1. Let G, H be groups and let $\phi : G \to H$ be a group homomorphism. Define the kernel of the homomorphism to be the set $\ker(\phi) = \{ g \in G | \phi(g) = e_H \}$.

 a) Show that $\phi(e_G) = e_H$ and $\phi(g^{-1}) = \phi(g)^{-1}$.

 b) Show that $\ker(\phi)$ is a subgroup of G.

2. Let F be a field and let F^* be its multiplicative group of nonzero elements. Let $GL(n, F)$ denote the $n \times n$ matrices with entries in F which have nonzero determinant.

 a) Show that $GL(n, F)$ is a group under matrix multiplication.

 b) Show that taking the determinant of a matrix gives a homomorphism of groups $\det : GL(n, F) \to F^*$.

 c) For each permutation σ of $\{1, \ldots, n\}$ let P_{σ} denote the matrix obtained by permuting the rows of the identity matrix according to σ, that is move row i to row $\sigma(i)$. Show that

$$
\begin{pmatrix}
a_1 \\
a_2 \\
\vdots \\
a_n \\
\end{pmatrix} = P_{\sigma}
\begin{pmatrix}
a_{\sigma(1)} \\
a_{\sigma(2)} \\
\vdots \\
a_{\sigma(n)} \\
\end{pmatrix}
$$

 d) Is the map sending a permutation σ to the matrix P_{σ} a group homomorphism from S_n to $GL(n, F)$? Provide a proof or explain why it is not a homomorphism.