The computations here were done in the process of creating the file for this answer sheet, and that is a prescription for errors to creep in. Please report any to me. I may also change the file before 5/3 to add problems or correct errors I find, but I wanted to get this up as soon as possible.

1. p. 383:26. Let \(\{X_i : 1 \leq i \leq n\} \) be independent random variables all having uniform distributions over \((0, 1)\).

 (a) If \(Y = \max (X_i) \), then \(F_Y (a) = P \{X_i \leq a \text{ for all } i\} = a^n \) so \(f_Y (a) = na^{n-1} \) and

 \[
 E[\max (X_i)] = \int_0^1 y (ny^{n-1}) \, dy = \int_0^1 ny^n \, dy = \frac{n}{n+1}
 \]

 (b) If \(Y = \min (X_i) \), then \(P \{Y > a\} = P \{X_i > a \text{ for all } i\} = (1-a)^n = 1-F_Y (a) \), so we differentiate both sides to get \(-n(1-a)^{n-1} = -f_Y (a) \) and

 \[
 E[\min (X_i)] = \int_0^1 ny (1-y)^{n-1} \, dy
 \]

 \[
 = ny \left[\frac{(1-y)^n}{n} \right]_0^1 + n \int_0^1 \frac{(1-y)^n}{n} \, dy
 \]

 \[
 = -\left(\frac{(1-y)^{n+1}}{n+1} \right)_0^1 = \frac{1}{n+1}
 \]

2. p. 384:34. If 10 married couples are randomly seated at a round table, compute the expected number and the variance of the number of wives who are seated next to their husbands.

Number the couples from 1 to 10 and let \(X_i \) be the Bernoulli r.v. that is 1 precisely when couple \(i \) are seated together. Then the number \(X \) of wives who are seated next to their husbands is

\[
X = \sum_{i=1}^{10} X_i
\]

(a) \(E[X] = 10p \), where \(p \) is the probability that couple \(i \) is seated together. Consider the seating as first seating wife \(i \). If couple \(i \) are seated together, then there are 2 places to seat husband \(i \) and 18! ways of seating the rest of the people. If there is no such restriction, there are 19! ways of seating the other 19 people. Hence \(p = \frac{219!}{19!} = \frac{2}{19} \), so

\[
E[X] = \frac{20}{19}
\]

(b) The major problem here is that the \(X_i \) are not independent.

\[
\text{Var}(X) = \text{Cov} \left(\sum_{i=1}^{10} X_i, \sum_{j=1}^{10} X_j \right) = \sum_{i=1}^{10} \sum_{j=1}^{10} \text{Cov}(X_i, X_j)
\]

\[
= \sum_{i=1}^{10} \text{Cov}(X_i, X_i) + \sum_{i=1}^{10} \sum_{j=1, j \neq i}^{10} \text{Cov}(X_i, X_j)
\]

\[
= 10 \cdot \frac{2}{19} \cdot \frac{17}{19} + 10 \cdot 9 \cdot \text{Cov}(X_1, X_2)
\]

since all of the \(\text{Cov}(X_i, X_j) \) with \(i \neq j \) are equal.

\[
\text{Cov}(X_1, X_2) = E[X_1X_2] - E[X_1]E[X_2] = E[X_1X_2] - \frac{4}{19^2}
\]

\[
= P \{\text{Couple 1 is seated together and couple 2 is seated together}\} - \frac{4}{19^2}
\]
Seat wife 1. There are then 2 ways that you can seat her husband next to her, and 2 \cdot 17! ways to seat the remaining 18 people so couple 2 is seated together. Thus

$$P \{ \text{Couple 1 is seated together and couple 2 is seated together} \} = \frac{4 \cdot 17!}{19!}.$$

Then

$$\text{Cov} (X_1, X_2) = \frac{4}{19 \cdot 18} - \frac{4}{19^2} = \frac{4 \cdot 19 - 4 \cdot 18}{18 \cdot 19^2} = \frac{2}{9 \cdot 19^2}$$

and

$$\text{Var} (X) = 10 \cdot \frac{2}{19} \cdot \frac{17}{19} + 10 \cdot \text{Cov} (X_1, X_2)$$

$$= 10 \cdot \frac{2}{19} \cdot \frac{17}{19} + 10 \cdot \left(\frac{2}{9 \cdot 19^2} \right)$$

$$\frac{340 + 20}{19^2} = \frac{360}{361}.$$

3. p384.36. Let X be the number of 1’s and Y the number of 2’s that occur in n rolls of a fair die. Compute $\text{Cov} (X, Y)$.

