Some of the problems on the final exam will be chosen from the following list [up to a change in notation]. The actual exam problems may have multiple parts and be a combination of some of the questions below.

1. State and prove the triangle inequality. [p12]

2. Prove that a subset D of \mathbb{C} is open if and only if it contains no point of its boundary. [p25]

3. Assume that $\{z_n\}$ and $\{w_n\}$ are convergent sequences of complex numbers. Let $\lambda \in \mathbb{C}$. Prove that $\{z_n + \lambda w_n\}$ is convergent and that
 \[
 \lim_{n \to \infty} (z_n + \lambda w_n) = \left(\lim_{n \to \infty} z_n \right) + \lambda \left(\lim_{n \to \infty} w_n \right).
 \]
 Prove that $\{z_n w_n\}$ is convergent and that
 \[
 \lim_{n \to \infty} z_n w_n = \left(\lim_{n \to \infty} z_n \right) \left(\lim_{n \to \infty} w_n \right).
 \]
 [p34 and your lecture notes]

4. Assume that $\{z_n\}$ and $\{w_n\}$ are convergent sequences of complex numbers such that
 \[
 \lim_{n \to \infty} w_n \neq 0.
 \]
 Prove that the sequence $\left\{ \frac{z_n}{w_n} \right\}$ is convergent and that
 \[
 \lim_{n \to \infty} \frac{z_n}{w_n} = \frac{\lim_{n \to \infty} z_n}{\lim_{n \to \infty} w_n}.
 \]
 [lecture notes]

5. Let g be a complex-valued continuous function on $[a, b]$. Prove that
 \[
 \left| \int_a^b g(t) \, dt \right| \leq \int_a^b |g(t)| \, dt.
 \]
 Hint: There exists $r \geq 0$ and $\theta \in \mathbb{R}$ such that $\int_a^b g(t) \, dt = re^{i\theta}$. Use the fact that $\text{Re } z \leq |z|$. [p60-61]

6. Assume that γ is a piecewise C^1 curve and that u is a continuous function on the range of γ. Obtain an upper bound for $\left| \int_{\gamma} u(z) \, dz \right|$ which holds without any additional assumptions on γ and u. [p61-62 and lecture notes].

7. Let Ω be a domain whose boundary Γ consists of a a finite number of disjoint, piecewise smooth simple closed curves. Assume that f is a real-valued harmonic function on an open set which contains Ω and its boundary. Prove that $f = 0$ on Γ if and only if $f = 0$ on $\Omega \cup \Gamma$.
 Hint: You may want to consider
 \[
 v = f \frac{\partial f}{\partial x} \quad \text{and} \quad u = -f \frac{\partial f}{\partial y}.
 \]
 [p73]

\[^1\text{A piecewise } C^1 \text{ curve is called piecewise smooth in the textbook.}\]
8. Prove that a \(C \)-differentiable function on an open set satisfies the Cauchy-Riemann equations. [p80]

9. Let \(f : U \rightarrow \mathbb{C} \) be a \(C \)-differentiable function. Prove that \(\text{Re} f \) is harmonic. You may use, without proving it, the fact that any \(C \)-differentiable function has complex derivatives of all orders. [p80-81]

10. Suppose that \(f = u + iv \) is \(C \)-differentiable on a domain \(D \), where \(u \) and \(v \) are real-valued. If either \(u \) is constant on \(D \) or \(u^2 + v^2 \) is constant on \(D \), then \(f \) is constant on \(D \).
 \text{Hint: For the second part, you may begin by proving the claim for the case when } |f| = 1 \text{ or you could compute the first order partial derivatives of } u^2 + v^2. [p82]

11. Suppose that \(f = u + iv \), where \(u \) and \(v \) are real-valued. Assume that \(u \), \(v \), and their first order partial derivatives are continuous in an open disc centered at \(z_0 \). Prove that if \(u \) and \(v \) satisfy the Cauchy-Riemann equations at \(z_0 \) then \(f \) is \(C \)-differentiable at \(z_0 \) and obtain a formula for \(f'(z_0) \) in terms of first order partial derivatives of \(u \) and \(v \). [p83]

12. Suppose there is some \(z_1 \neq z_0 \) such that \(\sum a_n(z_1 - z_0)^n \) converges. Prove that for each \(z \) with \(|z - z_0| < |z_1 - z_0| \), the series \(\sum a_n(z - z_0)^n \) is absolutely convergent. [p93]

13. Assume that \(f(z) = \sum_{n=0}^{\infty} a_n(z - z_0)^n \) has a positive or infinite radius of convergence \(R \). Prove that within the disc \(|z - z_0| < R \), \(f \) is infinitely \(C \)-differentiable. Obtain a general formula for the \(k \)-th derivative of \(f \) and for \(a_n \). [p97-99]

