1. Let \(V \) be a two-dimensional vector space over \(\mathbb{R} \) with basis \(\{ v, w \} \). Fix a real number \(r \) and define the operation \(\cdot \) on \(V \) by

\[
(a_1 v + b_1 w) \cdot (a_2 v + b_2 w) = (a_1 a_2 + rb_1 b_2)v + (a_1 b_2 + a_2 b_1)w
\]

for each \(a_1, a_2, b_1, b_2 \in \mathbb{R} \).

a) Show that \(V \), with + being vector space addition and product \(\cdot \), is a commutative ring with identity element \(v \).

b) If \(r < 0 \), show that \(V \) is isomorphic to \(\mathbb{C} \). (Hint: what is \(w \cdot w \)? How about \((w/\sqrt{|r|})^2\)?)

c) If \(r > 0 \), show that there is a homomorphism \(f_+: V \to \mathbb{R} \) sending \(w \) to \(\sqrt{r} \), and a second homomorphism \(f_-: V \to \mathbb{R} \) sending \(w \) to \(-\sqrt{r}\).

d) If \(r > 0 \), use the \(f_\pm \) of part (c) to construct a homomorphism \(f: V \to \mathbb{R} \times \mathbb{R} \). Then prove that \(f \) is an isomorphism.

2. Let \(C^0 \) denote the set of functions \(f: \mathbb{R} \to \mathbb{R} \) which are continuous at \(t = 0 \), that is \(\lim_{t \to 0} f(t) \) exists and equals \(f(0) \). It is shown in the book that \(C^0 \) is a commutative ring with identity. For integers \(n > 0 \), let \(C^n \) denote the set of (continuous) functions in \(C^0 \) such that the first \(n \) derivatives \(f', f'', \ldots, f^{(n)} \) are all defined and continuous at \(t = 0 \). They are distinct sets; for example, in Calculus we show that the function \(t \to |t| \) is in \(C^0 \) but not \(C^1 \), and \(t \to t|t| \) is in \(C^1 \) but not in \(C^2 \).

a) Show that each \(C^n \) is a subring of \(C^0 \), with \(C^n \subset \cdots \subset C^2 \subset C^1 \subset C^0 \).

b) Let \(V \) be the ring of problem 1 with \(r = 0 \). Show that the function \(T: C^1 \to V \) defined by \(T(f) = f(0)v + f'(0)w \) is a ring homomorphism.

c) Is the homomorphism \(T \) in b) one-to-one? Is it surjective?