ALGEBRAIC GEOMETRY PROBLEMS

Problem 1. Show that $I\left(\mathbb{A}^{n}\right)=(0)$.
Problem 2. If $I \subset R$ is any ideal, show that \sqrt{I} is a radical ideal.
Problem 3. (a) $S \subset I(V(S))$.
(b) $W \subset V(I(W))$.
(c) If W is an algebraic set then $W=V(I(W))$.
(d) If $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ is any ideal then $V(I)=V(\sqrt{I})$ and $\sqrt{I} \subset I(V(I))$.

Problem 4. [Hartshorne I.1.2 and I.1.11]
(a) Show that the set $X=\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{A}^{3} \mid t \in k\right\}$ is closed in \mathbb{A}^{3} and find $I(X)$.
(b) Same for the subset $Y=\left\{\left(t^{3}, t^{4}, t^{5}\right) \in \mathbb{A}^{3} \mid t \in k\right\}$ of \mathbb{A}^{3}.
(c) Show that $I(Y)$ can't be generated by less than three polynomials.

Hint: Is $I(Y)$ a graded ideal? Are you sure??
Problem 5. Let R be a commutative ring. The following are equivalent:
(a) R is Noetherian.
(b) Every ascending chain of ideals in R stabilizes.
(c) Every non-empty collection of ideals of R has a maximal element.

Problem 6. Show that $W=\left\{(x, y, z) \in \mathbb{A}^{3} \mid x^{2}=y^{3}\right.$ and $\left.y^{2}=z^{3}\right\}$ is an irreducible closed subset of \mathbb{A}^{3} and find $I(W)$.

Hint: Construct a homomorphism $k[x, y, z] \rightarrow k[T]$ with kernel $I(W)$.
Problem 7. Find $\sqrt{\left(y^{2}+2 x y^{2}+x^{2}-x^{4}, x^{2}-x^{3}\right)}$.
Problem 8. Let X be a Noetherian topological space.
(a) If an irreducible closed set Y is contained in a union $\cup X_{i}$ of finitely many closed sets X_{i}, then $Y \subset X_{i}$ for some i.
(b) X has finitely many components.
(c) X is the union of its components.
(d) X is not the union of any proper subset of its components.

Problem 9. Let X be any space with functions and $Y \subset \mathbb{A}^{n}$ an affine variety. Show that a function $f: X \rightarrow Y$ is a morphism if and only if each coordinate function $f_{i}: X \rightarrow k$ is regular for $1 \leq i \leq n$.

Problem 10. Let $X=V(x y-z w) \subset \mathbb{A}^{4}$ and $U=D(y) \cup D(w) \subset X$. Define a regular function $f: U \rightarrow k$ by $f=x / w$ on $D(w)$ and $f=z / y$ on $D(y)$. Show that there are no polynomial functions $p, q \in A(X)$ such that $q(a) \neq 0$ and $f(a)=p(a) / q(a)$ for all $a \in U$.

Problem 11. Let X be an affine variety such that the affine coordinate ring $A(X)$ is a unique factorization domain. Let $U \subset X$ be an open subset. Show that if $f: U \rightarrow k$ is any regular function, then there exist $p, q \in A(X)$ such that $q(x) \neq 0$ and $f(x)=p(x) / q(x)$ for all $x \in U$.

Problem 12. (a) $k\left[\mathbb{A}^{n} \backslash\{0\}\right]=k\left[x_{1}, \ldots, x_{n}\right]$ for $n \geq 2$.
(b) $\mathbb{A}^{n} \backslash\{0\}$ is not an affine variety for $n \geq 2$.
(c) Every global regular function on \mathbb{P}^{n} is constant, i.e. $k\left[\mathbb{P}^{n}\right]=k$.
(d) \mathbb{P}^{n} is not quasi-affine for $n \geq 1$.

Problem 13. Let $\varphi: \mathbb{A}^{1} \rightarrow V\left(y^{2}-x^{3}\right) \subset \mathbb{A}^{2}$ be the morphism given by $\varphi(t)=$ $\left(t^{2}, t^{3}\right)$. Show that φ is bijective, but not an isomorphism.

Problem 14. Let $X \subset \mathbb{A}^{n}$ be a closed subvariety. Identify \mathbb{A}^{n} with $D_{+}\left(x_{0}\right) \subset \mathbb{P}^{n}$ and let \bar{X} be the closure of X in \mathbb{P}^{n}. Show that $I(\bar{X})=I(X)^{*} \subset k\left[x_{0}, \ldots, x_{n}\right]$. $\left(I(X)^{*}\right.$ is defined in the notes for $9 / 18$.)

