1. Cauchy-Schwarz inequality: $|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\|\|\mathbf{v}\| \quad$ triangle inequality: $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$.

Assume Cauchy-Schwarz. Then
$\|\mathbf{u}+\mathbf{v}\|^{2}=(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})=\|\mathbf{u}\|^{2}+2 \mathbf{u} \cdot \mathbf{v}+\|\mathbf{v}\|^{2} \leq\|\mathbf{u}\|^{2}+2\|\mathbf{u}\|\|\mathbf{v}\|+\|\mathbf{v}\|^{2}=(\|\mathbf{u}\|+\|\mathbf{v}\|)^{2}$.
2. (a) $\|\mathbf{u}\|=\sqrt{1+9+4}=\sqrt{14}, \quad\|\mathbf{v}\|=\sqrt{4+1+9}=\sqrt{14}, \quad \mathbf{u} \cdot \mathbf{v}=-2+3-6=-5$, $\|\mathbf{u}+\mathbf{v}\|=\sqrt{1+16+1}=\sqrt{18}$.
(b) Cauchy-Schwarz inequality for these vectors: $|\mathbf{u} \cdot \mathbf{v}|=5 \leq\|\mathbf{u}\|\|\mathbf{v}\|=14$ triangle inequality for these vectors: $\|\mathbf{u}+\mathbf{v}\|=\sqrt{18} \leq\|\mathbf{u}\|+\|\mathbf{v}\|=2 \sqrt{14}$
(c) $(\mathbf{u}+2 \mathbf{w}) \cdot(\mathbf{u}-\mathbf{w})=\mathbf{u} \cdot \mathbf{u}+(-1+2) \mathbf{u} \cdot \mathbf{w}-2 \mathbf{w} \cdot \mathbf{w}=14+13-2(25)=-23$.
3. (a) Calculate $\mathbf{v} \cdot \mathbf{x}=1+0-3=-2$ and $\mathbf{v} \cdot \mathbf{v}=1+4+9=14$. Then $\mathbf{y}=\frac{\mathbf{v} \cdot \mathbf{x}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}=-\frac{1}{7}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Hence $\mathbf{z}=\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]+\frac{1}{7}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\frac{1}{7}\left[\begin{array}{r}8 \\ 2 \\ -4\end{array}\right]$. Check: $\mathbf{v} \cdot \mathbf{z}=(1 / 7)(1 \cdot 8+2 \cdot 2-3 \cdot 4)=0$.
(b) The vector $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ is in V^{\perp} when $x_{1}+2 x_{2}+3 \mathbf{x}_{3}=0$. So $V^{\perp}=\operatorname{Null}(A)$, where $A=\mathbf{v}^{T}$. Since x_{2} and x_{3} are the free variables, a basis for the null space is $\mathbf{u}_{1}=\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}-3 \\ 0 \\ 1\end{array}\right]$.
(c) Apply Gram-Schmidt to the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$ from (b):
$\mathbf{v}_{1}=\mathbf{u}_{1}$ and $\mathbf{v}_{2}=\mathbf{u}_{2}-\frac{\mathbf{v}_{1} \cdot \mathbf{u}_{2}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\mathbf{u}_{2}-\frac{6}{5} \mathbf{v}_{1}=\frac{1}{5}\left[\begin{array}{r}-3 \\ -6 \\ 5\end{array}\right]$. Check: $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=(1 / 5)((-2) \cdot(-3)+1 \cdot(-6)+0 \cdot 5)=0$,
$\mathbf{v} \cdot \mathbf{v}_{1}=1 \cdot(-2)+2 \cdot 1+3 \cdot 0=0$, and $\mathbf{v} \cdot \mathbf{v}_{2}=(1 / 5)(1 \cdot(-3)+2 \cdot(-6)+3 \cdot 5)=0$.
For an orthonormal set use $\mathbf{q}_{1}=\frac{1}{\left\|\mathbf{v}_{1}\right\|} \mathbf{v}_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right] \quad$ and $\mathbf{q}_{2}=\frac{1}{\left\|\mathbf{v}_{2}\right\|} \mathbf{v}_{2}=\frac{1}{\sqrt{70}}\left[\begin{array}{r}-3 \\ -6 \\ 5\end{array}\right]$.
(d) The general formula is $c_{1}=\mathbf{x} \cdot \mathbf{q}_{1}=\frac{-2}{\sqrt{5}}$ and $c_{2}=\mathbf{x} \cdot \mathbf{q}_{2}=\frac{-8}{\sqrt{70}}$ since $\left\|\mathbf{q}_{1}\right\|=\left\|\mathbf{q}_{2}\right\|=1$.