14. State and prove Cauchy’s theorem. For the proof you may assume that \(f \) is of class \(C^1 \). [p107]

15. Let \(f \) be a \(C \)-differentiable function on a simply-connected domain \(D \) and let \(\gamma \) be a piecewise \(C^1 \) closed curve in \(D \). Prove that
 \[
 \int_{\gamma} f(z) \, dz = 0.
 \] [p110]

16. Let \(u \) be a real-valued harmonic function on a disc \(\{z : |z - z_0| < r\} \). Prove that there exists a \(C \)-differentiable function on this disc whose real part is \(u \). [p246]

17. Prove that if \(f \) is \(C \)-differentiable in a simply-connected domain \(D \), then there exists a \(C \)-differentiable function \(F \) on \(D \) with \(F' = f \) on \(D \). [p109-110]

18. State and prove Cauchy’s Integral Formula.
 [p111 or your lecture notes]
 \text{Note: The textbook is quoting Example 10 in Section 6, Chapter 1 for the last part of the proof. The content of that example should be part of your proof.}

19. Let \(D \) be an open connected subset of \(\mathbb{C} \) and let \(f : D \rightarrow \mathbb{C} \) be a continuous function.
 Assume that
 \[
 \int_{\gamma} f(z) \, dz = 0
 \]
for every triangle γ that lies, together with its interior, in D.

Prove that f is C-differentiable on D.

Hint: Fix an arbitrary point $z_0 \in D$ and choose an open disc centered at z_0 which is included in D. Prove that f has a complex antiderivative on this disc.

[p129-130]

20. State and prove Liouville’s theorem regarding the bounded C-differentiable functions on the entire plane \mathbb{C}.

Hint: Consider the function $g(z) \equiv \frac{F(z) - F(0)}{z}$ where F is C-differentiable on \mathbb{C}. Show that the function g can be extended to a C-differentiable function \tilde{g} on \mathbb{C} and apply Cauchy’s Integral formula for \tilde{g} and a circle centered at the origin of “big enough radius”. Show that $\tilde{g} = 0$.

[p130,131 and your lectures notes]

21. Let $\gamma: [a, b] \rightarrow \mathbb{C}$ be a curve of class C^1. Let $f: D \rightarrow \mathbb{C}$ be a C-differentiable function on the open set D, $D \subseteq \mathbb{C}$. Assume that $\gamma([a, b]) \subseteq D$.

Prove that

$$(f \circ \gamma)'(t) = f'(\gamma(t))\gamma'(t) \quad \forall t \in [a, b].$$

[lecture notes or Lemma 1 within the solution to Problem H on Homework 4[Due Feb20]]

22. Assume that $\gamma: [a, b] \rightarrow \mathbb{C}$ is a piecewise C^1 curve. Let $f: D \rightarrow \mathbb{C}$ be a C-differentiable function on the open set D, $D \subseteq \mathbb{C}$. Assume that $\gamma([a, b]) \subseteq D$.

Prove that

$$\int_{\gamma} f'(z)dz = f(\text{endpoint}) - f(\text{initial point}),$$

where

initial point $\equiv \gamma(a)$ and endpoint $\equiv \gamma(b)$.

[see your lecture notes for the C^1 case and below for the general case].

There exists a partition

$$a = t_0 < t_1 < \ldots < t_m = b$$

of $[a, b]$ such that

$$\gamma_j \equiv \gamma\big|_{[t_j, t_{j+1}]}$$

is of class C^1 for all $j \in \{0, 1, \ldots, m - 1\}$. Using the C^1 case of the statement,

$$\int_{\gamma} f(z)dz = \sum_{j=0}^{m-1} \int_{\gamma_j} f(z)dz = \sum_{j=0}^{m-1} [f(\gamma(t_{j+1})) - f(\gamma(t_j))] = f(\gamma(b)) - f(\gamma(a)).$$
23. Prove the Cauchy estimates:

\[|f^{(n)}(z_0)| \leq \frac{n!}{r^n} \max_{|z-z_0|=r} |f(z)| \]

whenever \(f \) is \(\mathbb{C} \)-differentiable on a domain containing \(\mathcal{D}_r(z_0) \).

Use the Cauchy estimates for \(n=1 \) to prove Liouville’s theorem by showing that the derivative of a bounded entire function is identically zero.

[see Exercises 18,19 on p133 and p123]

24. (a) Assume that \(f : D \rightarrow \mathbb{C} \) is a \(\mathbb{C} \)-differentiable function on an open connected subset \(D \) of \(\mathbb{C} \). Assume that \(z_0 \in D \) and \(f^{(k)}(z_0) = 0 \) for all \(k \in \mathbb{Z}_{\geq 0} \). Prove that \(f = 0 \) on \(D \).

(b) Assume that \(f : D \rightarrow \mathbb{C} \) is a \(\mathbb{C} \)-differentiable nonconstant function on an open connected subset \(D \) of \(\mathbb{C} \). Let \(Z(f) \equiv \{ z \in D : f(z) = 0 \} \). Prove that \(Z(f) \) is discrete [i.e. all points of \(Z(f) \) are isolated points.]

