Problem Set 1, Math 350, Fall 2017

(1) Find the space of polynomials \(f(x) = \{ax^2 + bx + c\} \) satisfying \(f(-1) = -1, f'(-1) = -1 \).

(2) Show that the set of functions \(f : S \to \mathbb{R} \) from a set \(S \) to the real numbers \(\mathbb{R} \) with addition given by \((f + g)(x) = f(x) + g(x)\) and scalar multiplication given by \((cf)(x) = c(f(x))\) satisfies axiom (VS4).

(3) Show that the set of polynomials \(f(x) \) of a single real variable \(x \) with addition given by \((f + g)(x) = f(x) + g(x)\) and scalar multiplication \((cf)(x) = f(cx)\) is not a vector space.

(4) Show that if \(V \) is a vector space and \(v \in V \) and \(c \in F \) and \(cv = 0 \) then either \(c = 0 \) or \(v = 0 \).

(5) Prove that \(\{(1, 1, 0), (1, 1, 1), (0, 1, 1)\} \) is linearly independent over \(\mathbb{R} \) but linearly dependent over \(\mathbb{Z}_2 \).