Check: $c_{1} \mathbf{q}_{1}+c_{2} \mathbf{q}_{2}=\frac{-2}{5}\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right]+\frac{-8}{70}\left[\begin{array}{r}-3 \\ -6 \\ 5\end{array}\right]=\frac{1}{70}\left[\begin{array}{r}80 \\ 20 \\ -40\end{array}\right]=\mathbf{z}$.
4. Let $R=\operatorname{rref}(A)=\left[\begin{array}{ccccc}1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]$, basic variables x_{1}, x_{4} and free variables $x_{2} . x_{3}, x_{5}$.
(a) dim Row $A=\operatorname{dim} \operatorname{Col} A=2, \operatorname{dim} \operatorname{Null} A=3$.
(b) For $\operatorname{Col} A=\mathbb{R}^{2}$, use any orthonormal basis, such as $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$.

For Row $A=$ Row R, use $\left[\begin{array}{ccccc}1 & 1 & 1 & 0 & 0\end{array}\right] / \sqrt{3}$ and $\left[\begin{array}{ccccc}0 & 0 & 0 & 1 & 1\end{array}\right] / \sqrt{2}$.
For Null A, the equations are $x_{1}+x_{2}+x_{3}=0$ and $x_{4}+x_{5}=0$, so it has a basis

$$
\begin{aligned}
& \mathbf{u}_{1}=\left[\begin{array}{r}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{r}
-1 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \mathbf{u}_{3}=\left[\begin{array}{r}
0 \\
0 \\
0 \\
-1 \\
1
\end{array}\right] . \text { Here } \mathbf{u}_{1} \perp \mathbf{u}_{3} \text { and } \mathbf{u}_{2} \perp \mathbf{u}_{3} . \text { Replace } \mathbf{u}_{2} \text { by } \\
& \mathbf{v}_{2}=\mathbf{u}_{2}-\frac{\mathbf{u}_{2} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}=\mathbf{u}_{2}-\frac{1}{2} \mathbf{u}_{1}=\left[\begin{array}{r}
-1 / 2 \\
-1 / 2 \\
1 \\
0 \\
0
\end{array}\right] . \text { To get an orthnomal basis }\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\}, \text { take } \\
& \mathbf{w}_{1}=\frac{1}{\left\|\mathbf{u}_{1}\right\|} \mathbf{u}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
-1 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \mathbf{w}_{2}=\frac{1}{\left\|\mathbf{v}_{2}\right\|} \mathbf{v}_{2}=\sqrt{\frac{2}{3}}\left[\begin{array}{r}
-1 / 2 \\
-1 / 2 \\
1 \\
0 \\
0
\end{array}\right], \mathbf{w}_{3}=\frac{1}{\left\|\mathbf{u}_{3}\right\|} \mathbf{u}_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
0 \\
0 \\
0 \\
-1 \\
1
\end{array}\right] .
\end{aligned}
$$

5. The columns of Q must be an orthnormal basis for \mathbb{R}^{3}. One solution is $\frac{1}{\sqrt{3}}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \frac{1}{\sqrt{2}}\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]$. (There are infinitely many other solutions,)
6. (a) True: There are four distinct eigenvalues, hence four independent eigenvectors.
(b) False: Eigenvalue 0 has algebric multiplicity 2, but only one eigenvector if nullity $A=1$.
(c) True: Since nullity $A=4-2=2$, there is a linearly independent set of eigenvectors.
(d) True: Symmetry guarantees that the algebraic multiplicity $=$ geometric multiplicity for eigenvalues, so there is a basis of eigenvectors. The diagonal matrix could have entries $2,0,0,0$, or $2,2,0,0$, or $2,2,2,0$, depending on the multiplicities.
7. (a) Characteristic polynomial det $\left[\begin{array}{rrr}(7-t) & 0 & 0 \\ 0 & (4-t) & 2 \\ 0 & 1 & (3-t)\end{array}\right]=(7-t)\left(t^{2}-7 t+10\right)=-(t-2)(t-5)(t-7)$

