1. Let F be a field. An affine transformation of F is a function of the form $f(x) = ax + b$ for some nonzero $a \in F$ and some $b \in F$. A dilation is an affine transformation which sends 0 to 0. A translation is an affine transformation of form $t(x) = x + b$.

 a) Show that the set A of affine transformations form a group under compositions. Show that the subset S of dilations is a subgroup, and that the subset T of translations is a subgroup.

 b) Is S a normal subgroup of the group of affine transformations? Is T a normal subgroup of A?

 c) When F is a field with a prime p number of elements compute the order of A. When $p = 3$ which familiar group is this isomorphic to?

2. Let G be a finite group with subgroups H, K. Let $HK = \{hk | h \in H, k \in K\}$.

 a) Show that if $H \cap K$ has only one element, then the size of HK is the product of the orders of H and K.

 b) Show that if K is a normal subgroup of G then HK is a subgroup of G. Give an example to show that if neither of H, K are normal subgroups, then HK may not be a subgroup.