1. Find a subgroup of S_4 which is isomorphic to D_4. Is the subgroup that you found a normal subgroup?

2. Prove that $|A_n|$ is $n!/2$.

3. Show that Z_{10}/N where $N = \{0, 5\}$ is (group) isomorphic to Z_5.

4. Show $SL_2(\mathbb{Z}_4)$ is a normal subgroup of $GL_2(\mathbb{Z}_4)$.

5. Recall the quaternion group $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ (from problem 14 in section 7.1). Is Q isomorphic to D_4?

6. Let G and H be groups. Show that $G \times H$ is abelian if and only if both G and H are abelian. Is it true that $G \times H$ is cyclic if and only if G and H are cyclic?

7. Let H be a subgroup of G where $|G| = 12$. What could $|H|$ be? What are the possible orders of elements of G? Must G have an element of order 4?

8. Let G be a group. Prove that $|g| = |g^{-1}|$ for all element $g \in G$. Also, show that $g^{-1} = g^{n-1}$ if $|g| = n$.

9. Is \mathbb{Q} (group) isomorphic to \mathbb{Z}?

10. Find all of the subgroups of S_3. Which ones are normal? Do the same for \mathbb{Z}_{12}.

11. Can a cyclic group have exactly one generator?

12. Let G be a group of order $n > 1$. Explain why Aut(G) must be isomorphic to a subgroup of S_{n-1}. Also, show that the automorphism group of $\mathbb{Z}_2 \times \mathbb{Z}_2$ is isomorphic to S_3. How many inner automorphisms does $\mathbb{Z}_2 \times \mathbb{Z}_2$ have?

13. Show that $U_n = U(\mathbb{Z}_n)$ has even order for $n > 2$. Hint: Does U_n have an element of order 2? What are the solutions of $x^2 = 1$ in \mathbb{Z}_n?

14. Let $\varphi : G \rightarrow H$ be a group homomorphism, and let $g \in G$ have finite order. Show that the order of $\varphi(g)$ divides the order of g. Moreover, show that if $|g| = |\varphi(g)|$ for all $g \in G$, then φ must be injective.

15. Let p be a prime which divides n the order of a group G. Suppose that $g, h \in G$ such that $|g| = |h| = p$. Show that either $\langle g \rangle = \langle h \rangle$ or $\langle g \rangle \cap \langle h \rangle = \{e\}$. Use this to conclude that if there a k elements of order p in G, then $p - 1$ divides k. Finally, show that any group of order 10 must have an element of order 2.

16. Show that $Z(G)$ (the center of the group G) is a normal subgroup of G.

17. Can $H = \{(1), (12)\}$ be the kernel of a homomorphism from S_3 to some other group G?

18. Show that $N = \langle (1234) \rangle$ is not a normal subgroup of S_4.

19. (Schur's Lemma – Kind of) Show that for a simple group G, any homomorphism $\varphi : G \rightarrow H$ is either injective or is trivial (i.e. $\varphi(G) = \{e\}$).

20. Show that $N = \{(1), (12)(34), (13)(24), (14)(23)\}$ is a normal subgroup of A_4. What is A_4/N?