Let U_i be the Bernoulli r.v. which is 1 when roll i is a 1 and 0 otherwise, and let V_j be the Bernoulli r.v. which is 1 when roll i is a 2 and 0 otherwise. Then $X = \sum_{i=1}^{n} U_i$ and $Y = \sum_{j=1}^{n} V_j$ and for any i and j with $i \neq j$ $\text{Cov} (U_i, V_j) = 0$ because they are independent, so we have

$$\text{Cov} (X, Y) = \text{Cov} \left(\sum_{i=1}^{n} U_i , \sum_{j=1}^{n} V_j \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \text{Cov} (U_i, V_j)$$

$$= \sum_{i=1}^{n} \text{Cov} (U_i, V_i) = n \left(0 - E \left[U_1 \right] E \left[V_1 \right] \right) = -\frac{n}{36}.$$

4. p386.40. The joint density function of X and Y is given by

$$f(x, y) = \frac{1}{y} \exp \left(- \left(y + \frac{x}{y} \right) \right) = \frac{e^{-y}}{y} e^{-x/y} \quad x > 0, \quad y > 0$$

Find $E[X]$, $E[Y]$, and $\text{Cov} (X, Y)$.

We first check check that this is a probability distribution by looking at $\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{y} e^{-y} e^{-x/y} \, dx \, dy = \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{y} e^{-y} e^{-x/y} \, dy \, dx$. The region of integration is the first quadrant, so it will not influence order. If one integrates with respect to y first, one is faced with integrating a (function of y) $\times \exp (x/y)$ with x held constant and the derivative of $1/y$ no where in sight. This is not a closed form integral, so we will try the other order for this, and all of the other integrals. $\int x^n e^{ax} \, dx$ can be found by integrating by parts or using a table of integrals or using a CAS such as Maple. We also use the fact that any polynomial times e^{-ax} goes to 0 as x goes to ∞ if $a > 0$.

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{y} e^{-y} e^{-x/y} \, dx \, dy = \int_{y=0}^{\infty} e^{-y} \left[\int_{x=0}^{\infty} e^{-x/y} \, dx \right] dy$$

$$= \int_{0}^{\infty} \frac{e^{-y}}{y} \left(-y \, e^{-x/y} \right) \bigg|_{x=0}^{\infty} \, dy = \int_{0}^{\infty} e^{-y} \, dy = 1$$

(a)

$$E[X] = \int_{0}^{\infty} \int_{0}^{\infty} \frac{x}{y} e^{-y} e^{-x/y} \, dx \, dy = \int_{0}^{\infty} \frac{e^{-y}}{y} \left[\int_{0}^{\infty} xe^{-x/y} \, dx \right] dy$$

$$= \int_{x=0}^{\infty} e^{-y} \left(-xy \, e^{-x/y} - y^2 \, e^{-x/y} \right) \bigg|_{x=0}^{\infty} \, dy = \int_{0}^{\infty} \frac{e^{-y}}{y} \left(y^2 \right) \, dy$$

$$= \left(-y \, e^{-y} - e^{-y} \right) \bigg|_{y=0}^{\infty} = 1$$
(b)
\[E[Y] = \int_0^\infty \int_0^\infty e^{-y} e^{-x/y} \, dx \, dy = \int_0^\infty e^{-y} \left[\int_0^\infty e^{-x/y} \, dx \right] \, dy \\
= \int_{x=0}^{x=\infty} e^{-y} \left(-y e^{-x/y} \right) \bigg|_{x=0}^{x=\infty} \, dy = \int_0^\infty y e^{-y} \, dy \\
= (-y e^{-y} - e^{-y}) \bigg|_{y=0}^{y=\infty} = 1 \]

