, Kx are the « input parameters ». Here, K is the 

number of parameters (around 50). We assume that the result is a real number (scalar 
result). Of course, for a given experiment, we may measure several physical data and 
obtain a result which is a vector. Then, we have as many scalar functions. In other 
words, for us, the function CT is real-valued. The notation CT was chosen as a 
reference to the question posed by Framatome-ANP, where the experiment was in fact a 
computational code, called « Cathare », and the output is a temperature.

I. Global Hypercube

Each parameter, for physical reasons, is set to vary in a closed bounded interval : 
[ , ]k k kx a b , 1,...,k K . The cartesian product :

1

[ , ]
K

k k
k

GH a b


 (1.1)

is therefore an hypercube in the space KR . We call it GH (« Global Hypercube »).

II. Reduced Hypercube

In order to compare the influence of the various parameters, we need to normalize the 
variation intervals, and bring all of them to be [0,1] . This is obtained in a very simple 
manner : if a parameter x varies in an interval [ , ]a b , the parameter x a varies in

[0, ]b a and the parameter x a
b a



in [0,1] .

We denote by [0,1]KGRH  the global reduced hypercube.

Let us observe that, in the present situation, any point of GH is admissible in the space 
of parameters. This is the case for the code « Cathare », but is not necessarily true in 
general. Indeed, we may imagine that, for some computational codes, for some physical 
experiments, some parameters have restrictions upon their values, for instance some 
sub-interval may be excluded.

In short, in the present situation, the space of parameters is a closed bounded hypercube
in KR . In order to simplify our notation, we set 1( ,..., )KX x x . This is a point in KR .

III. Sampling

We choose (in an arbitrary manner) some values for the K parameters 1,..., Kx x (it may 
be random sampling, or deterministic choices). We denote by ( ) ( )

1( ,..., )n n
n KX x x the 

result of the le résultat n -th choice, for 1,...,n N ( N is therefore the number of 
choices). So we get N points in the space KR . Of course, N is large compared to K : 
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the number of measures is larger than the number of  parameters. In our work with 
Framatome-ANP, N was of the order of 300.

IV. Constructing the deterministic hypersurface associated 
with a function of K variables

If we knew the value of 1( ,..., )KT CT x x for all values of the parameters 1,..., Kx x , we 
would have an hypersurface in the space 1K . For instance, for 1K  , the equation 

1( )T CT x determines a curve in the space 2 ; for 2K  , the equation 1 2( , )T CT x x
determines a surface in the space 3 . For 2K  , we have an hypersurface, which 
divides the space into two regions, situated on each side of the hypersurface : the region 
where 1( ,..., )KT CT x x and the where 1( ,..., )KT CT x x , in the space 1K . This notion 
of (deterministic) hypersurface is quite customary ; for instance, it is used in order to 
represent the « graph » of a function of K variables in a space of dimension 1K  ; as we 
explained earlier, it generalizes the notion of a curve (dimension 1) and surface 
(dimension 2).

V. Defining the Probabilistic Hypersurface associated with a 
sampling

We study K parameters (around 50) and we perform N measures (around 300), for 
which the complete computation of 1( ,..., )KCT x x is done, or the physical experiment, if 
we deal with a real physical experiment. We use the word « sampling » to refer to the 
successive choices of parameters, but, quite clearly, these choices may not be at random.

In order to build the Probabilistic Hypersurface, the idea is as follows : we consider that 
the result of the computation of 1( ,..., )KCT x x is unknown, except if it has been perform 
precisely for these values of 1,..., Kx x . When it is known, it is perfectly deterministic : a 
computational code does not make mistakes, and, if we deal with a physical experiment, 
we neglect the errors (the errors linked with the experiments might be taken into 
account, replacing the Dirac measures by other densities ; see our book [BB2]).

When the result is unknown, we will consider that it is given by a probability law ; this 
law will be more precise if the computations have been made for a point close to the 
considered point.

In other words, for any value of 1,..., Kx x , when N measures have been made, we have a 
density of probability :

1 1( ; ,..., | ,..., )K Nf t x x X X (5.1)

which depends on the place where we are ( 1,..., Kx x ) and on the previous measures : 
( 1,..., NX X ). Recall that each jX stands for ( ) ( )

1( ,..., )j j
Nx x .
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The vertical bar | in the definition of f reminds us that this is a conditional probability: 
we are looking for a density, knowing that the measures at points 1,..., NX X have been 
performed.

This density will be more concentrated, if the point 1,..., Kx x where we are is closer to a 
point where the measure has been made. If we are exactly at a point where a previous 
computation has been made, the density is a Dirac mass : it is completely deterministic.

The collection of all densities 1 1( ; ,..., ; ,..., )K Nf t x x X X will be the « Experimental Prob-
abilistic Hypersurface » (in short EPH) Probabiliste » describing the experiment (or the 
computational code). We may view it, not as a thin surface, but as a thick surface.

Let’s see an example, in the case of one parameter 1x . Assume that two computations 
have been made, at the values 1x and 1x. We might have the following picture :

Figure 1 : an example of conditional density

Above 1x and 1x, we have precise values, since the computation has been made. Above 
any point x , we do not have a precise value, but a range of possible values, and a 
probability density, inside that range. This density takes into account the proximity of

1x and 1x with respect to x .

If 1 1( )T CT x  and 1 1( )T CT x  are the results of the two computations that were made, 
the density of probability above x might look like this :

1x
1x

1x

temp

x
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Figure 2 : shape of the conditional density above the point x

In our example, the point x is closer to 1x than to 1x. So we may assume that the 
triangle above 1x is « sharper » than the triangle above 1x : all this will be explained 
later on.

VI. Why not a deterministic hypersurface ?

As we explained in the introduction, the most natural idea, a priori, is not that of a 
probabilistic hypersurface, but rather a deterministic one, the following way : we 
interpolate between all the measure points (« Krigeage » methods). If for example the 
space of parameters had dimension 1, we would interpolate linearly between measure 
points. If it had dimension 2, we would use small triangles and we would construct a 
plane surface above each triangle. This method can be generalized to arbitrary 
dimension : we need « hyper-triangles », made of 1K  points in a space of dimension K
(we still speak of « triangles »).

This idea, though it is the most natural one, must still be discarded, for three reasons :

 We would have to assume that our computational code, above each triangle, acts 
linearly. But this is wrong. Our code does not need to be linear, even on small 
regions.

 We cannot accept the idea to attribute to the computational code a precise, 
unknown, value : the idea to have a probability, reflecting the uncertainty, is much 
more satisfactory. We can measure the standard deviation, which characterizes the 
uncertainty. 

 Building the triangles can be done in many ways, none is imposed. Depending on 
the method which is chosen, the result will be different. There is a particular 
triangulation, named « Delaunay Triangulation », for which the triangles are not 
too long and narrow, and this triangulation can be performed in any dimension. 
But why should we choose these triangles ? There is no physical reason to such a 
choice.

t

1T 
1T 
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Computer implementation of Delaunay Triangulation is extremely costly, as far as 
computation time is concerned. We launched an international consultation on the net 
« NA-Net » (numerical analysis net), in order to obtain information about the most recent 
performances in terms of triangulation algorithms. One can perform very quickly the 
triangulation of thousands of points in dimension 2, one hundred in dimension up to 10, 
but 300 points in a space of dimension 50 is totally out of reach. The theoretical 
complexity is in /20( )dn , where n is the number of points (here 300) and d is the 
dimension (here 50) : we find something like 25300 operations ! If the computer performs 
a billion operations per second, we need 452.10 years.

