Your full name in capital letters:

ID number:

Midterm Exam # 2

DO NOT OPEN THIS EXAM OR BEGIN WRITING until the course instructor has announced the beginning of the examination!

- No calculators. No cell phones. No questions. No textbooks or additional materials.
- Any statement should be supported by a proof or by a clear citation of a theorem/definition. All steps of a computation should be clearly indicated and justified. Answers without justification may receive zero credit.
- Hand in the exam no later than 6:20pm.
- Use blue or black ballpoint pens please. Answers written in pencil will be disregarded.
- Write neatly. Show answers and arguments in the space provided. You may use the back of the pages also, but indicate clearly any such material that you want marked.
- Incorrect statements will be penalized. If you do not want something graded, please cross it out.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(3 points)</td>
</tr>
<tr>
<td>2</td>
<td>(4 points)</td>
</tr>
<tr>
<td>3</td>
<td>(4 points)</td>
</tr>
<tr>
<td>4</td>
<td>(2 points)</td>
</tr>
<tr>
<td>5</td>
<td>(4 points)</td>
</tr>
<tr>
<td>6</td>
<td>(4 points)</td>
</tr>
<tr>
<td>7</td>
<td>(4 points)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>(25 points)</td>
</tr>
</tbody>
</table>
1. (3 points) Let

\[f(z) = e^{\frac{17}{z^7}} \frac{z^3 + 7}{z^7(z^2 + 4)^3}. \]

Let \(C \) be the disjoint union of the piecewise \(C^1 \), simple, closed curves \(C_0, C_1, C_2 \) in the figure below, oriented as in the figure below.

Compute \(\int_C f(z) \, dz \).

Note: A piecewise \(C^1 \) curve is called piecewise smooth in the textbook.
Blank page in case you need more space for problem 1.
2. (4 points) Integrate the function
\[\frac{z}{z^2 - 1} \]
along the circle \(|z| = 3\) in the positive sense.
Blank page in case you need more space for problem 2.
3. (4 points) Let $\gamma: [a, b] \longrightarrow \mathbb{C}$ be a curve of class C^1. Let $f: D \longrightarrow \mathbb{C}$ be a C-differentiable function on the open set D, $D \subseteq \mathbb{C}$. Assume that
\[\gamma([a, b]) \subseteq D. \]
Prove that
\[(f \circ \gamma)'(t) = f'(\gamma(t))\gamma'(t) \quad \forall t \in [a, b]. \]

Note: The fact that $\gamma: [a, b] \longrightarrow \mathbb{C}$ is a curve of class C^1 means that γ' exists and is continuous on $[a, b]$.
4. (2 points) Assume that $\gamma : [a, b] \rightarrow \mathbb{C}$ is a piecewise C^1 curve. Let $f : D \rightarrow \mathbb{C}$ be a C^1-differentiable function on the open set D, $D \subseteq \mathbb{C}$. Assume that

$$\gamma([a, b]) \subseteq D.$$

Prove that

$$\int_{\gamma} f'(z)dz = f(\text{endpoint}) - f(\text{initial point}),$$

where

initial point $\equiv \gamma(a)$ and endpoint $\equiv \gamma(b)$.

Blank page in case you need more space for problem 4.
5. (4 points) Let \(r \) and \(R \) be positive numbers such that \(r < R \).

Is there a \(C \)-differentiable function \(F \) on the annulus

\[A \equiv \{ z \in \mathbb{C} : r < |z| < R \} \]

such that \(F'(z) = \frac{1}{z} \) on \(A \)?
6. (4 points) Let γ be any piecewise C^1 curve in the domain $\{z \in \mathbb{C} : \text{Im} z > 0\}$ which joins $-1 + 2i$ to $1 + 2i$.

Evaluate the integral

$$\int_{\gamma} \frac{z}{z + 1} \, dz.$$
Blank page in case you need more space for problem 6.
7. (4 points) Assume that f is an entire function and $\text{Re} f(z) \leq c$ for all $z \in \mathbb{C}$. Prove that f is constant.

Note: Entire means \mathbb{C}-differentiable on \mathbb{C}.

Hint: Consider $e^{f(z)}$.