James Taylor’s Oral Exam Syllabus

I. Functional Analysis
 A. Basics of Banach spaces
 i. Examples such as \(L^p \) spaces, sequences spaces, direct sums, and quotients
 ii. Linear functionals: duals, reflexive spaces, and the Hahn Banach theorem
 iii. Baire category, open maps, closed graphs, and Banach-Steinhaus
 iv. Basics of Hilbert spaces (polarization, adjoints, Riesz lemma)
 B. Useful topological notions
 i. Nets
 ii. Compactness (Tychonoff’s Theorem, Urysohn’s Lemma, Stone-Weierstrass Theorem)
 iii. Measure theory on compact spaces (Riesz-Markov Theorem)
 iv. Various topologies on operator spaces
 v. The Banach-Alaoglu Theorem
 C. Bounded Operator Theory
 i. Adjoints
 ii. Spectrum
 iii. Positive operators, square roots
 iv. Compact operators
 v. Fredholm operators and the Fredholm Alternative
 vi. Spectral Mapping Theorem
 vii. Functional Calculus
 viii. Various Spectral Theorems and measures related to self-adjoint operators
 D. Unbounded Operator Theory
 i. Definitions and generalizations
 ii. Self-adjoint, closed, essentially self-adjoint, and symmetric operators
 iii. Cayley Transform
 iv. Spectral Theorem for unbounded self-adjoint operators
 v. Stone’s Theorem
 E. Differential Calculus on Banach Spaces
 i. Derivative of operators on Banach spaces and generalizations of elementary differential calculus
 ii. Inverse and Implicit Function Theorems
 iii. Infinite Dimensional Manifolds and their issues
 F. Differential Operators and Spectral Theory
 i. Schwarz space
 ii. Fourier Transform
 iii. Distributions
 iv. Sobolev Spaces
 v. Various Laplace operators and their uses
 G. Applications to Quantum Mechanics
 i. Basics of Bohmian Mechanics and the formalism of Quantum Mechanics
 ii. Position, momentum operators
 iii. One-dimensional problems such as the harmonic oscillator, different potential wells
 iv. Spin
 v. Bell’s Theorem
II. Differential Geometry

A. Basic Definitions and examples
 i. Definitions of Manifolds, tangent vectors, vector fields, vector bundles
 ii. Examples: Surfaces, Lie groups-Matrix groups, submanifolds
 iii. Various mappings such as immersions, induced maps
 iv. Quotient manifolds: Projective spaces, Grassmann manifolds

B. Tensors and differential forms
 i. Tensors of all types, tensor fields, maps and tensors
 ii. Exterior algebra, exterior derivative, differential forms
 iii. Orientability and n-forms
 iv. Symmetrizing, alternating, contracting, and multiplying tensors
 v. Tensor Derivations
 vi. Lie Derivatives
 vii. Poincare Lemma and its partial converse

C. Vector fields
 i. Existence and Uniqueness Theorems for ODE
 ii. One-Parameter groups
 iii. Vector Fields as flows and as differential operators
 iv. Lie algebra of vector fields
 v. Frobenius' Theorem and foliations

D. Metrics and Connections
 i. Definition of Metrics and Connections
 ii. Covariant Derivative
 iii. The Levi-Civita connection
 iv. Parallel Translation
 v. Geodesics
 vi. Frame fields
 vii. Exponential Map
 viii. Hopf-Rinow Theorem
 ix. Curvature

E. Integration on Manifolds
 i. Definition of the integral
 ii. Manifolds with boundary
 iii. Stokes' Theorem

F. Surface theory
 i. Fundamental Forms, Gauss Curvature, Principal Curvature
 ii. The Gauss Theorem
 iii. Gauss-Bonnet Theorem