1.17 a) Prove that if P and Q are two longest paths in a connected graph, then P and Q have at least one vertex in common.

Proof by contradiction. Assume that P and Q are longest paths in a connected graph and that they do not share a common vertex. Then P and Q are the same length, call it L. Because the graph is connected there is a path R, one of whose end vertices is in P, such that the other end vertex is in Q and such that all the other internal vertices of R are in neither P nor Q, as in the figure.

Let P' and P'' be the subpaths of P between the end vertices of P and the vertex common to P and R. Define Q' and Q'' similarly. We can form 4 new paths: $P'RQ'$, $P'RQ''$, $P''RQ'$, and $P''RQ''$. At least one of P' and P'' has length longer than $\frac{1}{2} (\text{Length } P) = \frac{1}{2} L$. At least one of Q' and Q'' has length longer than $\frac{1}{2} L$ also. Since the length of R is at least 1, one of these 4 new paths has length strictly greater than L. But this contradicts the assumption that L is the longest path length. Hence it cannot be true that longest paths do not intersect.

b) Prove or disprove: If P and Q are two geodesics of length k in a connected graph of diameter k, then P and Q have at least one vertex in common.

To disprove an assertion like this, it suffices to exhibit one
counter-example. Consider the graph \(G \). Its diameter is 2 and the paths \(u,w \) and \(y,z \) are geodesic but do not share a common vertex.

1.15 Draw all connected graphs of order 5 in which the distance between every two distinct vertices is odd.

There is only one such graph, \(K_5 \), the complete graph on 5 vertices, in which the distance between every pair of distinct vertices is 1.

Here is a sketch of a proof. (there are many ways to prove this). Let \(G \) be a graph of order 5 in which the distance between every two distinct vertices is odd.

(i) **Claim:** If \(v_1v_2v_3 \) is a path in \(G \), then \(v_1v_3 \) is an edge in \(G \). This must be true because if \(v_1v_3 \) were not an edge then it would have to be true that \(d(v_1,v_3)=2 \), which is not allowed.

(ii) **Claim:** If \(v_1v_2\ldots v_k \) is a path in \(G \) (\(k > 3 \)) then \(v_1v_k \) is an edge in \(G \). Prove this inductively starting with \(k = 3 \) as proved in (i).

We can use (ii) to finish the proof. Let \(u \) and \(v \) be any two distinct vertices in \(G \). Because \(G \) is connected there is a path from \(u \) to \(v \). By (ii) \(uv \) is an edge in \(G \). Hence there is an edge between every two vertices and so \(G = K_5 \).

Question: Did we use anything special about order 5 here? Or can we generalize this problem?
Let $P = u = v_0, v_1, \ldots, v_k = v$ be a u-v geodesic in a graph G. Prove that $d(u, v_i) = i$ for each i, $1 \leq i \leq k$.

Recall that $d(u, v)$ is the length of the shortest path from u to v, and that a geodesic is a shortest length path. Therefore $d(u, v_k) = k$ by definition.

It is worthwhile to solve this problem for $i < k$ by using a very important and basic fact about the distance function on vertices of a graph.

Claim (Triangle Inequality). If u, v, w are vertices in a graph G that is connected,

$$d(u, w) \leq d(u, v) + d(v, w).$$

Proof of claim. There is a path P from u to v of length $d(u, v)$ and a path Q from v to w of length $d(v, w)$. The walk obtained by first traversing P and then Q is a (u, v) walk of length $d(u, v) + d(v, w)$. But we proved in class that a (u, v) walk contains a (u, v) path. Hence there is a (u, v) path of length no more than $d(u, v) + d(v, w)$, which proves $d(u, w) \leq d(u, v) + d(v, w)$.

Proof that $d(u, v_i) = i$ for $1 \leq i \leq k$.

Since $u = v_0, v_1, \ldots, v_i$ is a path of length i, $d(u, v_i) \leq i$.

Since $v_i, v_{i+1}, \ldots, v_k$ is a path of length $k - i$, $d(v_i, v_k) \leq k - i$.

By the triangle inequality $k = d(u, v_k) \leq d(u, v_i) + d(v_i, v_k)$.

Thus $d(u, v_i) = k - d(v_i, v_k) \geq k - (k - i) = i$. As we have shown $d(u, v_i) \leq i$ and $d(u, v_i) \geq i$, it follows that $d(u, v_i) = i$.

