1. In each part below give the precise definition in one or more full sentences.
(a) What does it mean for a set of vectors \(S = \{ \mathbf{u}_1, \ldots, \mathbf{u}_k \} \) to be linearly independent?

In (b)–(f) define the given term:
(b) The span of a set of vectors \(S = \{ \mathbf{u}_1, \ldots, \mathbf{u}_k \} \);
(c) A subspace of \(\mathbb{R}^n \);
(d) A basis of a subspace \(W \) of \(\mathbb{R}^n \);
(e) The dimension of a subspace \(W \) of \(\mathbb{R}^n \).
(f) An eigenvector and corresponding eigenvalue of a square matrix \(A \).

2. (a) Suppose that \(A \) is an \(m \times n \) matrix. Define the null space \(W \) of \(A \). For what value of \(k \) is \(W \) a subset of \(\mathbb{R}^k \)?
(b) Show that \(W \) is in fact a subspace of \(\mathbb{R}^k \) (with \(k \) as in (a)) by checking all the conditions in the definition of a subspace.

3. Suppose that \(S = \{ \mathbf{u}_1, \ldots, \mathbf{u}_k \} \) is a finite set of vectors in \(\mathbb{R}^n \). Show that \(\text{Span} \, S \) is a subspace of \(\mathbb{R}^n \) by checking all the conditions in the definition of a subspace.

4. Find the \(A = LU \) factorization (that is, find \(L \) and \(U \)) of \(A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 2 & -1 \\ 2 & 2 & -2 & 3 \\ 0 & 3 & 2 & 7 \end{bmatrix} \) Then use it to solve \(Ax = [3 \ -4 \ 10 \ 12]^T \) by solving two equations: one with \(L \) and then one with \(U \).
(b) Give an example of a \(4 \times 4 \) invertible matrix which does not have an \(LU \) factorization.

5. Find a basis for \(\text{Span} \, (\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4) \), where

\[
\mathbf{w}_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 2 \end{bmatrix}, \quad \mathbf{w}_2 = \begin{bmatrix} 2 \\ -3 \\ 1 \\ -1 \end{bmatrix}, \quad \mathbf{w}_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \\ -5 \end{bmatrix}, \quad \mathbf{w}_4 = \begin{bmatrix} 2 \\ -2 \\ 3 \\ 0 \end{bmatrix}.
\]

6. Given that \(A \) has reduced row echelon form \(R \), where

\[
A = \begin{bmatrix} 2 & -4 & 2 & -2 \\ 2 & -4 & 3 & -4 \\ 4 & -8 & 3 & -2 \\ 0 & 0 & -1 & 1 \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix},
\]

find bases for the row space, null space, and column space of \(A \). Give the rank and nullity of \(A \) and of \(A^T \).

7. Classify each statement as true or false and give a brief justification of your answer.
(a) If \(Ax = 0 \) has a unique solution, then there are no vectors in the nullspace of \(A \).
(b) If \(\mathbf{u} \) and \(\mathbf{v} \) belong to a subspace \(W \) of \(\mathbb{R}^n \) and \(c \) and \(d \) are scalars, then \(c \mathbf{u} + d \mathbf{v} \) belongs to \(W \).
(c) A square matrix \(A \) is invertible if and only if \(\det A = 0 \).
(d) If \(A \) is an \(m \times n \) matrix and \(n > m \), then the nullspace of \(A \) is not \(\{0\} \).
(e) If \(A \) is an \(m \times n \) matrix, then \(\text{dim} \, \text{Null} \, A + \text{dim} \, \text{Col} \, A = n \).
(f) The nullity of a matrix \(A \) is always equal to the nullity of \(A^T \).
(g) If \(A \) is an \(n \times n \) matrix and rank \(A < n \), then 0 is a root of the characteristic polynomial of \(A \).
(h) If \(\lambda \) is an eigenvalue of \(A \) with algebraic multiplicity \(r \) and \(W \) is the corresponding eigenspace, then \(\dim W = r \).
(i) Every \(n \times n \) matrix with \(n \) distinct eigenvalues is diagonalizable.
8. Determine which of the following are subspaces of \mathbb{R}^3. For each subspace give its dimension. Justify your answers.

(a) Span \(\left\{ \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 2 \\ -5 \\ 0 \end{bmatrix} \right\} \);
(b) \(\left\{ \begin{bmatrix} r \\ -8s \\ r + s \end{bmatrix} : r, s \in \mathbb{R} \right\} \);
(c) \(\left\{ \begin{bmatrix} r + s \\ -8(r + s) \\ 2r + 2s \end{bmatrix} : r, s \in \mathbb{R} \right\} \);
(d) \(\left\{ \begin{bmatrix} r \\ -8s \\ r + s + 1 \end{bmatrix} : r, s \in \mathbb{R} \right\} \);
(e) \(\left\{ \begin{bmatrix} r \\ s \\ t \end{bmatrix} : r, s, t \in \mathbb{R} \right\} \);
(f) \(\left\{ \begin{bmatrix} r \\ -8r \\ 2r \end{bmatrix} : r = 0 \right\} \).

9. (a) Evaluate the determinant \(\begin{vmatrix} 1 & -2 & 5 \\ -3 & 4 & 2 \\ 3 & -6 & -2 \end{vmatrix}\) by a cofactor expansion along the second row.
(b) Evaluate the determinant \(\begin{vmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 1 & -2 & 1 \\ 3 & -3 & 2 \end{vmatrix}\) by reducing the matrix to triangular form and keeping track of the row operations used.

10. Let \(A = \begin{bmatrix} a \\ b \\ c \end{bmatrix}\) be a \(3 \times 3\) matrix with row vectors \(\mathbf{a}\), \(\mathbf{b}\), and \(\mathbf{c}\). Assume that \(\det A = 5\). Find:

(a) the determinant of the matrix \(\begin{bmatrix} \mathbf{c} + \mathbf{b} \\ \mathbf{a} + 2\mathbf{b} \\ \mathbf{a} - \mathbf{b} - \mathbf{c} \end{bmatrix}\);

(b) the determinant of the matrix \(AC^2AC\), where \(C = \begin{bmatrix} 1 & 3 & -2 \\ 0 & 2 & 4 \\ 0 & 0 & -2 \end{bmatrix}\).

11. Let \(\mathbf{v}\) be a nonzero vector in \(\mathbb{R}^4\), and let \(A = \mathbf{vv}^T\). (\(A\) is a \(4 \times 4\) matrix.)

(a) Show that \(\mathbf{v}\) is an eigenvector of \(A\). What is the eigenvalue? (Hint: compute \(A\mathbf{v}\) using the associative property of matrix multiplication.)

(b) What is the rank of \(A\)? What is \(\dim \text{Null} A\)? What are all the eigenvalues of \(A\), with their multiplicities?

(c) If \(A = PDP^{-1}\) with \(D\) diagonal, what must \(D\) be?

12. (a) Find the eigenvalues and eigenvectors of the matrix \(A = \begin{bmatrix} 2 & -1 \\ 4 & -3 \end{bmatrix}\).

(b) Find an invertible matrix \(P\) and diagonal matrix \(D\) such that \(A = PDP^{-1}\).

13. The matrix \(A = \begin{bmatrix} 2 & -3 & 2 \\ -1 & -6 & 9 \\ -5 & -1 & 5 \end{bmatrix}\) has characteristic polynomial \(-(t + 2)^2(t - 5)\).

(a) Find the eigenvalues of \(A\) and the multiplicities of each eigenvalue.

(b) For each eigenvalue found above give a basis for the corresponding eigenspace.

(c) Determine whether or not \(A\) is diagonalizable.