One may consult the paper « Delaunay Triangulation in Higher Dimensional Spaces », 
by Kurt Melhorn and Michaël Seel, Max Planck Institut für Informatik, 1998, from 
which we extract the following table. It concerns the triangulation of 100 points, as a 
function of the dimension :

dimension time (seconds)
2 0.53
3 2.65
4 15.7
5 76
6 387
7 out of memory
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Third Part

Constructing the Experimental 

Probabilistic Hypersurface 
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I. Before the first measure

Before we start any measure, we may justifiably consider that all results will be in a 
closed bounded interval min max[ , ]T T . Indeed, no physical measure goes to  nor to  .
But this interval should be viewed as a security interval : if it is replaced by a larger 
interval, the security will of course be better.

Since we know nothing about the result of the first measure, we may consider that this 
result follows a uniform distribution upon this interval : nothing, indeed, allows us to 
privilege any subset of this interval. But of course, if some information is available about 
what the first measure will be, it can be used at this early stage.

If we want to study a critical interval, of the type [ , [seuilT  (temperatures that are 
larger than a certain threshold), we need obviously max seuilT T (otherwise the problem 
does not exist!). If we increase maxT , we increase the probability of the interval

max[ , [ThresholdT T : in other words, we penalize ourselves. So, conceptually speaking, there is 
no objection in chosing maxT quite large.

But conversely, if we diminish minT in an artificial manner, this implies that we increase 
the probability of the interval min[ , ]ThresholdT T , and so we decrease that of the critical 
interval max[ , [ThresholdT T . This is forbidden.

So the rule is as follows : we should choose as global interval for our study min max[ , ]T T the 
smallest interval such that we are sure that it will contain all measures that will come. 
This information comes from the physics of the problem, and also from all previous 
similar situations, if any.

So we observe this somewhat surprising fact : if we are interested only in large 
temperatures, the choice of maxT is not critical, but the choice of minT is critical !

Before the first measure, the hypersurface already exists : above each point X , we have 
a uniform density upon the interval min max[ , ]T T . This first hypersurface will progressively 
get modified, in order to incorporate the information coming from each measure.

II. After the first measure

The first measure is made at a point 1X and gives a value 1 1( )T CT X . We now want to 
evaluate the resulting information.

Quite clearly, the total available information has increase, since a measure has been 
made (except, of course, if it contradicts the initial interval !). In fact, we have at our 
disposal two different types of information :
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 The probability density above a point X is more or less similar to the density 
constructed above the point 1X ; we may legitimately assume that it is more 
similar when X is closer to 1X .

 The probability density above a point X is entirely supported by the interval
min max[ , ]T T .

Since the measure at point 1X gave the precise value 1 1( )T CT X , we have above the 
point 1X a density which is a Dirac mass : 

1T . If we took the errors of measure into 
account (which is not the case here), we would put here, instead of a Dirac mass, a 
density of probability which would be obtained from the calibration of the device used for 
the measure : see our book [BB2].

Now, if we want to make these remarks precise, we need to use the notion of  
information connected with a law of probability : this is the concept of entropy, which we 
now present.

III. Information connected with a law of probability : the 
entropy

There are two kinds of entropies : discrete and continuous. 

A. Discrete Entropy

If we start with a discrete law of probability ( )ip , the associated entropy is defined by 
the formula :

Logi i
i

I p p  (3.a.1)

This entropy is obviously positive (since ip 1 ) ; it is equal to 0 if and only if the 
distribution is concentrated in a single point (all ip ’s are 0, except one, equal to 1) : this 
is a Dirac mass.

In the case of equirepartition of N points over an interval min max[ , ]T T , all having same 
probability 1/ N , the entropy is :

max minLog Log T TI N
a


  , (3.a.2)

where a is the distance between two consecutive points (width of the subdivision).

B. Continuous Entropy

We define the entropy of a law of probability on  by the formula :

( ) ( ) Log ( )I f f t f t dt



  . (3.b.1)
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The larger this entropy is, the less concentrated the law is. We now treat two examples, 
in order to illustrate this definition :

 Entropy of a uniform distribution

Let 
max min

1( )f t
T T




if min maxT t T  , 0 otherwise. Then :

max min( ) Log ( )I f T T  (3.b.2)

When this interval shrinks, this entropy decreases (the law is more and more 
concentrated). If the interval is reduced to a single point (case of the Dirac mass), its 
value is  . The continuous entropy, unlike the discrete one, takes its values between 
 and  .

 Entropy of a gaussian variable :

Let us consider the gaussian density :

2 21( ) exp( / 2 )
2

h t t 
 

  ,

then :

 
 

2
2

( ) ( ) Log ( )

1 ( ) Log 2 ( )
2
1 Log 2
2

I h h t h t dt

t h t dt h t dt

  

  


 





 

 

 

 

 



 

and therefore :
 ( ) Log 2I h e   (3.b.3)

Here again, of course, the entropy increases with  ; when 0  , ( )I h  .

The entropy is, as we can see, a measure of the quantity of information : the larger the 
entropy is, the less significant is the information. We will respect this principle of 
maximal entropy when we construct the Hypersurface : to say that the entropy is 
maximal means that we do not add any information. This is the point of view we adopted 
already when we said that, before any measure, a uniform density was taken above all 
points.

IV. Constructing the Hypersurface in the case of a single
measure

Let us assume now that a single measure has been performed. We will construct 
completely the Hypersurface in that case. We start with the discrete case, which is the 
only one that has a physical meaning (an observation is always of discrete nature ; see 
our book [BB2]). The continuous version is interesting, however, since it provides useful 
tools, to which we come later.
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Let us start with the case of a single parameter, denoted by x . The measure ( )CT x was 
made for 0x  (we may of course bring back ourselves to this case) ; it gave 0(0)CT T .

The values of the parameter are discretized under the form :

i
idx
K

 , 0,...,i K . (4.1)

For 0i  , we have 0 0x  : this is the point where the measure was made. For i K , we 
have Kx d : this is the maximal distance between any point of the domain and the 
point where the measure was made. So the discretization was made with a width equal 

to d
K

  . We may also have points x on the negative side of the axis : we do not care 

about that here.

Concerning the temperatures, we also have a discretization of the observed values, 
between minT and maxT , under the form :

min max min( )j
jt T T T

K
  


, (4.2)

where K  is the number of points in the subdivision. The width of the subdivision, for 

the temperatures, will be denoted max minT T
K


 


.

Let 0j be the index of the observed temperature :

0 0jt T .

In order to construct the Hypersurface, we will compute the probability, denoted by ,i jp , 
corresponding to each jt above each ix . These probabilities verify :

,
0

1
K

i j
j

p




 , for 0,..., .i K (4.3)

For 0,..., ,i K the
0j

t is that of largest probability (since it is the one that was 
observed). The probability decreases when j gets further from 0j (both on the right and 
on the left). In other words, the sequence ,i jp is increasing for 0j j , decreasing for 

0j j .

We may legitimately consider that the sequence ,i jp is symmetric with respect to the 
index 0j (same decay both on the left and on the right). If we neglect the truncation 
effect due to minT and maxT (which we can do in general), this last property will translate 
into the fact that the expectation is equal to 0T :
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, 0
0

K

i j j
j

p t T




 , for 0,..., .i K (4.4)

Finally, we may legitimately consider that the variance of the law increases when we get 
further from the measure point. This gives :

2
,

0

K

i j j
j

p t



 decreases for 0,..., .i K (4.5)

So we have enumerated all properties that the probability laws must meet, taking into 
account the physical constraints.

The discrete entropy iI above a point ix is defined by :

, ,
0

Log .
K

i i j i j
j

I p p




 (4.6)

It is increasing with 0,...,i K . Its value is 0 at 0i  , since we have a precise measure : 
0, 0jp  except

00, 1jp  . At the other end, for i K , we have the information :

max minLogK
T TI







.