1.20 a) Let \(u \) and \(v \) be distinct vertices in a connected graph.

What is the minimum size of a connected subgraph of
G containing \(u \) and \(v \)?

Answer: Any connected subgraph of \(G \) containing \(u \) and \(v \) must
contain a path from \(u \) to \(v \). So the minimum size of a connected
subgraph containing both \(u \) and \(v \) is at least \(d(u,v) \). On the
other hand, a geodesic (\(u,v \))-path is a connected subgroup
containing \(u \) and \(v \) and its size is \(d(u,v) \). Thus the minimum
size equals \(d(u,v) \).

1.22 Let \(G \) be a disconnected graph. Prove: if \(u \) and \(v \) are vertices
of \(\overline{G} \), then \(d_{\overline{G}}(u,v) = 1 \) or \(d_{\overline{G}}(u,v) = 2 \).

There are two cases: (i) \(u \) and \(v \) are in different connected components;
(ii) they are in the same connected component. In case (i), \(\overline{G} \) is not
in \(G \); hence \(uv \in \overline{G} \) and \(d_{\overline{G}}(u,v) = 1 \). In case (ii), either \(uv \) is
not in \(G \), in which case \(uv \in \overline{G} \) and \(d_{\overline{G}}(u,v) = 1 \), or \(uv \in G \).
If \(uv \in G \) let \(z \) be a vertex in a different connected component of \(G \); \(z \) exists
because \(G \) is disconnected by assumption. Then \(uz \) and \(vz \) are both
in \(\overline{G} \) and \(uzv \) is a \((u,v) \)-path of length 2 in \(\overline{G} \), so \(d_{\overline{G}}(u,v) = 2 \).

1.23 Does there exist a connected graph \(G \) whose complement \(\overline{G} \) is
also connected and contains 4 distinct vertices \(u,v,x,y \) such that
\(d_G(u,v) = k = d_{\overline{G}}(x,y) \)?

\(a) \) Example with \(k = 1 \):

Example with \(k = 2 \):
b) Example with $k=3$. \[\begin{array}{c}
\begin{tikzpicture}
\node[shape=circle,draw=black] (x) at (0,0) {x};
\node[shape=circle,draw=black] (y) at (1,0) {y};
\draw (x) -- (y);
\end{tikzpicture}
\end{array}\] \[\begin{array}{c}
\begin{tikzpicture}
\node[shape=circle,draw=black] (x) at (0,0) {x};
\node[shape=circle,draw=black] (y) at (1,0) {y};
\draw (x) -- (y);
\end{tikzpicture}
\end{array}\]

There are no examples with $k > 3$. To see this it will suffice to study the subgraphs induced in G by four distinct vertices u, v, x, y, and the corresponding subgraphs induced in \overline{G}.

Observe that if $uv \in E(G)$, $d_G(u,v) = 1$, and if $xy \notin E(G)$, $d_{\overline{G}}(x,y) = 1$, and, as we have treated already the case $k=1$, we need only consider induced subgraphs which include xy as an edge, but not uv. We claim that in every case, either $d_G(u,v) \leq 3$ or $d_{\overline{G}}(x,y) \leq 3$. This implies $k = d_G(u,v) = d_{\overline{G}}(x,y)$ is not possible.

(i) If the size of the subgraph induced in G by $\{u, v, x, y\}$ is one and xy is an edge, the subgraph is \[\begin{array}{c}
\begin{tikzpicture}
\node[shape=circle,draw=black] (u) at (0,0) {u};
\node[shape=circle,draw=black] (v) at (1,0) {v};
\node[shape=circle,draw=black] (x) at (2,0) {x};
\node[shape=circle,draw=black] (y) at (3,0) {y};
\draw (u) -- (v);
\draw (x) -- (y);
\end{tikzpicture}
\end{array}\] Its complement is \[\begin{array}{c}
\begin{tikzpicture}
\node[shape=circle,draw=black] (u) at (0,0) {u};
\node[shape=circle,draw=black] (v) at (1,0) {v};
\node[shape=circle,draw=black] (x) at (2,0) {x};
\node[shape=circle,draw=black] (y) at (3,0) {y};
\draw (u) -- (x);
\draw (v) -- (y);
\end{tikzpicture}
\end{array}\] and hence $d_{\overline{G}}(x,y) = 2$.

