Oral Exam Syllabus

Hui Wang

Committee: Profs Haim Brezis (Chair), Zheng-Chao Han, Yanyan Li, Roger Nussbaum.

Part I: Partial Differential Equations

1. Laplacian Equation
 - Fundamental solution.
 - Properties for harmonic functions: Mean-value formulas, Maximum principle, Regularities, Liouville's theorem, Harnack’s inequality.
 - Green’s function.
 - Variational method for the Dirichlet’s principle.

2. Heat Equation
 - Fundamental solution.
 - Mean-value formulas, Maximum principle, Regularities.
 - Backward Uniqueness.

3. Wave Equation
 - Solution for homogeneous and nonhomogenous equations (d’Alembert’s formula, Kirchhoff’s and Poisson’s formulas, etc.)
 - Energy methods.

4. Sobolev Space
 - Basic properties.
 - Approximations, Extensions, and Traces.
 - Gagliardo-Sobolev-Nirenberg inequality, Morrey’s inequality, Poincare’s inequality.
 - Compact imbedding.

5. Second-Order Elliptic Equations
 - Variational formulations and existence of weak solutions.
 - Regularities.
 - Maximum principle, Harnack’s inequality.
 - Eigenvalues and eigenfunctions.

Part II: Functional Analysis

1. Banach Space
 - Hahn-Banach Theorem, Separation of convex sets.
 - Conjugate convex functions.
 - Baire Category theorem, Uniform bounded principle, the open-mapping theorem and closed graph theorem.
 - Weak and Weak* topology, Reflexivity, Separability.

2. Hilbert Space
 - Projection onto a convex set.
 - Riesz representation Theorem.
• The theorems of Stampacchia and Lax-Milgram.
• Hilbert sums and orthonormal bases.

(3) Compact Operator
• Fredholm alternative.
• The spectrum of compact operators.
• Spectral decomposition of self-adjoint compact operators.

(4) Sobolev functions in real line.
• The properties of $W^{1,p}(I)$.
• Variational formulation and spectrum analysis for certain ODE problems.

REFERENCES