In order to simplify the notation, we set max minLog T TA






. This quantity is known : the 

width of the subdivision is known, as well as the extreme temperatures.

We do not know the precise value for each iI ; so we consider that they follow uniform 
laws, satisfying the inequalities :

0 10 i KI I I I A        (4.7)

This means that the joint law of the 1K  -uple 1 1,..., KI I  is proportional to the function 

1 101
Ky y A    . Then we take as an estimate for each iI the expectation of the marginal law 

for each variable. This gives the formulas :

1 2

1 2

1 2 1
0 0 0

1 2 1
0 0 0

( )

K

K

x xA

i K K

i x xA

K K

x dx dx dx
E I

dx dx dx





 

 


  

  

 

 
(4.8)

The denominator gives
1

( 1)!

KA
K




and the numerator

!

KiA
K

. So we get :

( )i
iAE I
K

 , 0,...,i K (4.9)
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and this is the value we give now to the entropy above each ix . 

It will be convenient to present this result as a Lemma, which will be useful in the 
sequel : 

Lemma 1 : Minimal Information Lemma

If 1K  variables iz satisfy :

1 10 Kz z A    ,

the minimal information is obtained when the value :

i
iAz
K

 , 1,..., 1.i K 

is attributed to each of them.

The knowledge of the entropy is obviously not enough to compute completely the
probabilities ,i jp . But we assume moreover that on each layer the variance is maximum 
(we penalize ourselves). In this case, the ,i jp can be computed explicitly, as we see now. 
In order to simplify our notation, we omit the index i in the next paragraph : the 
computation is done separately on each layer.

Let us first observe that, for a fixed distribution of probability ( )jp , to maximize the 
variance when the entropy is fixed is the same as to maximize the entropy when the 
variance is fixed : the solutions to both problems will have the same shape. The second 
problem is easier to solve :

Lemma 2. – Let jp be a distribution of probability at the points jt , with fixed variance. 
The distribution with maximal entropy is a gaussian :

2exp( )j j jp t t     .

Proof of Lemma 2

This extremality property of gaussian variables is well-known (see for instance the book 
[Sobolev], chapter 10, proposition 10.2.2 ); we present here a discrete analogue.

Let jp be the distribution maximizing the entropy. We have obviously :

1j
j

p  .                                             (4.10)

We may assume (modifying the points jt if necessary) that the expectation is 0, that is : 

0.j j
j

p t  (4.11)

If the variance is fixed, that means :
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2 2.j j
j

p t  (4.12)

Let now jq be a sequence such that ( )j jp q is also a probability, with mean 0 and 
same variance. This means :

0j
j

q  , (4.13)

0j j
j

q t  , (4.14)

and using (4.12),
2 0j j

j
q t  .  (4.15)

Since jp is extremal for the entropy,

Log ( + )Log ( )j j j j j j
j j

p p p q p q     ,

which can be written :

Log (1 ) Log Log (1 ) 0j j
j j j j

j j jj j

q q
p q p q

p p
       . (4.16)

Let  be a real number and let us consider the sequence jq , when 0  . We get 
from (4.16) :

Log (1 ) Log Log (1 ) 0j j
j j j j

j j jj j

q q
p q p q

p p
 

        ,

and thus :

2
2Log 0j

j j j
j j j j

q
q q p

p
       ,

using (4.13) :

2
2Log 0j

j j
j j j

q
q p

p
    .

But this must be true for any  , positive or negative. This is possible only if :

Log 0j j
j

q p  . (4.17)
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Let Q be the vector of the jq ’s. The conditions (4.13), (4.14), (4.15) imply respectively 
that, in the space 2l , the vector Q is orthogonal to the constant sequence, to the 
sequence ( )jX t , and to the sequence 2 2( )jX t . Property (4.17) shows that, if these 
conditions are fulfilled, Q is orthogonal to the sequence Log jU p . 

So we see that if Q is orthogonal to the vector space spanned by 1, X , 2X , then U is  
orthogonal to Q . A classical result in Functional Analysis, the « bipolar theorem » (see 
for instance the book [BB1]) shows that U is itself in the vector space spanned by 1, X , 

2X . By definition, this means that we can find three real numbers  ,  ,  such that :

2U X X     ,

and, coming back to our original notation :

2Log j j jp t t     ,

which proves the Lemma.

We observe that the distribution of probability maximizing the entropy is completely 
determined when the expectation and the variance are known. Indeed, the equations :

1j
j

p  , j j
j

p t m , 2 2 2
j j

j
p t m 

can be written :

 2exp 1j j
j

e t t    , (4.18)

 2
0expj j j

j
e t t t T    , (4.19)

  22 2 2
0expj j j

j
e t t t T      , (4.20)

and from this we determine explicitly the parameters , ,   . The same holds if the 
expectation and the entropy are known ; the third equation becomes :

2 2( ) exp( ) .j j j j
j

t t t t I           (4.21)

V. Simplified computations

We may omit the effect of the truncation between minT and maxT if the observed 
temperature 0T is not too close either from minT or from maxT . Then the jp are of 
« gaussian type ». Indeed, jp is maximum at 0j , decreasing on both sides, the same way. 
Under these conditions, the Lemma gives :
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0

2Log ( )j j jp a t t b    , with 0.a  (5.1)

The value of b comes from the condition 1jp  . We find :

 2
0Log exp ( )j

j
b a t T    , (5.2)

and replacing into (5.1), we obtain an equation depending upon the sole parameter a :

 0

2 2
' 0

'

Log ( ) Log exp ( )j j j j
j

p a t t a t T      . (5.3)

If the entropy is fixed, we get the equation :

 2 2
0 0( ) exp ( ) Log ,j j

j

aI t T a t T S
S

     (5.4)

with  0

2exp ( )j j
j

S a t t   , and this equation allows us to find a numerically.

VI. Evolution of the entropy at small distance to the measure 
point

We will determine the form of the probability distribution at a point 1x , situated 
immediately nearby the measure point 0x . Recall (formula (4.1)) that 1 /x d K . Since 
the probability distribution is quite concentrated, we may limit ourselves with three 
terms, of indices 0 01, , 1j j j  . In order to simplify our notation, we take 0 0j  . The 
sum  0

2exp ( )j j
j

S a t t   can be written :

2

1 2 aS e    ,                                          (6.1)

with :
max minT T

K


 


. (6.2) 

(recall that K  is the number of points in the subdivision in t .)

Formula (5.3) gives :

22
1Log Log(1 2 )ap a e      . (6.3)

But, when 0  , 1 0p  (the law concentrates at 0). For a fixed   , this implies that 
a  .

Since the entropy above the point 1x is 1
AI
K

 (formula (4.9)), we obtain the relation :

 
2

2

2

22 Log 1 2 .
1 2

a
a

a

A a e e
K e






 





  


(6.4)
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When a  , we have  2 2

Log 1 2 2a ae e     and so, with 2u a  ,

2
uA ue

d
  . (6.5)

Since 2 / 2uu u u ue ue e e e      , we obtain :

2 2Log 2Logd du
A A 

 

and therefore :

2 2

1 2 2 2Log Logd da
A A   

 
 

. (6.6)

In short, we obtain approximately :

When the distance between the point x and the measure point 0x tends to 0, the
coefficient a defined by (5.1) for the law of minimal information is of the order of :

2
1

0

Log
( , )
ca c

d x x
 . (6.7)

Remark : The formula given in (6.7) is a simplification which is not quite correct. In fact, 

formula (6.5) shows that the result is the solution of the equation 
2

x Axe
d
  , which uses 

the W Lambert function.

