11.A. Prove: Let A be a matrix of 0's and 1's. Then the maximum size of a set of entries 1 in this matrix, no two of which lie in the same row or column is equal to the minimum number of rows and columns that together contain all the 1's in A.

Define a bipartite graph G with bipartition X such that the vertices of X are the rows of A, the vertices of Y are the columns of A and ij is an edge if and only if the (i, j) entry of A is 1. Consider a matching M in this graph. Each vertex of X (each row of A) is incident to at most one edge of M, and similarly each vertex of Y (each column of A) is incident to at most one edge of M. Therefore a matching represents a set of entries in the matrix of value 1, no two of which lie in the same row or column. Conversely, if we start with a set of entries of value 1 no two of which lie in the same row or column, the corresponding edges in the graph G are a matching.

A vertex cover of G is a subset of vertices such that every edge of G is incident to at least one vertex of G. Since each edge represent an entry in A of value 1, and the vertices represent rows and columns of A, a vertex cover yields a set of rows and columns which contain every entry entry of value 1.

The König-Egerváry theorem says that the size of a maximum matching in a bipartite graph equals the size of a minimum vertex cover. According to the interpretations of a matching and of a minimum vertex cover in G, this translates directly into the statement that the maximum size of a set of entries 1 in A, no two of which lie in the same row or column, equals the minimum number of rows and columns than contain all entries of value 1.

11.B. Suppose that M_1 and M_2 are two matchings in a bipartite graph with bipartition (X, Y). Let S be the M_1-saturated vertices of X and let T be the M_2-saturated vertices of Y. Show there is a matching M that saturates S and T simultaneously.

The figure illustrates the situation; the M_2 matching is in bold edges, the M_1 in regular edges.
The solution to this problem will extract a matching \(M \) that saturates \(S \) and \(T \) simultaneously from the edges of \(M_1 \cup M_2 \).

It may be assumed that the only edges are those in \(M_1 \cup M_2 \). Observe then that, since \(M_1 \) and \(M_2 \) are matchings, at most two edges are incident to any vertex, and, if there are two edges, one is from \(M_1 \) and the other is from \(M_2 \). Thus, \textit{any} path in the graph of length two or more alternates between edges in \(M_1 \) and edges in \(M_2 \).

Start with some \(M \) matching in the graph. Suppose that there is a vertex \(x \) in \(S \) which is not saturated by \(M \). Consider the maximum length \(M \)-alternating path, \(P \), that starts at \(x \) and first traverses an edge of \(M_1 \). Since \(x \) is in \(S \) and is not saturated by \(M \), such \(M \)-alternating paths exist. By what we said above, this path alternates between edges in \(M_1 \) but not in \(M \) and edges in \(M_2 \) belonging to \(M \). There are three possible cases to consider. First the path \(P \) ends at a vertex in \(Y \). Then the path is \(M \)-augmenting, and by using this path to augment \(M \) one obtains a larger matching that saturates \(x \). Second, the path \(P \) ends in a vertex \(y \) of \(S \). But this cannot happen, because the edges along \(P \) alternate between those of \(M_1 \) and \(M_2 \) so \(P \) would enter \(y \) by an edge in \(M_2 \cap M \); but since \(y \) is in \(S \), there is also an edge of \(M_1 \) incident to \(x \) which could be used to extend \(P \), contradicting the maximality of \(P \). Finally, \(P \) could end in a vertex in \(X \) that does not belong to \(S \). In this case, modify \(M \) by removing the edges in \(P \) belonging to \(M \) and replacing them by the edges in \(P \) not belonging to \(M \). The new matching will saturate all the vertices of the path, including the initial vertex \(x \), except for the last vertex. But this last vertex does not belong to \(S \) and it is not necessary to saturate it.

In all cases then, we can build a new matching that saturates \(x \) and all vertices of \(S \cup T \) previously saturated by \(M \). By exactly the same reasoning, if \(y \) is not saturated by \(M \), we can build a new matching that saturates \(T \) and all vertices of \(S \cup T \) previously saturated by \(M \). Therefore the maximum subset of \(S \cup T \) that can be saturated by a matching drawn from \(M_1 \cup M_2 \) is \(S \cup T \) itself, and this is what we needed to prove.

\textbf{11C.} Prove Hall’s Theorem from the König-Egerváry theorem.

Hall’s theorem is: If \(G \) is a bipartite graph with bipartition \((X,Y) \), then \(G \) contains a matching of \(X \) into \(Y \), that is a matching of cardinality \(|X| \) if and only if \(|N(S)| \geq |S| \) for every subset \(S \) of \(X \).

