1. (a) What does it mean to say that a set \(S = \{u_1, \ldots, u_k\} \) of vectors in \(\mathbb{R}^n \) is linearly independent? Give the precise definition in one or more full sentences. Then describe what this means in terms of the matrix \(A \) with columns \(u_1, \ldots, u_k \).

(b) Do the three vectors \(u_1 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, \ u_2 = \begin{bmatrix} 3 \\ 5 \\ -3 \end{bmatrix}, \ \text{and} \ u_3 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \) make up a linearly independent set? Justify your answer using the matrix \(A \) as in (a).

2. (a) What is meant by the span of a set \(S = \{u_1, \ldots, u_k\} \) of vectors in \(\mathbb{R}^n \)? Give the precise definition in one or more full sentences. Then describe what this means in terms of the matrix \(A \) with columns \(u_1, \ldots, u_k \).

(b) Suppose that \(u_1 = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}, \ u_2 = \begin{bmatrix} 3 \\ 5 \\ -3 \end{bmatrix}, \ \text{and} \ u_3 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \). Is the span of the set of vectors \(S = \{u_1, u_2, u_3\} \) all \(\mathbb{R}^3 \)? Justify your answer using the matrix \(A \) as in (a).

3. Answer questions 1 and 2 when \(u_3 \) is changed to \(u_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \).

4. In (a)-(c) below we suppose that we have a system of equations \(Ax = b \) and that we have used row operations to transform the augmented matrix \([A \ b]\) to the reduced row-echelon form \([R \ c]\) given below. In each case, determine (i) whether the original equations have a solution; (ii) if they do have a solution, whether or not it is unique; and (iii) if it is not unique, how many free parameters there are in the solution. Then write the solution explicitly as a fixed vector plus a linear combination of vectors \(y \) that satisfy \(Ay = 0 \) with the free variables as coefficients.

(a) \[R \ c = \begin{bmatrix} 1 & 5 & 0 & 2 & 8 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \]

(b) \[R \ c = \begin{bmatrix} 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix} \]

(c) \[R \ c = \begin{bmatrix} 0 & 1 & 2 & 0 & -2 & 0 & 2 \\ 0 & 0 & 0 & 1 & 3 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]

5. In each part below, give a \(m \times n \) matrix \(R \) in reduced row-echelon form satisfying the given condition, or explain briefly why it is impossible to do so.

(a) \(m = 3, \ n = 4, \) and the equation \(Rx = c \) has a solution for all \(c \).

(b) \(m = 3, \ n = 4, \) and the equation \(Rx = 0 \) has a unique solution.

(c) \(m = 4, \ n = 3, \) and the equation \(Rx = c \) has a solution for all \(c \).

(d) \(m = 4, \ n = 3, \) and the equation \(Rx = 0 \) has a unique solution.

(e) \(m = 4, \ n = 4, \) and the equation \(Rx = 0 \) has no solution.

(f) \(m = 4, \ n = 4, \) and the equation \(Rx = 0 \) has a nontrivial solution.

(g) \(m = 4, \ n = 4, \) and for every \(c \) the equations \(Rx = c \) have a solution containing a free parameter.
6. (a) Suppose that \(u \) and \(v \) are solutions of the system of equations \(Ax = 0 \). Show that \(cu + dv \) is also a solution, for any scalars \(c \) and \(d \).

(b) Why does the above conclusion not hold (in general) if the system of equations is \(Ax = b \) with \(b \) a nonzero vector?

7. Suppose that

\[
A = \begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 3 & 2 & -1 \\ -1 & 2 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} -2 & 3 \\ 3 & -3 \\ 4 & 1 \end{bmatrix}.
\]

Which of the following quantities are defined? Calculate those that are defined.

(a) \(BA \) (b) \(AB \) (c) \(3C - 2B^T \) (d) \(BC \) (e) \(CAB \) (f) \(C + 2A \) (g) \(C^T C \).

8. Let \(A \) be an \(m \times n \) matrix of rank \(r \). What can you conclude about \(m \), \(n \), and \(r \) (other than \(r \leq m \) and \(r \leq n \) which is always true) if the equation \(Ax = b \) has

(a) exactly one solution for some \(b \) and no solution for other \(b \)?
(b) infinitely many solutions for all \(b \)?
(c) exactly one solution for every \(b \)?
(d) infinitely many solutions for some \(b \) and no solutions for other \(b \)?
(e) exactly one solution when \(b = 0 \)?

9. (a) Suppose that \(A \) and \(B \) are \(4 \times 5 \) matrices and that \(B \) is obtained from \(A \) by the row operation given below. In each case give an elementary matrix \(E \) such that \(B = EA \).

\[
\begin{align*}
(i) & \quad r_1 \leftrightarrow r_4, \\
(ii) & \quad r_3 + 3r_2 \rightarrow r_3, \\
(iii) & \quad 7r_2 \rightarrow r_2.
\end{align*}
\]

(b) Give the inverses of the elementary matrices found in (i), (ii), and (iii) above. (You can do this without calculation; think about reversing the corresponding row operations.)

10. A certain \(3 \times 3 \) matrix \(A = [a_1 \ a_2 \ a_3] \) has reduced row echelon form \(R = \begin{bmatrix} 1 & 0 & -3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix} \).

(a) Find a nontrivial linear relation on the columns of \(A \), that is, a relation \(c_1a_1 + c_2a_2 + c_3a_3 = 0 \) with \(c_1 \), \(c_2 \), and \(c_3 \) not all zero.

(b) Suppose that \(a_1 = \begin{bmatrix} 0 \\ 4 \\ 5 \end{bmatrix} \) and \(a_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \). Find \(a_3 \).

11. (a) Suppose that \(A \) is a square matrix. What does it mean to say that \(A \) is invertible? (Give the definition, not one of the many equivalent conditions in Theorem 2.6 of the text.)

(b) Suppose that \(A \) and \(B \) are invertible \(n \times n \) matrices. Show that \((AB)^{-1} = B^{-1}A^{-1} \).

(c) Suppose that \(A \) is an invertible \(n \times n \) matrix. Show that \((A^T)^{-1} = (A^{-1})^T \).

12. Use row reduction to show that the matrix \[
\begin{bmatrix} 0 & 2 & -1 \\ 1 & -1 & 2 \\ 2 & -1 & 3 \end{bmatrix}
\]

is invertible and to find its inverse.

13. Do the True-False questions from Sections 1.1–1.4, 1.6, 1.7, 2.1, 2.3, and 2.4 that are listed in the homework assignments.