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1. Cauchy-Schwarz inequality: |u · v| ≤ ‖u‖‖v‖ triangle inequality: ‖u+ v‖ ≤ ‖u‖+ ‖v‖.
Assume Cauchy-Schwarz. Then
‖u+ v‖2 = (u+ v) · (u+ v) = ‖u‖2 + 2u · v + ‖v‖2 ≤ ‖u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2.

2. (a) ‖u‖ =
√
1 + 9 + 4 =

√
14, ‖v‖ =

√
4 + 1 + 9 =

√
14, u · v = −2 + 3− 6 = −5,

‖u+ v‖ =
√
1 + 16 + 1 =

√
18.

(b) Cauchy-Schwarz inequality for these vectors: |u · v| = 5 ≤ ‖u‖‖v‖ = 14
triangle inequality for these vectors: ‖u+ v‖ =

√
18 ≤ ‖u‖+ ‖v‖ = 2

√
14

(c) (u+ 2w) · (u−w) = u · u+ (−1 + 2)u ·w − 2w ·w = 14 + 13− 2(25) = −23.

3. (a) Calculate v · x = 1 + 0 − 3 = −2 and v · v = 1 + 4 + 9 = 14. Then y =
v · x
v · v v = −1

7





1
2
3



. Hence

z =





1
0

−1



+
1

7





1
2
3



 =
1

7





8
2

−4



. Check: v · z = (1/7)(1 · 8 + 2 · 2− 3 · 4) = 0.

(b) The vector





x1

x2

x3



 is in V ⊥ when x1 + 2x2 + 3x3 = 0. So V ⊥ = Null(A), where A = v
T . Since x2 and

x3 are the free variables, a basis for the null space is u1 =





−2
1
0



, u2 =





−3
0
1



.

(c) Apply Gram-Schmidt to the vectors u1, u2 from (b):

v1 = u1 and v2 = u2−
v1 · u2

v1 · v1

v1 = u2−
6

5
v1 =

1

5





−3
−6
5



. Check: v1·v2 = (1/5)((−2)·(−3)+1·(−6)+0·5) = 0,

v · v1 = 1 · (−2) + 2 · 1 + 3 · 0 = 0, and v · v2 = (1/5)(1 · (−3) + 2 · (−6) + 3 · 5) = 0.

For an orthonormal set use q1 =
1

‖v1‖
v1 =

1√
5





−2
1
0



 and q2 =
1

‖v2‖
v2 =

1√
70





−3
−6
5



.

(d) The general formula is c1 = x · q1 =
−2√
5
and c2 = x · q2 =

−8√
70

since ‖q1‖ = ‖q2‖ = 1.

Check: c1q1 + c2q2 =
−2

5





−2
1
0



+
−8

70





−3
−6
5



 =
1

70





80
20

−40



 = z.

4. Let R = rref(A) =

[

1 1 1 0 0
0 0 0 1 1

]

, basic variables x1, x4 and free variables x2. x3, x5.

(a) dimRowA = dimColA = 2, dimNullA = 3.

(b) For ColA = R
2, use any orthonormal basis, such as

[

1
0

]

and

[

0
1

]

.

For RowA = RowR, use [ 1 1 1 0 0 ]/
√
3 and [ 0 0 0 1 1 ]/

√
2.

For NullA, the equations are x1 + x2 + x3 = 0 and x4 + x5 = 0, so it has a basis

u1 =











−1
1
0
0
0











, u2 =











−1
0
1
0
0











, u3 =











0
0
0

−1
1











. Here u1 ⊥ u3 and u2 ⊥ u3. Replace u2 by

v2 = u2 −
u2 · u1

u1 · u1

u1 = u2 −
1

2
u1 =











−1/2
−1/2

1
0
0











. To get an orthnomal basis {w1,w2,w3}, take

w1 =
1

‖u1‖
u1 =

1√
2











−1
1
0
0
0











, w2 =
1

‖v2‖
v2 =

√

2

3











−1/2
−1/2

1
0
0











, w3 =
1

‖u3‖
u3 =

1√
2











0
0
0

−1
1











.
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5. The columns of Q must be an orthnormal basis for R3. One solution is
1√
3





1
1
1



,
1√
2





1
0

−1



. (There are

infinitely many other solutions,)

6. (a) True: There are four distinct eigenvalues, hence four independent eigenvectors.
(b) False: Eigenvalue 0 has algebric multiplicity 2, but only one eigenvector if nullityA = 1.
(c) True: Since nullityA = 4− 2 = 2, there is a linearly independent set of eigenvectors.
(d) True: Symmetry guarantees that the algebraic multiplicity = geometric multiplicity for eigenvalues, so
there is a basis of eigenvectors. The diagonal matrix could have entries 2, 0, 0, 0, or 2, 2, 0, 0, or 2, 2, 2, 0,
depending on the multiplicities.