Eigenvalues: $\lambda_{1}=2, \lambda_{2}=5, \lambda_{3}=7$. Eigenvectors:

$$
\begin{aligned}
& A-\lambda_{1} I_{3}=\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 2 & 2 \\
0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right], \text { so eigenvector } \mathbf{v}_{1}=\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right] .\left(\text { Check: } A \mathbf{v}_{1}=\left[\begin{array}{r}
0 \\
-2 \\
2
\end{array}\right]=2 \mathbf{v}_{1}\right) \\
& A-\lambda_{2} I_{3}=\left[\begin{array}{rrr}
2 & 0 & 0 \\
0 & -1 & 2 \\
0 & 1 & -2
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right], \text { so eigenvector } \mathbf{v}_{2}=\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right] .\left(\text { Check: } A \mathbf{v}_{2}=\left[\begin{array}{r}
0 \\
10 \\
5
\end{array}\right]=5 \mathbf{v}_{2}\right) \\
& A-\lambda_{3} I_{3}=\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & -3 & 2 \\
0 & 1 & -4
\end{array}\right] \rightarrow\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \text { so eigenvector } \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] . \quad\left(\text { Check: } A \mathbf{v}_{3}=\left[\begin{array}{l}
7 \\
0 \\
0
\end{array}\right]=7 \mathbf{v}_{3}\right)
\end{aligned}
$$

(b) Take $P=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$. Then P is invertible since the eigenvectors are independent (the eigenvalues are distinct); alternate argument: $\operatorname{det} P=1$. Take $D=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 7\end{array}\right]$ (diagonal matrix of eigenvalues).
8. (a) Take $P=\left[\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right]$ and $D=\left[\begin{array}{rrr}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$. Then $P^{-1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -1 & 1\end{array}\right]$ and $A=P D P^{-1}=\left[\begin{array}{rrr}2 & 0 & 0 \\ 1 & 1 & 0 \\ -5 & 2 & -1\end{array}\right] \quad$ (lower triangular, with eigenvalues on the diagonal).
(b) Let $\mathbf{y}=P^{-1} \mathbf{x}=\left[\begin{array}{l}3 \\ 1 \\ 7\end{array}\right]$. Then $\mathbf{x}=P \mathbf{y}=3 \mathbf{v}_{1}+1 \mathbf{v}_{2}+7 \mathbf{v}_{3}$. Apply A^{n} to each eigenvector: $A^{n} \mathbf{x}=3 \cdot 2^{n} \mathbf{v}_{1}+1 \cdot 1^{n} \mathbf{v}_{2}+7 \cdot(-1)^{n} \mathbf{v}_{2} \approx 3 \cdot 2^{n} \mathbf{v}_{1}$ when n is large.
9. Since $A \mathbf{x}=2 \mathbf{x}$ we have $2 \mathbf{x} \cdot \mathbf{y}=(A \mathbf{x}) \cdot \mathbf{y}=(A \mathbf{x})^{T} \mathbf{y}=\mathbf{x}^{T}(A \mathbf{y})=\mathbf{x} \cdot A \mathbf{y}$ since $A=A^{T}$. But $A \mathbf{y}=3 \mathbf{y}$, so we get $2 \mathbf{x} \cdot \mathbf{y}=3 \mathbf{x} \cdot \mathbf{y}$. This forces $\mathbf{x} \cdot \mathbf{y}=0$.
10. (a) Take $\mathbf{v}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]($ column $\# 1$ of $A)$. Then $A \mathbf{v}=\mathbf{v}\left(\mathbf{v}^{T} \mathbf{v}\right)=14 \mathbf{v}$, so the eigenvalue is 14 .
(b) $\operatorname{rref} A=\left[\begin{array}{lll}1 & 3 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, so $\operatorname{nullity}(A)=2$. Hence the zero eigenspace of A has dimension 2 . Vectors \mathbf{x} in $\operatorname{Null}(A)$ satisfy $x_{1}+3 x_{2}+2 x_{3}=0$ (free variables x_{2} and x_{3}), so a basis for $\operatorname{Null}(A)$ is
$\mathbf{u}_{1}=\left[\begin{array}{r}-3 \\ 1 \\ 0\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{r}-2 \\ 0 \\ 1\end{array}\right]$. Here $\mathbf{v} \cdot \mathbf{u}_{1}=\mathbf{v} \cdot \mathbf{u}_{2}=0$ because A is symmetric and \mathbf{v} is an eigenvector with nonzero eigenvalue.
(c) Apply Gram-Schmidt to the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}$ as in problem $\# 3$:

Let $\mathbf{v}_{1}=\mathbf{u}_{1}, \quad \mathbf{v}_{2}=\mathbf{u}_{2}-\frac{\mathbf{u}_{2} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}=\mathbf{u}_{2}-\frac{6}{10} \mathbf{v}_{1}=\left[\begin{array}{r}-1 / 5 \\ -3 / 5 \\ 1\end{array}\right], \quad \mathbf{v}_{3}=\mathbf{v}$.

