Terminology/Conventions

• The symbol $f: A \to B$ will be taken to mean that f is a function defined on the set A and with values in the set B.

• Let $U \subseteq \mathbb{C}$ be an open set and $z_0 \in U$. Let $f: U \to \mathbb{C}$. We say that f is \mathbb{C}-differentiable (or complex differentiable) at z_0 if and only if the limit

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists in \mathbb{C}. If f is \mathbb{C}-differentiable at z_0, we denote by $f'(z_0)$ the limit in (1) and we call $f'(z_0)$ the complex derivative (or simply the derivative) of f at z_0.

• Let $U \subseteq \mathbb{C}$ be an open set and $z_0 \in U$. Let $f: U \to \mathbb{C}$. We say that f is analytic at z_0 if and only if there exists $r > 0$ and a sequence of complex numbers $(a_n)_{n \geq 0}$ such that

$$f(z) = \sum_{n=0}^{\infty} a_n(z - z_0)^n \text{ for all } z \in U \text{ with } |z - z_0| < r.$$