Note: This problem set concentrates on material from the end of the course. For a complete review, you should also study the review problem sets for the two in-class exams. Please consider these earlier problem sets as implicitly included with this one. Particular topics that should be reviewed from earlier sets include: (i) Solving systems of linear equations, row operations, elementary matrices; (ii) The LU decomposition of a matrix; (iii) Inverses of matrices; (iv) Subspaces, finding bases for Col A, Row A, and Null A; (v) Determinants and characteristic polynomial of a matrix.

1. Let \(u \) and \(v \) be vectors in \(\mathbb{R}^n \).
 (a) State the Cauchy–Schwarz inequality and the triangle inequality for \(u \) and \(v \).
 (b) Prove the triangle inequality from the Cauchy–Schwarz inequality by calculating \(\|u + v\|^2 \).

2. Suppose that \(u = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \), \(v = \begin{bmatrix} -2 \\ 1 \\ -3 \end{bmatrix} \), and that \(w \) is a vector in \(\mathbb{R}^3 \) with \(\|w\| = 5 \) and \(w \cdot u = 13 \).
 (a) Compute \(\|u\|, \|v\|, u \cdot v, \) and \(\|u + v\| \).
 (b) Show that the Cauchy-Schwarz and triangle inequalities are satisfied by \(u \) and \(v \).
 (c) Compute \((u + 2w) \cdot (u - w) \).

3. Let \(V \) be the subspace of \(\mathbb{R}^3 \) spanned by the vector \(v = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \). Let \(x = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \).
 (a) Find the vector \(y \) that is the orthogonal projection of \(x \) onto \(V \). Then calculate \(z = x - y \) and check that \(z \perp V \).
 (b) Find a basis for \(V^\perp \) (the subspace of vectors orthogonal to \(V \)). (Hint: This is the null space of a \(1 \times 3 \) matrix.)
 (c) Use part (b) and Gram-Schmidt to obtain an orthonormal basis \(\{q_1, q_2\} \) for \(V^\perp \).
 (d) Let \(z \) be the vector from (a). Then \(z \in V^\perp \), so \(z = c_1 q_1 + c_2 q_2 \) for suitable coefficients \(c_1, c_2 \). Give the general formula for these coefficients in terms of inner products, and use the formula to calculate the coefficients for this particular \(z \). Then check that \(z = c_1 q_1 + c_2 q_2 \).

4. Let \(A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix} \).
 (a) Give the dimensions of Row \(A \), Col \(A \), and Null \(A \).
 (b) Find orthonormal bases for Row \(A \), Col \(A \), and Null \(A \). Hint: One of these requires no calculation, one requires a small calculation, and one requires Gram-Schmidt.

5. Find a \(3 \times 3 \) orthogonal matrix \(Q \) with first column \(\frac{1}{\sqrt{6}} \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \).
 Hint: There are some easy choices for columns 2 and 3.

6. True or false (four separate cases–justify your answer in each case). If a \(4 \times 4 \) matrix \(A \) satisfies the following condition, it is diagonalizable:
 T F (a) the eigenvalues of \(A \) are 0, 1, 2, 3.
 T F (b) the characteristic polynomial of \(A \) is \(\lambda^2(\lambda - 1)(\lambda - 2) \);
 T F (c) the eigenvalues of \(A \) are 0, 1, and 2, and \(A \) has rank 2;
 T F (d) the eigenvalues of \(A \) are 0 and 2, and \(A \) is symmetric;

7. (a) Find the eigenvalues and eigenvectors of the matrix \(A = \begin{bmatrix} 7 & 0 & 0 \\ 0 & 4 & 2 \\ 0 & 1 & 3 \end{bmatrix} \).
 (b) Find an invertible matrix \(P \) and diagonal matrix \(D \) such that \(A = PDP^{-1} \).
8. A certain 3×3 matrix A has eigenvalues $\lambda_1 = 2$, $\lambda_2 = 1$, and $\lambda_3 = -1$, and corresponding eigenvectors

$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

(a) Use the formula $A = PDP^{-1}$ (for suitable P and D) to find A.