(ii) If the subgraph includes xy as an edge and has size 2 and if uv is not an edge, it has either of the equivalent forms \[\begin{array}{c}
\begin{tikzpicture}
\node[shape=circle,draw=black] (u) at (0,0) {u};
\node[shape=circle,draw=black] (v) at (1,0) {v};
\node[shape=circle,draw=black] (x) at (2,0) {x};
\node[shape=circle,draw=black] (y) at (3,0) {y};
\draw (u) -- (v);
\draw (x) -- (y);
\end{tikzpicture}
\end{array}\] or \[\begin{array}{c}
\begin{tikzpicture}
\node[shape=circle,draw=black] (u) at (0,0) {u};
\node[shape=circle,draw=black] (v) at (1,0) {v};
\node[shape=circle,draw=black] (x) at (2,0) {x};
\node[shape=circle,draw=black] (y) at (3,0) {y};
\draw (u) -- (x);
\draw (v) -- (y);
\end{tikzpicture}
\end{array}\]. The complement of the first case is \[\begin{array}{c}
\begin{tikzpicture}
\node[shape=circle,draw=black] (u) at (0,0) {u};
\node[shape=circle,draw=black] (v) at (1,0) {v};
\node[shape=circle,draw=black] (x) at (2,0) {x};
\node[shape=circle,draw=black] (y) at (3,0) {y};
\draw (u) -- (x);
\draw (v) -- (y);
\end{tikzpicture}
\end{array}\] and again $d_{\overline{G}}(x,y) = 2$.

(iii) If the size is 3 and xy is an edge but uv is not, there are essentially 3 possibilities for which, respectively, $d_G(u,v) = 2$, $d_{\overline{G}}(x,y) = 2$, $d_G(u,v) \leq 3$.

(iv) If the size is 4 or 5 (and xy is an edge but uv is not), there must be edges adjacent to u and to v and then $d_G(u,v) \leq 3$.
1.24. By applying the algorithm stated in class (see http://math.rutgers.edu/courses/428/428-f07/class-theorems.html) is bipartite and \(A = \{ q_1, r_1, u_1, y_1, w_1, t_1 \} \), \(B = \{ x_1, v_1, z_1, s_1 \} \) is a partition of the vertex set into independent sets.

Redrawing the graph

The graph is not bipartite because \(u_2 x_2 r_2 w_2 v_2 u_2 \) is an odd cycle.

1.27. The full solution is in the text.

1.28. a) Let \(R_n \) be the graph whose vertex set is the set of \(n \)-bit strings, where two vertices are adjacent if they differ in exactly two coordinates.

Picture of \(R_2 \):

\[
\begin{align*}
& (0,0) & & (0,1) \\
& (1,1) & & (1,0)
\end{align*}
\]

Picture of \(R_3 \):

\[
\begin{align*}
& (0,0,0) & & (1,1,0) & & (0,0,1) & & (1,0,0) \\
& (0,0,1) & & (1,1,1) & & (0,1,0) & & (1,0,1) \\
& (0,1,1) & & (1,0,1) & & (0,1,1) & & (1,0,1)
\end{align*}
\]
b) Let S_n be the graph whose vertices are n bit strings, two vertices being adjacent if they differ in exactly 3 coordinates. S_2 does not make sense, so we draw S_3.

```
(0,0,0) -- (0,1,0) -- (1,0,0) -- (1,1,0) ----
|                  |                  |                  |
(1,1,1) -- (1,0,1) -- (0,1,1) -- (0,0,1) ----
```

2.6 Suppose G is a graph of order $3n$ with n vertices of each of the degrees $n-1, n, n+1$. Prove n is even.

By Theorem 2.4, $n(n-1) + n(n-1) + n(n+1) = 3n^2$ is even. This can only be true if n itself is even.

2.8 Let G be a graph of order n. If $\deg u + \deg v + \deg w \geq n-1$ for every three pairwise non-adjacent vertices $u, v,$ and w, must G be connected?

No: **Counterexample A**

\[G: \begin{array}{ccc}
\circ & \circ & \circ \\
\circ & \circ & \circ \\
\end{array} \]

In this example there is no triple of pairwise non-adjacent vertices so the condition $\deg u + \deg v + \deg w \geq n-1$ for every three pairwise non-adjacent vertices is vacuously true.