VII. Evolution of the entropy at large distance from the 
measure point

As we already mentioned, if we omit the truncation effect, the formulas give gaussian 
functions, which make sense as continuous probability distributions.

At distance 0d d from the measure point, we may as well use the discrete or the 
continous entropy. The continous one is much easier to compute and gives explicit 
formulas. We have approximately :

( )Log ( ) Logj j
j

f t f t dt p p   ,

where   is the width of the subdivision in .t If the discrete entropy increases linearly, 
the same holds for the continous entropy. 

If we consider the distribution :
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 2 2
0

1( ) exp ( ) / 2
2

h t t T 
 

   ,

it has mean 0T and continous entropy :

 Log 2cI e  .                             (7.1)

So we obtain a continous analogue the following way : the parameter x will vary 
continuously between 0x and the boundary of the domain ; above the point x we put a 
continuous entropy of the form :

( )cI x x ,

since the entropy increases linearly with the distance.

Under these conditions, formula (7.1) gives :

( )
2

xex
e






 .                                          (7.2)

So finally we obtained explicit formulas :

 Within short distance to the point of measure, the minimal information may be 
represented by a gaussian, with variance :

1
1

1

Log
d




  
 
 



 At large distance from the point of measure, the minimal information may be 
represente by a gaussian, with variance :

 2 2exp d  

where d is the distance between the current point and the measure point. The 
parameters 1 1 2 2, , ,    depend upon the physical characteristics of the model.

To generalize to several parameters is immediate, but we need first to choose a distance 
upon the space of parameters.
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VIII. Choosing the distance for several variables

At this stage, we consider all parameters as equivalent, in terms of importance : we do 
not know which ones will be preponderant. So we take a distance which will be 
symmetric with respect to the various parameters : there are no weights. Such distances 
may be :

1
1

( , ')
K

k k
k

d X X X X


  (8.1)

 2
2

1
( , ')

K

k k
k

d X X X X


  (8.2)

( , ') max k k kd X X X X   (8.3)

Let us observe, however, that the third one does not meet our needs. Indeed, two points 
X and 'X are close to each other for that distance if all their coordinates are similar. 
But, among 50 coordinates, all of them between 0 and 1, in most cases, two at least will 
differ significantly, and the distance d can never be used in practice : one may never 
say that two points are close to each other, for this distance. 

So we request to be able to say that two points are close to each other if most of their 
coordinates are similar. This is satisfied for the distances 1d or 2d . In practice, we use 

2d , euclidean distance, simply denoted by d .

IX. Two measures

When only one measure has been performed, one feels an impression of intellectual 
comfort : the only observation gives 1 1( )T CT X . We propagate this information, making 
it less and less precise, but still the value 1T remains the most probable everywhere. We 
are in the situation of the Englishman who came to Calais, saw a woman with red hair, 
and deduced that all French women have red hair.

When a second observation is performed, it questions this pleasant certainty. Indeed, in 
general, 2 2( )T CT X does not give the same result as 1 1( )T CT X . We cannot believe 
any longer that 1T is the most probable value everywhere. We have now two 
informations, apparently contradictory, and we have to conciliate both. At first sight, 
this is troublesome. But an obvious remark is that two measures are better than just 
one. The available quantity of information has increased, and the entropy has decreased.

This situation is of course quite common, but it is still troublesome, and we will have to 
develop a specific mathematical model in order to answer it.

At each point X of the parameter space, we now have two densities of probability. The 
first one, simply denoted by 1( , )f t X , is generated by the measure 1 1( )T CT X
considered alone, the second, 2 ( , )f t X , is generated by the measure 2 2( )T CT X
considered alone. We have to conciliate both, and turn them into a single density.
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The natural idea is that if the first one is centered at 1T and the second one at 2T , the 
resultant will have two « bumps », one around 1T and the other one around 2T . Here is 
the aspect of a possible graph, with 1 1T  , 2 1.4.T 

Figure 9.1 : a possible graph in the case of two measures

Why don’t we decide that the resulting density should have just one maximum (a single 
bump), situated somewhere between 1T and 2T ? Because, if we did so, we would 
introduce points that have never been showed by any observation. The only existing 
measures have shown the possibility of the values 1T and 2T ; they never showed the 

possibility, for instance, of the value 1 2

2
T T , yet that it might have a large probability !

Except if there is a specific information, as a complement, a probability density with 
several maxima (one for each measure point) is the only shape compatible with the 
existing measures, no matter if we have two measures or more. But we still have to 
explain how the two densities should be combined.

Quite naturally, we consider that the resulting density, ( , )f t X , will be given by a 
formula of the following type :

1 2( ; ) ( ; ) (1 ) ( ; )f t X f t X f t X    (9.1)

with 0 1.  Indeed, we need to have a density of probability : we cannot just add the 
two densities 1f and 2f . 

A. Case of the dimension 1

To start with, let us take 1 0X  and 2 1X  , in a one dimensional space (just one 
parameter). If the point X has x , 0 1,x  as abscissa, we know that the densities 1f
and 2f are given by gaussian formulas :

 2 2
1

1
1

exp / 2 ( )
( , )

( ) 2

x x
f t x

x



 


 ,                 (9.a.1)
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 2 2
2

2
2

exp ( 1) / 2 ( )
( , )

( ) 2

x x
f t x

x



 

 
 , (9.a.2)

where 1( )x depends upon the distance between x and 0, and decreases when 0x  ,
and 2 ( )x depends upon the distance between x and 1, and decreases when 1x  . 
Depending upon the physical characteristics of the model, the functions 1( )x and 2 ( )x
are precisely known.

So we get, as a resulting density, an expression of the form :

1 2( ; ) (1 ( )) ( ; ) ( ) ( ; )f t x x f t x x f t x    . (9.a.3)

In this expression, the functions 1f and 2f are known, but not the function ( )x . We 
call this last function « proportion of influence of the second source upon the information 
at the point x ». If 0x  , we are at the point 1X and this influence is zero, and 0  . If

1x  , we are at the point 2X and this influence is 1. Moreover, quite obviously, this 
proportion of influence of 2X may only increase when we get closer to 2X .

The Minimal Information Lemma tells us that, under these circumstances, we may 
consider that  is linear. Since (0) 0  and (1) 1  , we get ( )x x  .

If we are at the middle between both points, the influences of 1X and 2X are equal, 
and :

1 2( ; ) ( ; )( ; )
2

f t x f t xf t x 
 . (9.a.4)

Let us now treat the case of a space of dimension larger than 1.

B. Dimension larger than 1

Let’s see first the case of the dimension 2. We discretize the whole space : let’s denote by 
,i jx the points of the subdivision. The measures, as previously, are in (0,0) and (1,0) , to 

take an example.

The influence of the second measure (at (1,0) ) will be increasing, on the square
[0,1] [0,1] , if we move, for fixed y , in the sense of increasing x , since we get further 
from (0,0) and since we get closer to (1,0) . The same way, the influence of (1,0) at 1,0x
is weaker than at 0,1x : these two points are at the same distance from (0,0) , but the 
second is closer than the first from (1,0) . We write this way all the inequalities that 
should satisfy the couples of variables. This defines a volume V in the space of all 
coordinates that have been introduced (as many as points ,i jx ). After that, we assume, as 
we did in the Minimal Information Lemma, in dimension 1, that the influence at each 
point follows a uniform law, with restrictive inequalities (some are bigger than some 
others). We assign to each influence the expectation of this law, which gives, for the 
influence ( , )i j :
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, 0,0 ,

0,0 ,

...
( , )

...

i j N NV

N NV

x dx dx
i j

dx dx
  


. (9.b.1)

Other discretisations are possible, for instance using balls centered at the measure 
points.

