The First Midterm

The first midterm will consist of six problems for a total of 100 points. Problem 6 on the first midterm will be chosen from the following list (up to a change in notation):

1. Assume that $\lim_{x \to c} f(x) = L$, where c and L are real numbers. Let a be any real number. Prove that

$$\lim_{x \to c} af(x) = aL.$$

2. Assume that

$$\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = M,$$

where $c, L,$ and M are real numbers. Prove that

$$\lim_{x \to c} (f(x) + g(x)) = L + M.$$

[see p114-115]

3. Assume that f and g are differentiable. Prove that $f + g$ is differentiable and that $(f + g)' = f' + g'$.

[see p132]

4. Assume that f is differentiable at $x = c$. Prove that f is continuous at $x = c$.[see p136]

5. Assume that f and g are differentiable. Prove that fg is differentiable and prove the product rule.

[see p144]

6. Prove that the functions sin and cos are differentiable and obtain – with proofs – their derivatives.

[see p165]

7. Compute with proof $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$.

Remember to prove all your statements.

Hint: Consider the circle of radius 1 centered at the origin. Let B be a point on this circle lying in the first quadrant such that B has coordinates $(\cos \theta, \sin \theta)$. Let A be the point on this circle which lies on the positive x-axis. Finally, let C denote the point of intersection between the line perpendicular to the x-axis at A and the line passing through O and B. Compare the areas of the triangle OAB, the sector of circle determined by BOA, and the triangle COA. [see p97]