Then $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an orthogonal basis of eigenvectors for A. Set $\mathbf{q}_{i}=\frac{1}{\left\|\mathbf{v}_{i}\right\|} \mathbf{v}_{i}$ to get an orthonormal basis of eigenvectors.
(d) Let $Q=\left[\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right]$ and $D=\left[\begin{array}{rrr}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 14\end{array}\right]$.
11. (a) False in general: Null $A \perp$ Row A (true if $A=A^{T}$). (b) True: $Q^{-1}=Q^{T}$.
(c) True: $\left(P^{T} Q\right)^{T}=Q^{T} P=Q^{-1} P=Q^{-1}\left(P^{T}\right)^{-1}=\left(P^{T} Q\right)^{-1}$.
(d) True: Null $A \neq 0$, so $\operatorname{Col} A \neq \mathbb{R}^{n}$.
(e) False in general: $Q^{-1}=Q^{T}$ (true if $Q=Q^{T}$). (f) False in general (true if $A=A^{T}$).
12. (a) $c_{j}=\mathbf{w}_{j} \cdot \mathbf{u}=\mathbf{w}_{j}^{T} \mathbf{u}$ (product of row vector and column vector).
(b) The vector $\mathbf{y}=c_{1} \mathbf{w}_{1}+\cdots+c_{k} \mathbf{w}_{k} \in W$ and $\mathbf{u}-\mathbf{y} \perp W$. Hence $\mathbf{y}=\mathbf{w}$ by uniqueness.
(c) $C^{T} \mathbf{u}=\left[\begin{array}{r}\mathbf{w}_{1}^{T} \mathbf{u} \\ \vdots \\ \mathbf{w}_{k}^{T} \mathbf{u}\end{array}\right]=\left[\begin{array}{r}c_{1} \\ \vdots \\ \mathbf{c}_{k}\end{array}\right]$, so $C C^{T} \mathbf{u}=c_{1} \mathbf{w}_{1}+\cdots+c_{k} \mathbf{w}_{k}=P_{W} \mathbf{u}$.
(d) The i, j entry in $C^{T} C$ is $\mathbf{w}_{i} \cdot \mathbf{w}_{j}$, which is 1 if $i=j$ and 0 if $i \neq j$. Hence $C^{T} C=I_{k}$. Since $W=\operatorname{Col} C$, the general formula $P_{W}=C\left(C^{T} C\right)^{-1} C^{T}$ simplifies to $P_{W}=C C^{T}$.
13. (a) For a line $y=a_{0}+a_{1} x$ in the (x, y) plane with y-intercept a_{0} and slope a_{1} let

$$
E=\left[9-\left(a_{0}-3 a_{1}\right)\right]^{2}+\left[7-\left(a_{0}-a_{1}\right)\right]^{2}+\left[5-a_{0}\right]^{2}+\left[1-\left(a_{0}+4 a_{1}\right)\right]^{2}
$$

This is the sum of the squares of the vertical distance from the given data points to the line. In the method of least squares we choose the coefficients a_{0} and a_{1} to minimize the error E.
(b) The matrix C has first column all 1 , and second column the x data values. The vector y has the y data values. The unknown vector \mathbf{u} has the intercept and slope of the line. Hence

$$
C=\left[\begin{array}{rr}
1 & -3 \\
1 & -1 \\
1 & 0 \\
1 & 4
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{l}
9 \\
7 \\
5 \\
1
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{c}
a_{0} \\
a_{1}
\end{array}\right]
$$

(c) Since $C^{T} C=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ -3 & -1 & 0 & 4\end{array}\right]\left[\begin{array}{rr}1 & -3 \\ 1 & -1 \\ 1 & 0 \\ 1 & 4\end{array}\right]=\left[\begin{array}{rr}4 & 0 \\ 0 & 26\end{array}\right] \quad$ and $C^{T} \mathbf{y}=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ -3 & -1 & 0 & 4\end{array}\right]\left[\begin{array}{l}9 \\ 7 \\ 5 \\ 1\end{array}\right]=\left[\begin{array}{r}22 \\ -30\end{array}\right]$, the equation for \mathbf{u} is $\left[\begin{array}{rr}4 & 0 \\ 0 & 26\end{array}\right]\left[\begin{array}{l}a_{0} \\ a_{1}\end{array}\right]=\left[\begin{array}{r}22 \\ -30\end{array}\right]$. Hence $a_{0}=22 / 4=11 / 2$ and $a_{1}=-30 / 26=-15 / 13$. The equation of the best-fitting line is $y=(11 / 2)-(15 / 13) x$.