X. The case of N measures

The density at point X will be of the form :

1 1( ; ) ( ; ) ( ; )N Nf t X f t X f t X    , (10.1)

where ( ; )jf t X represents the density of probability above the point X resulting from 
the sole j -th measure. The coefficient j depends from the distances between X and 
the different points of measure 1,..., NX X . We call it « influence of the j -th measure ».

Set ( , )j jd d X X . The coefficient j must satisfy the following properties :

1. 0 1j  and 
1

1
N

j
j




 ;

2. If 0jd  , 1j  (at the point jX , only this measure has an influence) ;

3. If 0id  , i j , 0j  (at another point iX , the measure jX has no influence) ;

4. If all id are fixed, except jd , the coefficient j is a decreasing function of jd (one 
gets further from the j -th source of information) ;

5. If all the id are fixed, except kd , k j , the coefficient j is an increasing 
function of kd (we get further from the k -th source of information).

We see easily that a choice of the form :

1

1

1
j

j N

i i

d

d












, (10.2)

with 0  , satisfies all these requests. We now show how to compute the parameter  , 
which depends upon the characteristics of the model, that is upon the physical 
experience which is performed. This parameter is related to the propagation of the 
information and to the way we combine several informations.
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Theorem. – In a space with K parameters, the value K  is the one which represents 
the minimal information. In other words, the combination of elementary densities will be 
given by the explicit formula :

1
1

1 1 1( ; ) ( ; ) ( ; )
1/

NK KK
Ni

f t X f t X f t X
d dd

 
   

 
 , (10.3)

Proof of the Theorem. We may legitimately consider that the coefficient  does not 
depend of the number of measures that have been realized.

Let us consider the case of two measures, in dimension K , according to the following 
figure :

Figure 10.1 : two points of measure and their influence

Here, 1x and 2x are two points of measure and x is any point in the segment 1 2[ , ]x x . 
Let 1d be the distance between x and 1x (this is the radius of the first ball in the above 
figure) and 2d be the distance between x and 2x (this is the radius of the second ball). 
We come back to formula 9.a.3 :

1 2( ; ) (1 ( )) ( ; ) ( ) ( ; )f t x x f t x x f t x    ,

where ( )x represents the proportion of influence of the second source at the point x . 

Quite obviously, at every point of the ball 2B , this proportion of influence will be larger : 
these points are closer to 2x and further from 1x .

The same way, quite obviously, at every point of the ball 1B , this proportion of  influence 
will be weaker : these points are closer to 1x and further from 2x .

Assume that these balls have been discretized by 1m points iz inside the first ball and 

2m points iz ( 1 1 21,...,i m m m   ) inside the second one. Let iZ be the random variable 
representing the proportion of influence of the second source at the point iz and X be 

1x
2xx

1B
2B
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the random variable representing the proportion of influence at the point x . This 
proportion of influence being unknown, as we already did in the Lemma of Minimal 
Information, we assume it follows a uniform law. The variables iZ respect the following 
relations :

1 1 1 21 10 ,..., ,..., 1m m m mZ Z X Z Z     . (10.4)

In other words, their joint law is proportional to :

1 1 1 21 11 ( ,..., , , ,..., )V m m m mz z x z z  , (10.5)

where V is the volume :

 1 2

1 1 1 2 1 1 1 2

1
1 1 1 1( ,..., , , ,..., ) ,0 ,..., ,..., 1m m

m m m m m m m mV z z x z z z z x z z 
         . (10.6)

As we already did in the Lemma of Minimal Information, the value we attribute to X is 
the expectation, namely :

1 1 1 2

1 1 1 2

1 1

1 1

... ...
( )

... ...

m m m m
V

m m m m
V

xdz dz dxdz dz
E X

dz dz dxdz dz

 

 





. (10.7)

The computation is exactly the same as in the Lemma of Minimal Information, noticing 
that the volume of V is :

1 2( ) ! ! ( ')vol V m m vol V (10.8)

with :

 1 2

1 1 1 2 1 1 1 2

1
1 1 1 1' ( ,..., , , ,..., ) ,0 ... ... 1m m

m m m m m m m mV z z x z z z z x z z 
             (10.9)

and the denominator of (10.7) is 1 2

1 2

! !
( )!

m m
m m

, and the numerator is 1 2 1

1 2

! !( 1)
( 1)!

m m m
m m


 

. 

So we get :

1

1 2

1( )
1

mE X
m m




 
. (10.10)

But the number of points 1m in the ball 1B is proportional to the volume of this ball, 
which is itself proportional to 1

Kd (recall that K is the dimension of the space). The 
same way, the number of  points in the ball 2B is proportional to 2

Kd . So we get :

1

1 2

( )
K

K K
dx

d d



 (10.11)

and, putting back into formula (9.a. 3) :
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1 1
1 2

1 2 1 2

2 1
1 2

1 2 1 2

( ; ) (1 ) ( ; ) ( ; )

( ; ) ( ; )

K K

K K K K

K K

K K K K

d df t x f t x f t x
d d d d

d df t x f t x
d d d d

  
 

 
 

Dividing both the numerator and the denominator by the product 1 2
K Kd d , we obtain the 

annouced expression. This proves the theorem.

We observe that the formula defining f is symmetric with respect to the set of 
observations : the order in which they were made does not matter. This condition is 
obviously necessary : the result should not depend of the order of the computations. Both 
for a computational code and for a real-life experiment, the results obtained at each trial 
are independent of the order of the trials.

So, as we see, each new piece of information (each new computation) makes the density 
of probability more precise : it « shrinks » it, and this effect is stronger if the measure 
point is closer.

The definition of these densities of probability allows us to incorporate all the available 
information, no matter when it was obtained. All the results, even the old ones, are 
worth using : they contribute to the global information.

In summary, the choice we made for the function f obeys three rules :

 It must be a density of probability ;

 The order of the computations should not have any importance : only the results 
count ;

 The density should tend to a Dirac mass if we approach a point already known.

XI. Global characteristics of the Hypersurface

We have seen, at paragraph VII, that, in the case of one measure, the propagation of the 
information, at a point at distance d from the measure, was characterizd by a gaussian 
density, with variance da  , with 0  and 1a  .

The parameters  and a need to be determined : it is reasonable to believe that they
depend of the model. The propagation of the information has no reason to be the same, in 
the case of a meteorological measure and in the case of a thermohydraulic computational 
code. But, for the moment, let us assume that these parameters are fixed.

If the parameters  and a are chosen, all local densities ( ; )f t X are known. From 
these densities, by integration, we compute the local repartition functions. We denote 
them by ( ; )F t X .

Then, using the local repartition functions ( ; )F t X , we can compute the global 
repartition function connected with the Hypersurface (that is, to the computational code, 
or to the physical experience, depending on the situation). It answers the following 
question : if random values of the parameters 1,..., Kx x are obtained, what value may I 
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expect for the final result 1( ,..., )KCT x x ? We denote by ( )EPHF t this global repartition 
function.

Several cases may occur :

1. If I know nothing about the parameters 1,..., Kx x , I will consider that each follows 
a uniform law over some interval, and I will assume that they are independent. 
In this case, the global repartition function of the Hypersurface will be given by 
the formula :

1

1
1 1

1 1

1 1( ) ... ( ; ,..., ) ...K

K

B B

EPH K KA A
K K

F t F t x x dx dx
B A B A


   . (11.1)

2. If I have fixe a priori laws upon the parameters, still assuming they are 
independent, we have the formula :

1 1 1 1( ) ... ( ; ,..., ) ( ) ( ) ...EPH K K K KF t F t x x h x h x dx dx    , (11.2)

where 1h ,…, Kh are the densities for each parameter 1,..., Kx x .