(c)
\[E[XY] = \int_0^\infty \int_0^\infty xe^{-x/y} e^{-x/y} \, dx \, dy = \int_0^\infty e^{-y} \left[\int_0^\infty xe^{-x/y} \, dx \right] \, dy \\
= E[Y] = 1 \]
\[\text{Cov}(X, Y) = E[XY] - E[X]E[Y] = 1 - 1 = 0 \]

so \(\text{Cov}(X, Y) = 2 - 1 = 1 \).

5. p385:45. Let \(\{X_i : 1 \leq i \leq 4\} \) be independent pairwise uncorrelated random variables each having mean 0 and variance 1, each having mean 0 and variance 1.

Since these r.v.’s are uncorrelated, \(\rho(X_i , X_j) = \frac{\text{Cov}(X_i , X_j)}{\sqrt{\text{Var}(X_i) \cdot \text{Var}(X_j)}} = 0 \) if \(i \neq j \). In particular, \(\text{Cov}(X_i , X_j) = 0 \) if \(i \neq j \).

(a)
\[\rho(X_1 + X_2 , X_2 + X_3) = \frac{\text{Cov}(X_1 + X_2 , X_2 + X_3)}{\sqrt{\text{Var}(X_1 + X_2) \cdot \text{Var}(X_2 + X_3)}} \\
= \frac{\text{Cov}(X_1, X_2) + \text{Cov}(X_1, X_3) + \text{Cov}(X_2, X_2) + \text{Cov}(X_2, X_3)}{\sqrt{(\text{Var}(X_1) + \text{Var}(X_2) + 2 \text{Cov}(X_1, X_2))(\text{Var}(X_2) + \text{Var}(X_3) + 2 \text{Cov}(X_2, X_3))}} \\
= \frac{0 + 0 + 1 + 0}{\sqrt{(1 + 1 + 0)(1 + 1 + 0)}} = \frac{1}{\sqrt{4}} \cdot \frac{1}{2} = \frac{1}{2} \]

(b) \(\text{Cov}(X_1 + X_2 , X_3 + X_4) = 0 \) since the two sums are independent.

6. p385:48. A fair die is successively rolled. Let \(X \) be the number of rolls necessary to obtain a 6, and \(Y \) the number of rolls necessary to obtain a 5. Find:

(a) \(E[X] \). \(X \) is a geometric random variable with parameter \(\frac{1}{6} \), so \(E[X] = \frac{1}{1/6} = 6 \).

(b) \(E[X \mid Y = 1] \). If you know that the first roll is not a 6, the expected number of rolls after this first one is 6, so the total expected number of rolls given that the first is a 5 is \(6 + 1 = 7 \).

(c) \(E[X \mid Y = 5] \).

\[P_{X \mid Y}(X = i \mid Y = 5) = \begin{cases}
\left(\frac{4}{6} \right)^2 \left(\frac{5}{6} \right)^{i-1} \left(\frac{1}{6} \right)^4 / \left(\frac{6}{5} \right)^4 \left(\frac{1}{6} \right)^4 & \text{if } 0 \leq i \leq 4 \\
0 & \text{if } i = 5 \\
\left(\frac{4}{6} \right)^4 \left(\frac{1}{6} \right)^{i-6} / \left(\frac{5}{6} \right)^4 \left(\frac{1}{6} \right)^4 = \left(\frac{4}{6} \right)^4 \left(\frac{1}{6} \right)^{i-6} \left(\frac{5}{6} \right) & \text{if } 6 \leq i
\end{cases} \]

