The future value of the income over the time period T is given by $FV = \int_0^T f(t)e^{r(T-t)} dt$.

The present value is given by: $PV = \int_0^T f(t)e^{-rt} dt$

$$p_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \ldots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

is the nth Taylor Polynomial of the function f at a.

The remainder Formula: If $|f^{n+1}(x)| \leq M$ to all number between x and a, then:

$$|R_n(x)| \leq \frac{M}{(n+1)!}|x-a|^{n+1}.$$

Differential Equations

Euler’s Method: approximates the values of the solutions for the DE $\frac{dy}{dx} = f(x,y)$ with $y(x_0) = y_0$ at specific points:

$$y_0 = y(x_0), \quad y_1 = y_0 + hf(x_0, y_0), \quad \ldots \quad y_{n+1} = y_n + hf(x_n, y_n)$$

First order DE: The general solution of a DE of the form $\frac{dy}{dx} + p(x)y = q(x)$ is $y = e^\int p(x)dx$ \[\frac{1}{I(x)} \left[\int I(x)q(x)dx + C \right] \]

where $I(x) = e^\int p(x)dx$

Second Order Homogeneous Linear DE; $ay'' + by' + cy = 0$ $a \neq 0$

The characteristic equation of $ay'' + by' + cy = 0$ is $ar^2 + br + c = 0$.

When the CE has 2 distinct real roots, r_1, r_2, the solution is $y = C_1e^{r_1x} + C_2e^{r_2x}$.

When the CE has 2 equal real roots, $r_1 = r_2 = r$, the solution is $y = (C_1 + C_2x)e^{rx}$.

When the CE has 2 distinct none real (complex) roots, $r_1 = \alpha + \beta i$ and $r_2 = \alpha - \beta i$, the solution is $y = e^{\alpha x}(C_1 \cos(\beta x) + C_2 \sin(\beta x))$.

Variation Of Parameters: Let $y_h = C_1y_1 + C_2y_2$ be the solution for the homogeneous DE $ay'' + by' + cy = 0$. Then the particular solution for the nonhomogeneous DE $ay'' + by' + cy = F(x)$ is $y_p = uy_1 + vy_2$ where

$$u(x) = \int \frac{-y_2F(x)}{y_1y_2' - y_2y_1'} dx \quad \text{and} \quad v(x) = \int \frac{y_1F(x)}{y_1y_2' - y_2y_1'} dx$$

Note that the solution is $y_h + y_p = C_1y_1 + C_2y_2 + uy_1 + vy_2$
Exponential growth and decay: \(\frac{dQ}{dt} = kQ(t) \).

The Logistics Equation with \(Q_0 < L \):
\[
\frac{dQ}{dt} = aQ - kQ^2 \quad \text{or if let } L = a/k \quad \frac{dQ}{dt} = kQ(L - Q).
\]
The solution of the equation is \(Q(t) = \frac{L}{1 + Ae^{-at}} \) and \(A = \frac{L}{Q_0} - 1 \)
Let \(Q_0 = Q(0) \), \(Q_1 = Q(T) \) and \(Q_2 = Q(2T) \), then:
\[
\frac{1}{Q_1} - \frac{1}{Q_2} = e^{-aT}, \quad \frac{1}{L} = \frac{1}{Q_0} - \frac{A}{L} \text{ and } 1 = \frac{1}{L} Q_0 - A \frac{1}{L}.
\]

Numerical Integration

Trapezoidal Rule: \(\int_a^b f(x)dx \approx T_n = \frac{1}{2} \left(\frac{b-a}{n} \right) [f(x_0) + 2f(x_1) + 2f(x_2) + \ldots + 2f(x_{n-1}) + f(x_n)] \)

Simpson’s Rule, \(n \) even: \(\int_a^b f(x)dx \approx S_n = \frac{1}{3} \left(\frac{b-a}{n} \right) [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \ldots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)] \)

Trapezoidal Rule Error Bound \(|E_n| \leq \frac{(b-a)^3}{12n^2} M \) when \(|f''(x)| \leq M \) for all \(a \leq x \leq b \).

Simpson’s Rule Error Bound \(|E_n| \leq \frac{K(b-a)^5}{180n^4} \) when \(|f^{(4)}(x)| \leq K \) for all \(a \leq x \leq b \).

Linear Algebra

Matrix \(A \) is invertible only if \(A \) is a square matrix with nonzero determinant. If \(A^{-1} \) exists then \(AA^{-1} = A^{-1}A = I \). The \((i, j)\) entry of \(A^{-1} \) is \(\frac{A_{ji}}{\text{det}A} \) where \(A_{ji} = (-1)^{j+i}M_{ji} \).

Cramer’s Rule: Let \(A \cdot x = b \). Then \(x_i = \frac{\text{det}B_i}{\text{det}A} \), where \(B_i \) is the matrix formed from \(A \) by replacing in the \(i \)th column of \(A \) with the vector \(b \).

Eigenvalues: If \(\lambda \) is an eigenvalue of \(A \) then

the characteristic polynomial of the matrix \(A = \text{det}(A - \lambda I) = 0 \).

\(x \) is an eigenvector of \(A \) for the eigenvalue \(\lambda \) if \(A \cdot x = \lambda x \).

The eigenvectors of \(A \) are also the eigenvectors of \(A^k \) and the eigenvalues of \(A^k \) are \(\lambda^k \)

\[
\int \sin x dx = -\cos x + C \quad \int \cos x dx = \sin x + C \quad \int e^x = e^x + C
\]
\[
\int \frac{1}{x} dx = \ln |x| + C \quad \int x^n = \frac{x^{n+1}}{n+1} + C
\]

Integration by parts: \(\int udv = uv - \int vdu \) and \(\int_a^b uv \|_{a}^{b} = \int_a^b vdu - \int_a^b vdu \)