3. Finally, if I do not assume the parameters to be independent, but if I have the 
joint law of the K - uple 1,..., Kx x , under the form of a density 1( ,..., )Kh x x , the 
formula will be :

1 1 1( ) ... ( ; ,..., ) ( ,..., ) ...EPH K K KF t F t x x h x x dx dx   . (11.3)

We should insist upon the fact that the densities 1h ,…, Kh , or the joint density 
1( ,..., )Kh x x , come necessarily from the outside : they are given by the experimenter, for 

physical reasons. They are by no means an internal characteristic of the Hypersurface.
But if these densities are modified, one can perform again the computations (11 .2) or
(11.3) (which is very simple) and see the impact of the modifications upon the result.

XII. Empirical repartition function

Recall (this is an elementary tool in Probability Theory) that we have at our disposal an 
empirical repartition function, denoted by ( )empF t , related with the experience. Indeed, 
N measures have been performed (no matter how they were made), and, if the results 
are put in increasing order :

1 2 NT T T   , (12.1)

the empirical repartition function empF is defined by :

( ) 0empF t  if 1t T

1( )empF t
N

 if 1 2T t T 
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( )emp
kF t
N

 if 1k kT t T   1,..., 1k N 

( ) 1empF t  if Nt T .

One may consult the book [BB2] for the main properties of this function. Obviously, it is 
piecewise constant.

If some probability laws have been introduced upon the input parameters, either 
indepedently, that is 1h ,…, Kh , or as a joint law, that is 1( ,..., )Kh x x , and if the values of 
the parameters are obtained according to these laws, the empirical repartition function 

empF will converge, almost everywhere and in 1L towards a limit, denoted by ( )F t , when 
the number of measures increases : see [BB2]. In other terms, we have a deterministic 
experience, 1( ,..., )KCT x x , and we consider a random variable :

1( ,..., )KY CT X X , (12.2)

where the K  uple 1( ,..., )KX X has a known law, with density 1( ,..., )Kh x x . The function 
F is simply the repartition function for the variable Y . The more measures we have, the 
better this repartition function is known.

Quite obviously, the result depends essentially from the density 1( ,..., )Kh x x that has 
been chosen. If we decide, for instance, to put the emphasis upon some subset of the 
whole configuration space (space of all possible values for the parameters), or to restrict 
the variation intervals for some parameters, the empirical repartition function will be 
different in each situation. There will be more measures in some subsets of the 
configuration space.

The choice of the measure points may be « biased » : one chose, intently or not, to 
privilege some zones which have no interest, and therefore the interesting zones are 
« diluted » (see the book [BB2] for a description of this phenomenon). In this case, the 
global statistical characteristics of the model, deduced from the empirical repartition 
function empF , will reflect these poor choices, and will be of little use, since of low 
credibility. Any observer, familiar with the physics of the problem, will notice that the 
measures were not made where they should have been.

However, even if the laws that have been chosen are poor, the function empF can still be 
used in order to determine the propagation parameters inside the Hypersurface, as we 
now explain.
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XIII. Estimating the parameters for the propagation of the 
information

In the case of a single measure , the propagation of the infomation, at a point situated at 
distance d from the measure, is characterized by a gaussian density, with variance

da  , with 0  and 1a  (§ VII) ; in the case of N measures, these gaussian are 
combined using the formula given at § X.

When N measures have been realized, with a joint law of density 1( ,..., )Kh x x , we have 
at our disposal : 

 an empirical repartition function ( )empF t ;

 a global repartition function for the hypersurface, ( )EPHF t .

We may legitimately consider that the two must be close, because, when the number of 
measures increases, both must be close to the « real » repartition function ( )F t , which is 
unknown.

As we will see in the Appendix, one has to work with functions of repartition, and not 
with densities. The densities, indeed, do not provide a convenient tool to study proximity 
questions.

So we will estimate the parameters 0  and 1a  in order to fulfill this proximity. In 
order to make this clear, let us first imagine that we take  and a quite large : the 
variances will be high. The propagated laws will be quite close to a uniform law, and this 
will hold almost at every place inside the Hypersurface (in fact, every where, except in a 
small neighborhood, near the measure points). under these conditions, the mean, 
computed using (11.1) or (11.2) or (11.3), will be very close to the repartition function of a 
uniform law. Il will not coincide with ( )empF t . In other words, if we do not propagate the 
information, we obtain everywhere a uniform law, and the Hypersurface does not reflect 
the global statistical properties.

But conversely, if the propagation of the information is too strong, chosing  and a too 
small, we find ourselves with, essentially, a density above every point which is a 
combination of Dirac masses. For instance, if two measures only have been performed, 
and if they gave respectively 1T and 2T , the « absolute » propagation of infomation will 

consist in the density  
1 2

1
2 T T  above each point. In other words, this would say that 

the only possible values are those which have already been observed, in an equiprobable 
manner. In this case, the repartition function ( )EPHF t linked with the Hypersurface is 
exactly the same as the empirical repartition function ( )empF t , but the construction does 
not meet our request : we want that other values, than those already observed, should be 
possible, and we require that the information should decrease with the distance to the 
existing measures. So we see that it is not legitimate either to propagate the information 
in too strong a manner.

Our choice will be fixed as follows :
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Let us fix a small real number 0  , corresponding to the « confidence threshold » we 
give to empF . In other words, it is a bound for the distance between the true repartition 

function (unknown) and the empirical repartition function : emp réelleF F   (the norm is 

here the 1L norm). It is legitimate that the number  should depend upon the number of 
measures : the larger the number of measures is, the closer the empirical repartition 
function is to reality.

When this is done, we choose  and a that maximize the global entropy of the 
Hypersurface, under the constraint :

emp EPHF F   . (13.1)

The global entropy of the Hypersurface is computed as follows : we start with the 
repartition function ( )EPHF t ; we compute the density ( )EPHf t , and the global entropy is 
by definition :

( ) ( ) Log ( )EPH EPHEnt EPH f t f t dt  . (13.2)

This global entropy depends of course from  and a , since ( )EPHF t depends from them.

This principle to estimate the two parameters means the following : let us choose the 
parameters which insure a sufficient proximity with the empirical repartition function, 
still keeping minimal information. Indeed, we saw that if we propagate the information 
too much, we get closer and closer to the empirical law.

Remark

We chose here to estimate the parameters, using a reference to the global proximity of 
the two repartition functions ; this proximity is computed using the 1L -norm. This choice 
is quite robust, since the repartition function is the one which best describes a 
probabilistic experience. We might have thought of simpler characteristics, such as the 
variance. The choice of the expectation is not suitable, since for the Hypersurface, the 
global expectation is, roughly speaking, equal to the empirical expectation : it is almost 
independent from  and a . The only differences come from the truncations (recall that 
the laws are truncated between minT and maxT ). The same way, for the same reason, the 
choice of any quantile, that is (  0P T T ), is not suitable.

Let us also observe that, since the entropy is not linear, the global entropy is not the 
integral of all entropies above each point.

XIV. When should we stop the construction ?

The concept of Experimental Probabilistic Hypersurface is self-adaptating : it can handle 
all the information coming from any number of measures and it becomes reacher and 
more precise each time. Of course, each new measure modifies the Hypersurface locally, 
since a density (generally diffuse) is replaced by a Dirac mass. But, if the number of 
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measures is high, this does not modify the Hypersurface globally. Let’s take this remark 
as a criterium for the stopping time in the process, allowing us to conclude that the 
number of measures which have already been performed is sufficient.

Let , ( )EPH NF t be the global repartition function of the Hypersurface, computed using N
measures. Let us 0  . The number of measures already performed will be considered 
as sufficient if, when ' ,N N

, , '( ) ( )EPH N EPH NF t F t  

In other words, to perform more measures does not modify significantly the repartition 
function, measured using the 1L - norm.