Counterexample B

\[G: \begin{array}{ccc}
\circ & \circ & \circ \\
\circ & \circ & \circ \\
\end{array} \]

Here G has order 5, u, v, w are pairwise non-adjacent, $\deg u + \deg w + \deg v = 4 = 5 - 1$, but G is not connected.
2.10 a) Show there exists a connected graph of order n such that \(\deg u + \deg v \geq n-2 \) for every two non-adjacent vertices \(u \) and \(v \) and for which \(\deg x + \deg y = n-2 \) for some pair of non-adjacent vertices.

For the condition to be non-vacuous, assume \(n \geq 3 \). There are many different ways to construct examples. Here is one. Let \(G \) be the graph formed by adding a vertex \(x \) and an edge from \(x \) to \(y \) of the graph \(K_{n-1} - yw \), where \(yw \) is an edge in \(K_{n-1} \).

Then \(\deg x = 1 \) and \(\deg y = n-3 \)
while \(\deg u = n-2 \) for all other \(u \)
\(x \) and \(y \) are not adjacent and
\(\deg x + \deg y = n-2 \). Clearly \(\deg u + \deg v \geq n-2 \) for all pairs of vertices in this graph, adjacent or not.

b) Prove that if \(\deg u + \deg v \geq n-2 \) for every pair of non-adjacent vertices, then \(G \) has at most two components. \([G \text{ is of order } n] \)

Assume that \(G \) has at least two components and that \(u \) and \(v \) are in different components. Then \(u \) and \(v \) are not adjacent and so \(\deg u + \deg v \geq n-2 \). Because \(u \) and \(v \) are in different components, they do not share any common neighbors (two vertices are neighbors if there is an edge between them). The number of neighbors of \(u \) is \(\deg u \), of \(v \) is \(\deg v \) and since there are precisely \(n-2 \) other vertices in \(G \) other than \(u \) and \(v \) and since \(\deg u + \deg v \geq n-2 \), it must in fact be true that \(\deg u + \deg v = n-2 \) and each vertex in \(G \) is either a neighbor of \(u \) -- in which case it is in the same component as \(u \), or a neighbor of \(v \) -- in which
case it is the same component as \(v \). Thus \(G \) has at most 2 components.

c) Is the bound in b) sharp? To say the bound is sharp is to say there exists a graph of some order \(n \) with 3 components such that \(\deg u + \deg v \geq n - 3 \) for all non-adjacent vertices \(u \) and \(v \). Indeed there is such an \(n \) and such a graph: for \(n = 3 \), the empty graph \(\boxed{\cdot \cdot \cdot} \) on 3 vertices satisfies \(\deg u + \deg v \geq 0 = n - 3 \) for all \(u, v \). However, this is the only example; if \(n > 3 \) and \(\deg u + \deg v \geq n - 3 \) for all non-adjacent \(u, v \), then \(G \) has at most two components. We leave the proof as an exercise.

2.12 Prove: If \(G \) is a graph of order \(n \) and \(\Delta(G) + \delta(G) \geq n - 1 \), then \(G \) is connected and \(\text{diam}(G) \leq 4 \). Show that the bound \(n - 1 \) is not sharp.

- The graph \(\boxed{\cdot \cdot \cdot} \) shows the bound is sharp; it is connected and \(\Delta(G) + \delta(G) = 2 + 1 = 5 - 2 \) (here \(n = 5 \)).
- Let \(u \) be a vertex of maximum degree; \(\deg u = \Delta(G) \).

The proof will follow easily from the claim. For every vertex \(x \) in \(G \), \(x \) is connected to \(u \) and \(d(x, u) \leq 2 \). To see how the proof follows observe first that if \(x \) and \(y \) are any two vertices, \(x \) is connected to \(y \) because \(x \) is connected to \(u \) and \(u \) is connected to \(y \).

Also, using the triangle inequality discussed in the solution to problem 1.16, \(d(x, y) \leq d(x, u) + d(u, y) = 2 + 2 = 4 \). Hence \(\text{diam}(G) \leq 4 \).

To prove the claim, let \(x \) be any vertex of \(G \) other than \(u \). Then \(\deg x + \deg u \geq \Delta(G) + \delta(G) \geq n - 1 \) since \(\deg x \geq \delta(G) = \text{minimum degree} \) and \(\deg u = \Delta(G) \). But then, using the proof of Theorem 2.4, either \(xu \) is an edge or \(x \) and \(u \) are both adjacent to some other vertex \(w \). In the latter case \(xuw \) is an \((x, u) \) path of length 2 so \(x \) and \(u \) are connected and \(d(x, u) \leq 2 \).