(b) Let $\mathbf{x} = \begin{bmatrix} 3 \\ 4 \\ 5 \end{bmatrix}$. Use (a) to find coefficients c_1, c_2, c_3 so that $\mathbf{x} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3$. Then compute $A^n\mathbf{x}$ from this formula for \mathbf{x} for arbitrary $n > 0$. What is a good approximation to $A^n\mathbf{x}$ for n large?

9. Suppose that A is a symmetric $n \times n$ matrix and that the vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ satisfy $A\mathbf{x} = 2\mathbf{x}$ and $A\mathbf{y} = 3\mathbf{y}$. Show that \mathbf{x} and \mathbf{y} are orthogonal.

10. Let $A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 9 & 6 \\ 2 & 6 & 4 \end{bmatrix}$.

(a) Find a vector $\mathbf{v} \in \mathbb{R}^3$ such that $A = \mathbf{vv}^T$. Show that \mathbf{v} is an eigenvector for A and find the eigenvalue.

(b) Calculate the nullity of A and find a basis for the zero eigenspace of A. Check that $\mathbf{v} \perp \text{Null}(A)$ and explain why you know this without explicit calculation.

(c) Use (a) and (b) to find an orthonormal set of eigenvectors of A which form a basis for \mathbb{R}^3.

(d) Find an orthogonal matrix Q and a diagonal matrix D such that such that $A = QDQ^T$.

11. Classify each statement as true (T) or false (F). If your answer is T, give a brief proof showing that the statement is always true; if your answer is F, give a specific example for which the statement is not true.

T F (a) The null space of a matrix A is the orthogonal complement of the column space of A.

T F (b) Every orthogonal matrix has null space $\{0\}$.

T F (c) If P and Q are orthogonal matrices then P^TQ is an orthogonal matrix.

T F (d) If A is an $n \times n$ matrix and 0 is an eigenvalue of A then $\text{Col}(A) \neq \mathbb{R}^n$.

T F (e) If Q is an orthogonal matrix then $Q = Q^{-1}$.

T F (f) If A is an $n \times n$ matrix then eigenvectors for distinct eigenvalues of A are orthogonal.

12. Suppose that W is a subspace of \mathbb{R}^n of dimension k and that $\{\mathbf{w}_1, \ldots, \mathbf{w}_k, \mathbf{w}_{k+1}, \ldots, \mathbf{w}_n\}$ is an orthonormal basis for \mathbb{R}^n such that $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ is a basis for W.

(a) Any vector $\mathbf{u} \in \mathbb{R}^n$ has an expansion $\mathbf{u} = c_1\mathbf{w}_1 + \cdots + c_n\mathbf{w}_n$. Give a simple formula for the coefficients c_j in terms of inner products.

(b) We know that any $\mathbf{u} \in \mathbb{R}^n$ can be written uniquely as $\mathbf{u} = \mathbf{w} + \mathbf{z}$, with $\mathbf{w} \in W$ and $\mathbf{z} \in W^\perp$. Explain why $\mathbf{w} = c_1\mathbf{w}_1 + \cdots + c_k\mathbf{w}_k$.

(c) Let C be the $n \times k$ matrix with columns $\mathbf{w}_1, \ldots, \mathbf{w}_k$. Then $W = \text{Col}(C)$. Show that $C^TC = I_k$. Then using your answers to (a) and (b), show that P_W, the orthogonal projection matrix onto W, is given by $P_W = CC^T$. (Recall that, in the notation of (b), $\mathbf{w} = P_W\mathbf{u}$.)

(d) Derive the result in (d) from the general formula for P_W in terms of C.

13. Consider the data points $(-3, 9), (-1, 7), (0, 5), (4, 1)$ in the (x, y) plane.

(a) The method of least squares for a straight line fit to this data minimizes a certain quantity. What is that quantity in this case? Give the answer explicitly; define any variables used.

(b) We obtain a solution by solving the normal equations $C^TC\mathbf{u} = C^T\mathbf{y}$. What is C for the data above? What is \mathbf{y}? What is \mathbf{u}?

(c) Find the equation of the straight line which best fits this data.

14. Do the True-False questions from Sections 6.1 through 6.6 that are listed in the homework assignments.