In practice, it is of course best the use as many measures as possible in order to 
constitute the Hypersurface. So one should proceed as follows : for instance with 300 
measures : we build the Hypersurface using the 300 measures, we eliminate a small 
number at random (say 10) and we check that the Hypersurface built using the 290 
remaining points is not significantly different from the Hypersurface built using the 300 
points.
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Fourth Part

The Applications of the 

Experimental Probabilistic Hypersurface 
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I. Application of the EPH to the estimate of the probability to 
go over a certain threshold

Assume that N computations have been made and that the densities 
1( ; | ,..., )N Nf t X X X have been built. We do not care about the way they have been 

constructed, we just have densities for each value of  1( ,..., )KX x x . We denote them 
simply by ( ; )f t X .

Let us see how to use them in order to compute the probability to go over a certain 
threshold : 0( )P T T . This is a very simple probability problem ; the simplest version 
uses boxes : assume we have a certain number of boxes, containing white and red balls, 
in variable proportions (these proportions are known). What is the probability to take a 
red ball ? Such problems are solved using Bayes formula.

A. Case of a single parameter , with discrete values

In order to illustrate the method, let us start with the case where the function CT
depends on a single parameter z ; assume moreover that this parameter takes only 
discrete values iz . We write :

0 0
1

( ) ( et )
I

i
i

P T T P T T Z z


   

0
1

( | ) ( )
I

i i
i

P T T Z z P Z z


   

and if the iz ’s all have same probability :

0
1

1 ( | )
I

i
i

P T T Z z
I 

  

01

1 ( ; )
I

iT
i

f t z dt
I





   .

B. Cas of several parameters, with discrete values

In the case of several parameters 1( ,..., )Kx x , we get the same way :

 
1

0 0 1
,..,

( ) et ( ,..., )
K

K
x x

P T T P T T X x x   

   
1

0 1 1
,..,

| ( ,..., ) ( ,..., )
K

K K
x x

P T T X x x P X x x   
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 
0

1

1 1
,..,

( ; ,..., ) ( ,..., )
K

K KT
x x

f t x x dt P X x x


   .

C. General case : several parameters, laws with densities

We simply denote by ( )f t the density of probability of the t (temperature, in our case) :
this is what we are looking for. 

Let 1( ,..., )Kh x x be the density of probability of the K - uple 1( ,..., )Kx x . As we already 
saw, if the input parameters are considered as independent, it can be written as a 
product 1 1 1( ,..., ) ( ) ( )K K Kh x x h x h x  . If they are not independent, we use the joint law of 
the K - uple under the global form 1( ,..., )Kh x x . We get :

1

1 1 1
,...,

( ) ( ; ,..., ) ( ,..., )
K

K K K
x x

f t f t x x h x x dx dx    . (1.c.1)

If the input parameters are independent, this can be written :

1

1 1 1 1( ) ( ; ,..., ) ( ) ( )
K

K K K K
x x

f t f t x x h x h x dx dx     .                 (1.c.2)

When we know the density, we can obviously compute 
0

0( ) ( )
T

P T T f t dt


   :

0
1

0 1 1 1 1( ) ( ; ,..., ) ( ) ( )
K

K K K KT
x x

P T T f t x x dt h x h x dx dx


       . (1.c.3)

This last formula is quite interesting, because it shows that, in order to compute the 
probability to pass a certain threshold, we do not need to know completely the functions 

1( ; ,..., )Kf t x x : all we need to know is, for each of them, the probability that it passes 

this threshold, that is 
0

1( ; ,..., )KT
f t x x dt



 .

II. Application to the determination of secondary parameters

A primary parameter is a parameter which influences mostly the result of the 
computation. Conversely, a parameter will be secondary if the result does not depend 
much upon the value it takes. We will make this distinction clear, because we want to 
make a precise difference between primary and secondary parameters.

First of all, a parameter would be useless if the result of the computation was totally 
independent from its value. For instance, 1x would be useless if 1 2( , ,..., )KCT x x x was 
independent of 1x , for all values of 2( ,..., )Kx x . This will guide us in our definition of a 
secondary parameter.
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A. Definition

Let 0  . The parameter 1x will be secondary of order  if, for all 1x , 1x , for all
2( ,..., )Kx x , 

1 2 1 2| ( , ,..., ) ( , ,..., ) |K KCT x x x CT x x x   .                    (2.a.1)

In other words, the amplitude of all possible variations of F , with respect to the first 
parameter, is at most  , no matter what are the values of the other parameters.

The characterization of the fact that a parameter is secondary can be read on the 
Hypersurface, as we now explain.

B. Experimental Probabilistic Hypersurface and secondary parameters

Let S be the Hypersurface obtained above. We do not have anymore a precise value for 
1 2( , ,..., )KCT x x x , but a density of probability , 1 2( ; , ,..., )Kf t x x x . Let 1 2( ; , ,..., )KF t x x x be 

the associated repartition function.

We say that the parameter 1x is secondary of order  if, for all 1x , 1x , for all 2( ,..., )Kx x , 

1 2 1 2| ( ; , ,..., ) ( ; , ,..., ) |K KF t x x x F t x x x dt   . (2.b.1)

This means that the repartition functions connected with the points 1x and 1x are close 
to each other. Again, the reason why we work with repartition functions is explained in 
the Appendix.

C. Practical Method

 Using simple statistical techniques, one checks that some parameters look 
secondary ;

 One confronts these choices with arguments coming from physics : if a parameter is 
secondary, there must be good reasons for that ;

 One computes the densities 1 2( ; , ,..., )Kf t x x x and the repartition functions and one 
checks formula (2.b.1) above.

 In order to validate a posteriori the fact that the parameter 1x is secondary, one 
finally proceeds as follows :

One performs a certain number of random sampling of 2( ,..., )Kx x : we denote them by 
( ) ( )
2( ,..., )i i

Kx x , 1,...,i M . Then 1x is given several values, in a deterministic way (for
instance, dividing its interval of variation into 10 equal pieces) ; we denote them by ( )

1
jx , 

1,...,10j  . We perform the computation ( ) ( ) ( )
1 2( , ,..., )j i i

KF x x x for each value of i and j . 
For each value of i , the result must be almost independent from j . 
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III. Finding the critical zones

Quite possibly, for some parameters, some domains of variation may be identified : they 
do not lead to a critical temperature. If, for instance, the parameter 1x varies between
two bounds a and b , it may happen that, for physical reasons, some interval [ , ]a c
( a c b  ) will be safe, in the sense that it will never lead to high temperatures, or, more 
generally, to dangerous situations.

This must be observed immediately upon the densities 1( ; ,..., )Kf t x x built above each 
point, since then they will be supported (or mostly supported) inside an interval 

min 1[ , ]T T , with 1 0T T ( 0T is the threshold that we are considering).

IV. How to proceed

1. First, one computes the Experimental Probabilistic Hypersurface, using all the 
available data ;

2. Then one uses it to eliminate all secondary parameters and all non critical zones. 
Simple statistical reasoning and observations coming from physics are first used 
to identify such parameters and zones.

3. When this is done, one completes the data with new computations, concentrated 
upon the remaining parameters and the critical zones. One builds a new 
Experimental Probabilistic Hypersurface.
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Appendix : Size of random perturbations

In practice, the following question comes quite often : how can we measure the size of a 
perturbation ? Or, if the same phenomenon has been observed by two different people, 
how can we measure the size of the difference between the two observations ? Or, if two 
people have different records, how can we conclude that they observed the same 
phenomenon, taking into account the errors in the measures ?

