Computational Part: Please submit the program you wrote!

(1) Approximate \(\int_0^2 x^2 \sin(-x) \, dx \approx -2.4694834 \) by the following quadrature rules to \(10^{-6} \) accuracy and also find the size of \(h \) required for each rule.

(a) Composite left point rule.
(b) Composite right point rule.
(c) Composite midpoint rule.
(d) Composite trapezoidal rule.
(e) Composite simpson’s rule.

Theoretical Part:

(1) Consider the numerical quadrature rule to approximate \(\int_0^1 f(x) \, dx \) given by

\[
\int_0^1 f(x) \, dx \approx w_1 f(0) + w_2 f(x_1).
\]

Find the maximum possible degree of precision you can attain by appropriate choices of \(x_1, w_1 \) and \(w_2 \). By such choices of \(x_1, w_1 \) and \(w_2 \), approximate \(\int_0^1 x^3 \, dx \) and compare with the exact value.

(2) (Optional!!) Show that if \(n \) is even, we have

\[
\sum_{i=0}^{n} w_i \left(x_i - \frac{a + b}{2} \right)^{n+1} = 0,
\]

where \(x_i = a + ih \) with \(i = 0, \cdots, n \) and

\[
w_i = \int_a^b L_k(x) \, dx,
\]

where \(L_k \) is the k-th basis of Lagrange interpolating polynomial.
(3) Determine constants a, b, c and d that will produce a quadrature formula
\[\int_{-1}^{1} f(x) \, dx = af(-1) + bf(1) + cf'(-1) + df'(1). \]
that has degree of precision 3.

The following problems is from §4.3 in your textbook.
(4) Exercise # 1. (a. and b.)
(5) Exercise # 13.
(6) Exercise # 15.
(7) Exercise # 20.
(8) Exercise # 24.