so

\[E[X \mid Y = 5] = 1 \cdot \frac{1}{5} + 2 \cdot \frac{4}{5} + 3 \cdot \frac{4^2}{5^2} + 4 \cdot \frac{4^3}{5^3} + 5 \cdot \frac{4^4}{6 \cdot 5^4} \sum_{i=6}^{\infty} i \cdot \left(\frac{5}{6} \right)^{i-6} \\
= 1.3136 + \frac{4^4}{6 \cdot 5^4} \left(\frac{6}{5} \right)^5 \sum_{i=6}^{\infty} i \cdot \left(\frac{5}{6} \right)^{i-1} - \frac{4^4}{6 \cdot 5^4} \left(\frac{6}{5} \right)^5 \sum_{i=1}^{5} i \cdot \left(\frac{5}{6} \right)^{i-1} \\
= 1.3136 + \frac{4^4}{6 \cdot 5^4} \left(\frac{6}{5} \right)^5 \left(\frac{1}{1 - \frac{5}{6}} \right)^2 - \frac{4^4}{6 \cdot 5^4} \left(\frac{6}{5} \right)^5 \sum_{i=1}^{5} i \cdot \left(\frac{5}{6} \right)^{i-1} = 5.8192 \]
7. p385:50. The joint density of \(X \) and \(Y \) is given by

\[
f(x, y) = \frac{e^{-x/y} e^{-y}}{y} \quad 0 < x < \infty, \quad 0 < y < \infty
\]

Compute \(E[X^2 \mid Y = y] \).

\[
P\{Y = y\} = \int_{x=0}^{x=\infty} \frac{e^{-x/y} e^{-y}}{y} \, dx = - (e^{-x/y})|_{x=0}^{x=\infty} = e^{-y} \text{ so } f_{X \mid Y}(x \mid Y = y) = \frac{e^{-x/y}}{y}. \]

Then

\[
E[X^2 \mid Y = y] = \int_{x=0}^{x=\infty} x^2 \frac{e^{-x/y}}{y} \, dx
\]

\[
= \left(\frac{1}{y} \right) \left(-2y^3 e^{-y} - 2xy^2 e^{-y} - x^2 ye^{-y} \right) \bigg|_{x=0}^{x=\infty} = 2y^2
\]

8. p427:1. Let \(X \) be a r.v. with \(\mu = \sigma^2 = 20 \). What can you say about \(P\{0 < X < 40\} \).

Let \(Y = \lfloor X - 20 \rfloor \), and note that \(\sigma^2 = \text{Var}(Y) \).

\[
P\{0 < X < 40\} = P\{|Y - 20| < 20\};
\]

\[
= \frac{20}{20^2} = P\{|Y - 20| \geq 20\} \quad \text{(by Chebyshev)}
\]

\[
= 1 - P\{|Y - 20| < 20\}
\]

so \(P\{0 < X < 40\} \geq 1 - \frac{1}{20} \).

9. p427:2. From past experience a professor knows that the text score of a student taking his or her final exam is a random variable with mean 75. In addition, in the last two parts of the question suppose that the variance is 25.

(a) Give an upper bound for the probability that a student’s test score will exceed 85. Let \(X \) denote the student’s score. Then Markov’s inequality gives

\[
P\{X \geq 85\} \leq \frac{75}{85} = \frac{15}{17}
\]

(b) What can be said about the probability that a student will score between 65 and 85. By Chebyshev’s inequality,

\[
P\{|X - 75| \geq 10\} \leq \frac{25}{100} = \frac{1}{4}
\]

so \(P\{|X - 75| \leq 10\} \geq 1 - \frac{1}{4} = \frac{3}{4} \).

(c) How many students would have to take the test to ensure, with probability at least .9 that the class average would be within 5 of 75. By the proof of the weak law of large numbers using Chebyshev,

\[
P\left\{ \left| \frac{\sum_{i=1}^{n} X_i}{n} - 75 \right| \geq 5 \right\} \leq \frac{25}{25n} = \frac{1}{n}
\]

so \(P\left\{ \left| \frac{\sum_{i=1}^{n} X_i}{n} - 75 \right| \leq 5 \right\} \leq 1 - \frac{1}{n} \) and this is \(\leq .9 \iff n \geq 10 \).