A real-life phenomenon, whatever it is, is always described by a table, which represents 
a law of probability : we put in the table the list of observed values, together with the 
number of times each of them was observed. If 1 2 nx x x   are the observed values, 
in increasing order, if N is the total number of observations, if in is the number of 
times where the value ix was observed, we set /i ip n N ; this is the probability of the 
value ix . As we explained in the book [BB2], any observation is always discrete and 
bounded (finite number of possible values). We may of course build the repartition 
function F , defined by the general formula :

 ( )F x P X x  (A.1)

where X is the random variable associated to the phenomenon : variable which takes 
the values ix with the probabilies ip .

In some cases, we can also (cf. [BB2]) build artificially a density of probability f and 
assume it to be continuous and even with a derivative : this depends upon the 
underlying physical process.

In short, in all cases, our phenomenon will be given either by a table ( , )i ix p , or by a
repartition function F , or by a density f ; we will have to work on these three forms. 
Let us start with the simplest case.

I. Case of a perturbation of known law

In some cases, we have a perturbation with known law. For instance, we may measure 
directly some phenomenon X and, at the aame time, the same phenomenon through a 
glass : one records at each time a variable Y . The difference E X Y  is characteristic 
of the perturbation due to the glass, and the law of E is known, since at each time we 
recorded both the value of X and that of Y . Let us observe that what we recorded is in 
fact the joint law of the couple ( , )X Y (see [BB2]).

In such a situation, we know the values 1 2 ne e e   taken by E with their 
probabilities, denoted by ip as before. How can we characterize the fact that E is 
small ?

There are many definitions of « tends to zero » for a sequence of random variables :

 The sequence of random variables nE tends to 0 in probability if, for all 0  , 

  0nP E   when n  .
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 It tends to 0 for the 1L -norm if  E 0nE  when n  ( E is the expectation).

 It tends to 0 for the 2L -norm if  2E 0nE  when n  .

Many other definitions are possible. Which one should we choose, and why ?

We have explained in the book [BB2] that the good tool in order to work on real life 
phenomena was the repartition function F . According to this, we will try to measure the 
difference between the repartition function when the error is zero and the repartition 
function for the recorded error.

The repartition function for the zero error is the Heaviside function ( )H x defined by :

( ) 0H x  if 0x  , ( ) 1H x  if 0x  . (A.2)

Indeed, if the error is zero,  0 0P E   and   1P E x  if 0.x 

If now F is the repartition function for the error that has been recorded, we can 
legitimately take as size of this error :

0

_ 0

_ ( ) ( )

( ) 1 ( )

size error H x F x dx

F x dx F x dx









 

  


 

(A.3)

If the error is given by its repartition function, the above computation is explicit. If the 
error is given by a table ( , ),i ie p we have :

 _ Ei i
i

size error p e E  . (A.4)

Indeed, if the error is given by the table ( , ),i ie p the repartition function is :

( ) 0F x  if 1x e

1( )F x p if 1 2e x e 

1 2( )F x p p  if 2 3e x e 

1 2( ) kF x p p p    if 1k ke x e   ( 1, , 1k n  )

( ) 1F x  if nx e .

Among the values ie taken by the error, some may be positive, other negative. Let’s 
write :

1 2 10m m ne e e e e       

(of course, in some cases, all may be positive, or all negative, in which case the index m
does not exist).

Then we have :
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10

1 1 1
1

1 1
1

| ( ) | ( )( ) ( )(0 )

| |

m

k k k m m
k

m

m m i i
i

F x dx p p e e p p e

p e p e p e








       

    





 



and the same way :

   
1

1 1 1 10
1 1

|1 ( ) | 1 ( ) 1 ( ) ( )
n n

m m k k k k k
k m k m

F x dx e p p p p e e p e


 
   

             

which shows the formula (A.4).

Of course, if the error is given by a density ,f the above formula becomes :

_ | | ( )size error x f x dx



  (A.5)

since E(| |) | | ( ) .E x f x dx



 

Since, for any random variable ,X

 1/22E(| |) E( )X X , (A.6)

the choice we made to control E(| |)E brings less penalty than the choice to control 

 1/22E( )E .

The convergence in probability does not lead to a control which is satisfactory in practice. 
Indeed, we control only the probability to pass a threshold, but not the value which has 
been attained. In other words,  if E takes the value 1 with probability 0.01 and if E
takes the value 10 with probability 0.01, it is not the same thing in practice. In both 
cases, the probability to pass the threshold is small (0.01), but the value which was 
attained is not the same. 

Let us observe that, in the formula we chose, we control not only the values and their 
probabilities, but in fact the sum of all quantities : what we take into account is 

| |i ip e , and not only each | |i ip e taken separately.

II. Distance between two phenomena
Let us now turn to a situation that is much more frequent than the previous one : the 
law of the perturbation is unknown. Two different people, or the same person at two 
different times, have observed similar phenomena, and we wonder whether or not it is 
the same phenomenon. 
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In practice, each person filled his own table : ( , )i ix p for the first, ( , )j jy q for the second. 
The number of observations do not need to be the same ; the observed values neither, nor 
of course the probabilities. We have to compare the two phenomena and decide if they 
are similar.

Here again, the most pertinent indicator is the 1L -norm of the difference between the 
two repartition functions :

1 2_ | ( ) ( ) |dist phenomena F x F x dx



  (A.7)

where 1F and 2F are, respectively, the repartition functions associated with ( , )i ix p and 
( , )j jy q .

One should observe that it is impossible, in the present case, to speak about the law of 
the difference, as we did in the previous paragraph. If X represents the first random 
variable and Y the second, we know the laws of X and Y , but we do not know the law 
of the couple. This law, quite often, does not even make sense, because the two variables 
have been recorded at different places or different times.

Let us take a very simple example in order to illustrate this. The laws of X and Y may 
have both the following form :

value -1 0 1
proba 1/3 1/3 1/3

and they look identical. But, quite possibly, X indicated 1 when Y indicated 1, and 
conversely ! This is the case, for instance, if Y X  . In the case of a symmetric 
phenomenon, (    P X x P X x    ), if Y X  ,  X and Y have the same law, but 
they are not close to each other, in the sense that 2X Y X  may be very large.

If the two variables are given by their repartition functions, the computation of (A.7) is 
immediate. If they are given by tables ( , )i ix p , ( , )j jy q , we proceed as follows :

First, we build a common list, denoted lz , from the points ix and the points jy . Then, 
for the variable X , we define its law of probability, on the list lz , by : if lz is one of the 

ix , the probability is the corresponding ip . If lz is one of the jy , the probability is 0.

For the variable Y , it is the converse ; the probability on the list lz is : if lz is one of the 

ix , the probability is 0, if lz is one of the jy , the probability is jq .

Let lp be the probabilities obtained for X on the list lz and lq the probabilities 
obtained for Y . Then :

1 1 1
1

_ | ( ) ( ) | ( )
N

k k k k
k

dist phenomena p p q q z z 


            (A.8)

where N is the total number of points in the list lz . Indeed, formula (A.8) is the 
traduction of the definition (A.7), since the repartition functions are piecewise constant.
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We observe that the distance between two phenomena cannot be correctly measured 
using the densities. Indeed, suppose that the variables X and Y have densities, 
denoted by f and g . We might want to consider :

( , ) | ( ) ( ) |d X Y f x g x dx



  (A.9)

which is obviously a distance. But it cannot be used in practice. Suppose for example 
that both X and Y are certain : their density of probability is a Dirac mass. Assume 
moreover that their values are quite close : for instance, 1X  constantly and 1.001Y 
constantly. Still, we would have ( , ) 2d X Y  , which is not satisfactory.
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