Oral Qualifying Exam Syllabus

Érik Fernando de Amorim

I. PDE and Analysis

A. Partial Differential Equations
 i. Laplace’s Equation
 • Fundamental solutions including derivations
 • Green’s identities
 • Mean Value Theorem
 • Green functions and the Poisson kernel, including the Dirichlet problem on the unit ball
 • Uniqueness of solutions to the Dirichlet problem via the Maximum Principle
 • Perron’s existence method for the Dirichlet problem
 ii. Wave Equation
 • Characteristic surfaces (light cones)
 • Energy estimates
 • C^2 uniqueness via energy
 • Fundamental solutions (derivation for $n = 1$ and $n = 3$)
 • Duhamel’s Principle
 • Dispersive (L^∞) estimate

B. Analysis
 i. Hilbert Spaces
 • Closed subspace decomposition
 • Self-duality
 • Bessel’s identity
 • Completeness
 ii. Elements of Fourier Analysis
 • Schwarz space as a Fréchet space
 • Properties of convolutions and Young’s Inequality
• Approximations of the identity (density of C_0^∞ in L^p and the C^∞ Urysohn Lemma)
• Fourier Transform on \mathbb{R}^n:
 – Properties
 – Riemann-Lebesgue Lemma
 – Fourier inversion
 – Plancherel Formula

iii. Theory of Distributions
• Definition of convergence of test functions and continuity of functionals
• Derivatives and convolutions of distributions and test functions
• Density of C_0^∞ in \mathcal{D}'
• Tempered distributions - examples and Fourier Transform

iv. L^2-Sobolev Spaces
• Definition of H_s
• Equivalent norms
• Properties, including density of H_s in H_t ($t < s$)
• Sobolev embedding theorem for H_s
• Rellich’s compactness theorem
• Definition of a localized H_s space
• The elliptic regularity theorem for constant coefficient operators

v. Inequalities
• Hölder’s Inequality
• Minkowski’s Integral Inequality
• Sobolev Inequality applied to the hydrogen atom (stability of matter)
• Heisenberg’s Inequality (Uncertainty Principle)
II. Mathematical Physics

A. Newtonian Point Mechanics
 i. Newton’s equation of motion
 • Galilean invariance
 • The Lorentz Force law for test particles (test particle motion in a uniform electric and magnetic field)
 ii. Lagrangian formulation
 • Euler-Lagrange equations
 • Equivalence to Newton’s equation of motion
 • The 2-body problem for attractive/repulsive 1/r potential
 • Noether’s Theorem (symmetry and conservation laws)
 iii. Hamiltonian formulation
 • Legendre transformations
 • Equivalence to Newton’s equation of motion

B. Einsteinian Point Mechanics
 i. Changes with respect to Classical Physics
 • Poincaré Group
 • 4-vectors and invariants (proper time, wave operator etc.)
 ii. Maxwell’s equations for fields given charges/currents
 • Derivation of wave equation in Lorentz gauge
 • Gauge invariance
 • Covariant form of Maxwell’s equations

C. Quantum Mechanics
 i. Schrödinger’s Equation
 • The (non-relativistic) hydrogen atom as a 1-body problem (Pauli’s wave equation)
 • N-body Schrödinger Equation
 • Dirac Equation
References