10. p427:3. Redo the last part of the previous question using the central limit theorem. The central limit theorem states that if \(n \) is large enough and the \(X_i \) are independent, identically distributed random variables

\[
P\left\{ \frac{\sum_{i=1}^{n} X_i - 75n}{\sqrt{n}} \leq a \right\} \approx \Phi(a)
\]

so

\[
P\left\{ \left| \frac{\sum_{i=1}^{n} X_i - 75n}{\sqrt{n}} \right| \leq a \right\} \approx 2\Phi(a) - 1.
\]
2\Phi(a) - 1 = 0.9 \iff \Phi(a) = \frac{0.9}{2} = 0.95. From tables, a = 1.645 (this one turns out to be trivial to interpolate).

\[
\left| \frac{\sum_{i=1}^{n} X_i}{n} - 75 \right| \leq 5 \iff \left| \sum_{i=1}^{n} X_i - 75n \right| \leq 5n \iff \left| \sum_{i=1}^{n} X_i - 75n \right| \leq 5n \implies \sqrt{n} \leq \sqrt{n}
\]

so we need to find the smallest \(n \) such that \(\sqrt{n} \geq 1.645 \). The smallest such \(n \) is 3.

11. p427:5. Fifty numbers are rounded off to the nearest integer and then summed. If the individual resultant round-off errors are uniformly distributed over \((-0.5, 0.5)\), what is the probability that the resultant sum differs from the exact sum by more than 3.

Let \(X_i \) be the round-off error in number \(i \). Then \(E[X_i] = 0 \) and \(\text{Var}(X_i) = \frac{1}{12} \). By Chebyshev’s inequality, \(P\left\{ \left| \sum_{i=1}^{50} X_i \right| \geq 3 \right\} \leq \frac{50}{108} = 0.46296 \) but that is not a good estimate at all. We estimate using the central limit theorem.

\[
P\left\{ \frac{\sum_{i=1}^{50} X_i - 0}{\sqrt{\frac{50}{12}}} > \frac{3}{\sqrt{\frac{50}{12}}} \approx 1.47 \right\} \approx 1 - \Phi(1.47) = 1 - 0.9292 = 0.0708 \quad \text{so}
\]

\[
P\left\{ \left| \sum_{i=1}^{50} X_i \right| > 3 \right\} \approx 2(0.0708) = 0.1416
\]

12. p427:14. Let \(X_i \) be the lifetime of the \(i^{th} \) component. Then \(\mu = 100 \) and \(\sigma = 30 \). You are asked to find an \(n \) so that \(P\{\sum_{i=1}^{n} X_i < 2000\} < 0.05 \). By the central limit theorem, this is approximately the probability that a normal r.v. with mean 100\(n \) and \(\sigma = 30\sqrt{n} \) is less than 2000.

\[
P\left\{ \frac{\sum_{i=1}^{n} X_i - 100n}{30\sqrt{n}} < \frac{2000 - 100n}{30\sqrt{n}} \right\} \approx \Phi\left(\frac{2000 - 100n}{30\sqrt{n}} \right)
\]

will be less than 0.05 if \(\Phi\left(\frac{2000 - 100n}{30\sqrt{n}} \right) < 0.05 \). This is the case when \(\Phi\left(\frac{2000 - 100n}{30\sqrt{n}} \right) > 0.95 \) so

\[
-\frac{2000 - 100n}{30\sqrt{n}} > 1.645, \text{ or } 100(\sqrt{n})^2 - (30)(1.645)\sqrt{n} - 2000 > 0. \text{ This polynomial in } \sqrt{n} \text{ factors as}
\]

\[
100(\sqrt{n})^2 - (30)(1.645)\sqrt{n} - 2000 = 100(\sqrt{n} + 4.232)(\sqrt{n} - 4.726)
\]

For this polynomial to be positive, \(\sqrt{n} \) must be > 4.7257, so take \(n > (4.7257)^2 \approx 22.3 \). That is, you must have at least 23 components on hand to have .95 probability of operating more than 2000 hours.