7. (a) Characteristic polynomial det





(7− t) 0 0
0 (4− t) 2
0 1 (3− t)



 = (7−t)(t2−7t+10) = −(t−2)(t−5)(t−7)

Eigenvalues: λ1 = 2, λ2 = 5, λ3 = 7. Eigenvectors:

A− λ1I3 =





5 0 0
0 2 2
0 1 1



 →





1 0 0
0 1 1
0 0 0



, so eigenvector v1 =





0
−1
1



. (Check: Av1 =





0
−2
2



 = 2v1)

A− λ2I3 =





2 0 0
0 −1 2
0 1 −2



 →





1 0 0
0 1 −2
0 0 0



, so eigenvector v2 =





0
2
1



. (Check: Av2 =





0
10
5



 = 5v2)

A− λ3I3 =





0 0 0
0 −3 2
0 1 −4



 →





0 1 0
0 0 1
0 0 0



, so eigenvector v3 =





1
0
0



. (Check: Av3 =





7
0
0



 = 7v3)

(b) Take P = [v1 , v2 , v3]. Then P is invertible since the eigenvectors are independent (the eigenvalues

are distinct); alternate argument: detP = 1. Take D =





2 0 0
0 5 0
0 0 7



 (diagonal matrix of eigenvalues).

8. (a) Take P = [v1 , v2 , v3] and D =





2 0 0
0 1 0
0 0 −1



. Then P−1 =





1 0 0
−1 1 0
2 −1 1



 and

A = PDP−1 =





2 0 0
1 1 0

−5 2 −1



 (lower triangular, with eigenvalues on the diagonal).

(b) Let y = P−1
x =





3
1
7



. Then x = Py = 3v1 + 1v2 + 7v3. Apply An to each eigenvector:

An
x = 3 · 2nv1 + 1 · 1nv2 + 7 · (−1)nv2 ≈ 3 · 2nv1 when n is large.

9. Since Ax = 2x we have 2x · y = (Ax) · y = (Ax)Ty = x
T (Ay) = x · Ay since A = AT . But Ay = 3y, so

we get 2x · y = 3x · y. This forces x · y = 0.

10. (a) Take v =





1
3
2



 (column #1 of A). Then Av = v(vT
v) = 14v, so the eigenvalue is 14.

(b) rref A =





1 3 2
0 0 0
0 0 0



, so nullity(A) = 2. Hence the zero eigenspace of A has dimension 2. Vectors x in

Null(A) satisfy x1 + 3x2 + 2x3 = 0 (free variables x2 and x3), so a basis for Null(A) is

u1 =





−3
1
0



, u2 =





−2
0
1



. Here v · u1 = v · u2 = 0 because A is symmetric and v is an eigenvector with

nonzero eigenvalue.
(c) Apply Gram-Schmidt to the vectors u1, u2 as in problem #3:

Let v1 = u1, v2 = u2 −
u2 · v1

v1 · v1

v1 = u2 −
6

10
v1 =





−1/5
−3/5

1



, v3 = v.
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Then {v1,v2,v3} is an orthogonal basis of eigenvectors for A. Set qi =
1

‖vi‖
vi to get an orthonormal basis

of eigenvectors.

(d) Let Q = [q1 , q2 , q3] and D =





0 0 0
0 0 0
0 0 14



.

11. (a) False in general: NullA ⊥ RowA (true if A = AT ). (b) True: Q−1 = QT .
(c) True: (PTQ)T = QTP = Q−1P = Q−1(PT )−1 = (PTQ)−1.
(d) True: NullA 6= 0, so ColA 6= R

n.
(e) False in general: Q−1 = QT (true if Q = QT ). (f) False in general (true if A = AT ).

12. (a) cj = wj · u = w
T
j u (product of row vector and column vector).

(b) The vector y = c1w1 + · · ·+ ckwk ∈ W and u− y ⊥ W . Hence y = w by uniqueness.

(c) CT
u =







w
T
1
u

...
w

T
k u






=





c1
...

ck



, so CCT
u = c1w1 + · · ·+ ckwk = PWu.

(d) The i, j entry in CTC is wi ·wj , which is 1 if i = j and 0 if i 6= j. Hence CTC = Ik. Since W = ColC,
the general formula PW = C(CTC)−1CT simplifies to PW = CCT .

13. (a) For a line y = a0 + a1x in the (x, y) plane with y-intercept a0 and slope a1 let
E = [9− (a0 − 3a1)]

2 + [7− (a0 − a1)]
2 + [5− a0]

2 + [1− (a0 + 4a1)]
2

This is the sum of the squares of the vertical distance from the given data points to the line. In the method
of least squares we choose the coefficients a0 and a1 to minimize the error E.
(b) The matrix C has first column all 1, and second column the x data values. The vector y has the y data
values. The unknown vector u has the intercept and slope of the line. Hence

C =







1 −3
1 −1
1 0
1 4






, y =







9
7
5
1






, u =

[

a0
a1

]

.

(c) Since CTC =

[

1 1 1 1
−3 −1 0 4

]







1 −3
1 −1
1 0
1 4






=

[

4 0
0 26

]

and CT
y =

[

1 1 1 1
−3 −1 0 4

]







9
7
5
1






=

[

22
−30

]

,

the equation for u is

[

4 0
0 26

][

a0
a1

]

=

[

22
−30

]

. Hence a0 = 22/4 = 11/2 and a1 = −30/26 = −15/13. The

equation of the best-fitting line is y = (11/2)− (15/13)x.