25. Prove the fundamental theorem of algebra using complex analysis.

26. Find all self-biholomorphisms of \(\mathbb{C} \).

Note: A self-biholomorphism of \(\mathbb{C} \) is a holomorphic [i.e. \(\mathbb{C} \)-differentiable] map \(f : \mathbb{C} \rightarrow \mathbb{C} \) such that \(f \) is invertible and \(f^{-1} \) is holomorphic.

Hint: Use a topological argument [involving compactness and the continuity of \(f^{-1} \)] to prove that \(\lim_{z \to \infty} f(z) = \infty \). What kind of singularity does \(f \) have at \(\infty \) and what does that say in terms of its Laurent expansion around \(\infty \)?

27. Find all self-biholomorphisms of \(\mathbb{C}\cup \{\infty\} \).

Note: Feel free to use the characterization of self-biholomorphisms of \(\mathbb{C} \) without proving it.

Hint: If \(f \) is a self-biholomorphism of \(\mathbb{C}\cup \{\infty\} \) such that \(f(\infty) = \infty \), then you are done. Otherwise, reduce the problem to this case by composing \(f \) with a convenient self-biholomorphism [or two] of \(\hat{\mathbb{C}} \).

28. Prove Schwarz’s lemma and then find all self-biholomorphisms of the open unit disc \(D_1(0) \).

Hint:

Lemma 1 (Schwarz’s lemma). Let \(f \) be \(\mathbb{C} \)-differentiable on \(D_1(0) \). Assume that

\[|f(z)| \leq 1 \quad \forall z \quad \text{and} \quad f(0) = 0. \]

Then \(|f(z)| \leq |z| \) and \(|f'(0)| \leq 1 \).

If either \(|f(z)| = |z| \) for some \(z \neq 0 \) or if \(|f'(0)| = 1 \), then \(f(z) = az \) for some \(a \in \mathbb{C} \) such that \(|a| = 1 \).

For the proof of Schwarz’s lemma:

Show that \(\frac{f(z)}{z} \) has a removable singularity at 0; what is the value at 0 of its holomorphic extension to \(D_1(0) \)? Use the maximum modulus principle to obtain an upper bound of the absolute value of this function on a disc \(\bar{D}_t(0) \) where \(0 < t < 1 \). Think of the equality cases also from the perspective of the maximum modulus principle.

Then proceed following the hints below.
• Prove that if \(f : D_1(0) \to D_1(0) \) is a biholomorphism such that \(f(0) = 0 \), then \(f(z) = az \) for some \(a \in \mathbb{C} \) with \(|a| = 1 \). [use Schwarz’s lemma for \(f' \) and \((f^{-1})' \) and the chain rule]. Prove a converse of this statement as well.

• For \(|a| < 1 \), let
 \[
 \phi_a(z) \equiv \frac{z - a}{1 - az}.
 \]
 Prove that \(\phi_a \) is a self-biholomorphism of \(D_1(0) \).

• If \(f \) is a self-biholomorphism of \(D_1(0) \) with \(f(0) = 0 \), then you are done. Otherwise, compose it with a convenient self-biholomorphism of \(D_1(0) \) and use the previous case.

29. State the Riemann mapping theorem.

Solution. Let \(D \subseteq \mathbb{C} \) be a simply-connected domain such that \(D \neq \mathbb{C} \). Then, \(D \) is biholomorphic to the open unit disc.

30. What are all simply-connected domains in \(\mathbb{C} \) up to biholomorphic equivalence?

31. What are all simply-connected domains in \(\mathbb{C} \) up to topological equivalence [i.e. homeomorphism]?

32. Define \(e^z \). Prove that \(F(z) \equiv e^z \) is entire and derive a formula for \(F'(z) \). What is the power series expansion of \(F \) about the origin? Where is it valid? [Your answer should be the “biggest” open set possible.]

Let \(y_0 \in \mathbb{R} \). Let
 \[
 A \equiv \{ z \in \mathbb{C} : \text{Im}z \in [y_0, y_0 + 2\pi) \}.
 \]
 Prove that \(F : A \to \mathbb{C}^* \) is bijective.
 Where is the function \(\log : \mathbb{C}^* \to A \) continuous/\(\mathbb{C} \)-differentiable?

At all points where \(\log : \mathbb{C}^* \to A \) is \(\mathbb{C} \)-differentiable, find a formula for its \(\mathbb{C} \)-derivative.

Consider the function \(\text{Log} : \mathbb{C}^* - \{ x \in \mathbb{R} : x < 0 \} \to \{ z \in \mathbb{C} : \text{Im}z \in (-\pi, \pi) \} \). What is the power series expansion of \(\text{Log}(1 - z) \) about \(0 \)? Where is it valid? [Your answer should be a an open disc of maximum possible radius]

33. Derive power series expansions for \(\sin \) and \(\cos \) about \(0 \). Where are they valid? [Your answer should be the “biggest” open set possible.]