1. Let G be a group and let $a, b \in G$.
 a) Show that a and $b^{-1}ab$ have the same order.
 b) Show that a and a^{-1} have the same order.
 c) Suppose that every element $g \in G$ satisfies $g = g^{-1}$. Show that G is commutative.
 d) Suppose that every element $g \in G$ satisfies g^2 is the identity element. Show that G is commutative.

2. Let G be the distance preserving symmetries of the real line which preserve distance. Find two distinct elements a and b of G of order 2. What is the order of ab?

3. Let $G = \langle a \rangle$ be the cyclic group generated by a.
 a) If a has infinite order, find the order of each element of G.
 b) Redo the previous part in the cases where the order $|a| = 4, 6, 8, \text{ and } 12$.
 c) Suppose that G is generated by an element a of finite order. Find and prove a formula for the order of each element a^k of G.