Let the set of integers be denoted by \mathbb{Z}. A Gaussian integer is a complex number of the form $x = a + bi$, where $a, b \in \mathbb{Z}$ and $i^2 = -1$. We write $\mathbb{Z}[i]$ for the set of Gaussian integers. In this Workshop, all variables in the range q–z are Gaussian integers. Here is the Division Algorithm: Let x, y be nonzero Gaussian integers. Then there exist q, r in $\mathbb{Z}[i]$ with $y = qx + r$ and $|r| < |x|$. (The length of a Gaussian integer x is $|x| = \sqrt{a^2 + b^2}$, and $|xy| = |x||y|$.)

Say x divides y (and write $x|y$) if $y = qx$ for some q in $\mathbb{Z}[i]$. For example, $(2 + i)|5$ because $5 = (2 + i)(2 - i)$. A common divisor of y, z is an x so that $x|y$ and $x|z$. We call x a greatest common divisor of y, z if x is a common divisor and if t is any other common divisor then $|t| < |x|$.

1. a) If $y \neq 0$, show that y has only finitely many divisors.
 b) If $x|y$ show that $i, -i, -x, ix, -ix$ are also divisors of y. (And so are $\pm 1, \pm i$.)

A Gaussian integer x is said to be prime if $|x| > 1$ and the only divisors of x are $\pm 1, \pm i, \pm x, \pm ix$.

 c) If $|x| = \sqrt{p}$ for some prime integer p, show that x is a prime in $\mathbb{Z}[i]$. (This shows that $2 + i, 2 - i$ are primes.)

Fix nonzero y, z and let I denote the set of all Gaussian integers of the form $t = uy + vz$, where u, v are Gaussian integers. For example, if $y = 2 + i$ and $z = 2 - i$ then I contains the Gaussian integers $2 = (-i)(2 + i) + (i)(2 - i)$ and $5 = (2 + i)(2 - i)$.

2. a) If x is any common divisor of y, z, show that $x|t$ for every $t \in I$.
 b) Show that there is a nonzero element x in I with $|x| \leq |t|$ for every nonzero t in I.
 c) Show that the x in (b) is a common divisor of y, z.
 d) Show that the x in (b) is a greatest common divisor of y, z.

3. a) If x is a prime Gaussian integer and $x|yz$, show that either $x|y$ or $x|z$.
 b) If x is prime, $x|z$ and $z = y_1 y_2 \ldots y_n$, show that x divides some y_i.