The necessity of the condition \(|N(S)| \geq |S| \) for every subset \(S \) of \(X \) is easy—see the first paragraph in the proof of Theorem 8.3 on page 186.
The more interesting direction is to assume $|N(S) \geq |S|$ for every subset S and prove that G contains a matching of X into Y.

We shall do this by establishing that any vertex cover contains at least $|X|$ vertices. Since X itself is a vertex cover, the minimum vertex cover size is $|X|$. Then the König-Egerváry theorem implies that G contains a matching of size $|X|$ and any such matching certainly matches $|X|$ into Y, proving Hall's theorem.

Thus, let U be any vertex cover. G cannot contain any edges that join a vertex of $X - (U \cap X)$ to a vertex of $Y - (U \cap Y)$; such edges would not be covered by U in contradiction to the assumption that U is a vertex cover. Therefore $N(X - (U \cap X))$, the set of neighbors of $X - (U \cap X)$, must be contained in $U \cap Y$. By assumption, it follows that $|U \cap Y| \geq |X - (U \cap X)|$. Thus

$$|U| = |U \cap X| + |U \cap Y| \geq |U \cap X| + |X - (U \cap X)| = |X|.$$

This completes the proof.

11D. Find a maximum matching in the following bipartite graph, starting from the matching shown. Prove your matching is maximum.

We show the matching here with labeled vertices

![Bipartite Graph](image)

First observe that $\{x_3, x_6, y_1, y_3, y_5, y_6, y_8\}$ is a vertex cover. This may be checked by examining each vertex that is not in this list and verifying that each of its edges terminates at the other end in a vertex in this list. This cover contains 7 vertices. Therefore if we obtain a matching using 7 edges, the König-Egerváry Theorem implies that the matching is maximum and that the vertex cover is minimum. Indeed there is a matching of size 7. To obtain it, start looking for M-augmenting path starting from the
unsaturated vertices of X, X being the set of vertices on top. We find immediately that the edge x_2y_1 and the edge x_6y_7 are M-alternating paths of length one, that is, are edges that are not adjacent to any edges of the given matching. By adding these edges we obtain

$$
\begin{array}{cccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\
 \circ & \circ \\
 y_1 & y_2 & y_3 & y_4 & y_5 & y_6 & y_7 & y_8 \\
 \circ & \circ
\end{array}
$$

Although König-Egerváry tells us that this matching is maximum, we shall reprove this using the algorithm given in class notes for looking for M-augmenting paths or ruling them out.

Let M denote the matching exhibited in the last graph. The first step of the algorithm is to label all M-unsaturated vertices of X with a *. There is only one, namely x_4. The next step is to search x_4 and label with x_4 all vertices in Y (the set of bottom vertices) reached by an edge not in M from x_4. The vertices y_5 and y_8 receive this label. As they are both M-saturated, the algorithm continues and next searches y_5 and y_6 by following edges in M to vertices in X. Thus x_7 receives label y_5 and x_8 receives label y_8.

As there are newly labeled vertices of X, they must next be searched. Taking x_7 first it is joined by edges not in M to y_3 and y_6. These vertices have not yet been labeled so they receive label x_7. Then a search of x_8 leads y_1 to be labeled x_8. (x_8 is also joined to y_6 by an edge not in M but y_6 was labeled in the previous step.) The result so far is shown below.
Now search \(y_1 \) and \(y_2 \), labeling \(x_1 \) by \(y_3 \) and \(x_2 \) by \(y_1 \). Next search the newly labeled vertices of \(X \). The edges not in \(M \) incident to \(x_1 \) connect it to already labeled vertices of \(Y \), and similarly for \(x_2 \). Therefore the procedure stops because no additional vertices are labeled. The final result is:

Examine now the final labeling. There is one \(M \)-unsaturated vertex in \(Y \), namely \(y_2 \), and it received no label. Therefore there are no \(M \)-augmenting paths and the matching \(M \) is maximum.

Notice that the labels can be traced back to determine \(M \)-alternating paths. We would probably only use this if we found that there is an \(M \)-augmenting path and we wanted to construct it so that we could augment
the matching. Although no M-augmenting path exists here, let us use the labels to find an M-alternating path joining x_4 to x_2, just to illustrate the procedure. So, since x_2 is labeled with y_1, trace back along the edge in M to y_1, then from y_1 to the vertex with which it is labeled, namely x_8, and then to y_8, and finally to x_4. This gives the M-alternating path $x_2 y_1 x_8 y_8 x_4$.