1. All you know is that \(au + bv = 6 \) for some integers \(a, b, u, v \). What could \((a, b) \) be? Also, is it possible that \(u \) and \(v \) are relatively prime?

2. Let \(a, b \in \mathbb{Z} \). Suppose that \(a \) divides \(b \) and \(b \) divides \(a \). Is it necessarily true that \(a = b \)? What can you say if \(f(x) \) divides \(g(x) \) and \(g(x) \) divides \(f(x) \) when \(f(x), g(x) \in \mathbb{F}[x] \) for some field \(\mathbb{F} \)?

3. Let \(p \) be a positive prime integer. Show \(\sqrt{p} \) is irrational.

4. Does \(2000x \equiv 4 \mod 19875 \) have any solutions? **No serious calculations needed!!!**

5. Write out a multiplication table for \(\mathbb{Z}_3 \times \mathbb{Z}_2 \). Find all units and zero divisors.

6. Let \(U = \left\{ \begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix} \mid a, b, c, d, e, f \in \mathbb{R} \right\} \) be the set of 3x3 real upper-triangular matrices. Show that \(U \) is a subring of \(\mathbb{R}^{3 \times 3} \).

7. Let \(R \) be a ring and define \(Z(R) = \{ r \in R \mid ar = ra \text{ for all } a \in R \} \) to be the center of \(R \). Show that \(Z(R) \) is a subring of \(R \). What is \(Z(\mathbb{Z}) \)? What is \(Z(M(\mathbb{R})) \)?

8. Show that \(U(R_1 \times R_2) = U(R_1) \times U(R_2) \) for any two rings with identity \(R_1 \) and \(R_2 \).

9. Let \(R \) be a commutative ring with 1, and \(r \in R \). Define \(L_r : R \rightarrow R \) by \(L_r(x) = rx \) for all \(x \in R \).

 Prove that \(L_r \) is injective iff \(r \) is a nonzero nonzero divisor. Prove that \(L_r \) is surjective iff \(r \) is a unit.

10. Let \(a, b \in R \) (a ring). Show that \(-ab = (-a)b = a(-b) \) and \(-(a) = a \) just using ring axioms.

 Use your results above to show that \((-1)(-1) = 1 \) if \(R \) has a multiplicative identity 1. One more thing...show that 3(\(ab \)) = 3(ab) = a(3b).

11. Let \(R \) and \(S \) be rings. Prove that \(R \times S \) is isomorphic to \(S \times R \). Let \(R \) be an integral domain. Prove that \(R \times R \) is not isomorphic to \(R \).

12. Let \(a, b, c \in \mathbb{Z} \). Show that if \(c \) divides \(b \) and \((a, b) = 1 \), then \((a, c) = 1 \). Now prove the same result for polynomials with field coefficients.

13. Is \(A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \) a unit in \(M(\mathbb{Z}) \)? Why or why not? Is \(A \) a unit in \(M(\mathbb{Z}_7) \)?

14. Factor \(x^4 - 9 \) in \(\mathbb{Q}[x], \mathbb{R}[x], \) and \(\mathbb{C}[x] \). Also, factor \(x^4 - 9 \) in \(\mathbb{Z}_2[x] \).

15. Let \(\mathbb{F} \) be a subfield of \(\mathbb{C} \), \(\phi : \mathbb{F} \rightarrow \mathbb{F} \) be an automorphism of \(\mathbb{F} \) such that \(\phi(c) = c \) for all \(c \in \mathbb{Q} \) (\(\phi \) fixes the rationals), and let \(f(x) \in \mathbb{Q}[x] \). Show that \(r \in \mathbb{F} \) is a root of \(f(x) \) iff \(\phi(r) \) is a root of \(f(x) \).

16. Prove that \(\mathbb{Q}[^2] = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \} \) is a subfield of \(\mathbb{C} \). Also, prove that \(\phi : \mathbb{Q}[\sqrt{2}] \rightarrow \mathbb{Q}[\sqrt{2}] \) defined by \(\phi(a + b\sqrt{2}) = a - b\sqrt{2} \) is an automorphism of \(\mathbb{Q}[\sqrt{2}] \). In fact, using the previous problem, one can show that the only automorphisms of \(\mathbb{Q}[\sqrt{2}] \) are \(\phi \) and the identity map.

17. Let \(f(x) \in \mathbb{F}[x] \) (where \(\mathbb{F} \) is a field) be a polynomial of degree 5. Suppose that \(f(x) \) has no roots in \(\mathbb{F} \) and no quadratic factors (no polynomial of degree 2 divides \(f(x) \)). Can I then conclude that \(f(x) \) is irreducible? Why or why not?