1. Question: I am unhappy with the score for my first midterm. I intend to study better and harder from now on, but would like to know what scores I need [for the second midterm, final, workshop, and/or homework] so that I ensure at least a C in this class. Can you advise?
Answer: It is impossible for me to provide a numerical answer to your question at this point. That’s because I am expected to decide my own letter-score correspondence based on the general letter-score correspondence for Math 151. The latter will only be decided after the final exam and this fact is beyond my control.

Instead, in order to ensure that you obtain at least a C in this class, you should first make sure that you have a certain level of knowledge and understanding, as follows. You should know the fundamentals [see the course website for the list under “Handouts”]; in other words, you should:

- be able to define all fundamental concepts;
- be able to correctly state all fundamental theorems/facts;
- be able to provide at least one example and one counter-example for each of the fundamental concepts [these can be found in the textbook and/or throughout the solutions on our website];
- be able to apply each of the fundamental theorems/facts to solve “standard/classical” problems. “Standard/classical” problems are solved in the textbook and/or can be found on our website; here are examples:
 - Computing derivatives using the first and second list of derivatives [e.g. Problem 1 on midterm 1]; that’s “classical” as there were many homework problems assigned from the corresponding Sections 3.2, 3.5, 3.6, 3.7 [see “Due Oct 1”].
 - Finding a constant/constant that make/s a piecewise-defined function continuous [e.g. Problem 2c on midterm 1]; that’s classical as it was part of the Practice midterm and because it was part of the homework due Sept 17 with solution on the website.
 - Computing limits at infinity of rational functions or finding horizontal asymptotes [e.g. Problem 3 on midterm 1]; that’s classical as there were several such homework problems due Sept 24 and there are several solved problems in the textbook.
 - Applying the Intermediate Value Theorem to show that the range of a given (continuous) function contains a given value [e.g. Problem 4 on midterm 1]; that’s classical as it was the subject of a workshop problem that you were required to hand in, there was a homework with such problems, and one such problem was on the practice midterm. There are also examples solved in the textbook.
 - Applying the Squeeze Theorem to compute limits like Problem 5c on midterm 1; that’s standard as there were several such homework problems one of which has solution on the website. Also, there are several such examples solved in the textbook.

2. Question: What exactly do you mean by “standard/classical” problems in the above answer?
Answer: Here is what I meant. In order to be sure that you obtain at least a C in this class, you should at least make sure that you know how to apply each of the fundamental theorems/facts to solve at least one problem (for each fundamental fact/theorem). The first (or the first two or three) application(s) that you see in the textbook/lecture is (are) the classical ones.

3. Question: What can you say about obtaining a B or an A in this class?
Answer: In order to ensure a B you should aim for an A from the point of view of understanding and knowledge; the difference between the two letter-grades will likely come out of your scores for the course components [workshop, homework, exams].

In order to obtain an A you should first satisfy the minimal requirements for a C in Question/Answer 1. You should then have a good understanding of the proofs of most of the theorems in the textbook. You should be able to prove some or most of these theorems by yourself [details about the second
midterm/final: TBA]. You should be able to solve all of the problems in the homework assignments and workshops. You should carefully review the examples in the textbooks and the solutions on the website and make sure that you understand them and that you know the main ideas of solutions.