Problem 15. Let $X \subset \mathbb{P}^{n}$ be a projective variety with projective coordinate ring $R=k\left[x_{0}, \ldots, x_{n}\right] / I(X)$. Let $f \in R$ be a non-constant homogeneous element. Show that $D_{+}(f) \subset X$ is an open affine subvariety with affine coordinate ring $k\left[D_{+}(f)\right]=R_{(f)}$.

Problem 16. Show that if R is a finitely generated reduced k-algebra then the space with functions $\operatorname{Spec}-\mathrm{m}(R)$ is an affine variety.

Problem 17. Let X be any space with functions. A map $\varphi: \mathbb{P}^{n} \rightarrow X$ is a morphism if and only if $\varphi \circ \pi: \mathbb{A}^{n+1} \backslash\{0\} \rightarrow X$ is a morphism.

Problem 18. Prove that the Segre map $s: \mathbb{P}^{n} \times \mathbb{P}^{m} \rightarrow \mathbb{P}^{N}$ gives an isomorphism of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ with a closed subvariety of P^{N}, where $N=n m+n+m$.

Problem 19. Let $\varphi: X \rightarrow Y$ be a morphism of spaces with functions and suppose $Y=\bigcup V_{i}$ is an open covering such that each restriction $\varphi: \varphi^{-1}\left(V_{i}\right) \rightarrow V_{i}$ is an isomorphism. Then φ is an isomorphism.

Problem 20. Assume that the characteristics of k is not 2. If $C=V_{+}(f) \subset \mathbb{P}^{2}$ is any curve defined by an irreducible homogeneous polynomial $f \in k[x, y, z]$ of degree 2 , then $C \cong \mathbb{P}^{1}$.

Problem 21. Let X and Y be spaces with functions and let $\left(P, \pi_{X}, \pi_{Y}\right)$ and $\left(P^{\prime}, \pi_{X}^{\prime}, \pi_{Y}^{\prime}\right)$ be two products of X and Y. Show that there is a unique isomorphism $\varphi: P \xrightarrow{\sim} P^{\prime}$ such that $\pi_{X}=\pi_{X}^{\prime} \circ \varphi$ and $\pi_{Y}=\pi_{Y}^{\prime} \circ \varphi$.

Problem 22. (a) Any subspace of a separated space with functions is separated.
(b) A product of separated spaces with functions is separated.

Problem 23. Let X be a pre-variety such that for each pair of points $x, y \in X$ there is an open affine subvariety $U \subset X$ containing both x and y.
(a) Show that X is separated.
(b) Show that \mathbb{P}^{n} has this property.

Problem 24. [Hartshorne II.2.16 and II.2.17]
Let X be any variety and $f \in k[X]$ a regular function.
(a) If h is a regular function on $D(f) \subset X$ then $f^{n} h$ can be extended to a regular function on all of X for some $n>0$. [Hint: Let $X=U_{1} \cup \cdots \cup U_{m}$ be an open affine cover. Start by showing that some $f^{n} h$ can be extended to U_{i} for each i.]
(b) $k[D(f)]=k[X]_{f}$.
(c) Let R be a k-algebra and let $f_{1}, \ldots, f_{r} \in R$ be elements that generate the unit ideal, $\left(f_{1}, \ldots, f_{r}\right)=R$. If $R_{f_{i}}$ is a finitely generated k-algebra for each i, then R is a finitely generated k-algebra.
(d) Suppose $f_{1}, \ldots, f_{r} \in k[X]$ satisfy $\left(f_{1}, \ldots, f_{r}\right)=k[X]$ and $D\left(f_{i}\right)$ is affine for each i. Then X is affine.

Problem 25. Let E be the elliptic curve $V_{+}\left(y^{2} z-x^{3}+x z^{2}\right) \subset \mathbb{P}^{2}$ and let f, g : $E \longrightarrow \mathbb{P}^{1}$ be the rational maps defined by $f(x: y: z)=(x: z)$ and $g(x: y: z)=$ $(y: z)$. (These are just projections to the x and y axis on the open subset $D_{+}(z)$.)
(a) Find the maximal open sets in E where f and g are defined as morphisms.
(b) Find the degrees of the field extensions $k(t) \subset k(E)$ induced by f and g.
(c) Find the cardinality of $f^{-1}(p)$ and $g^{-1}(p)$ when $p \in \mathbb{P}^{1}$ is a typical point. (Part of the exercise is to define what "typical" means.)

Problem 26. Let X be a projective variety and $\varphi: \mathbb{P}^{1} \rightarrow X$ any rational map. Show that φ is defined as a morphism on all of \mathbb{P}^{1}.

Problem 27. (a) If X has components X_{1}, \ldots, X_{m} then $\operatorname{dim}(X)=\max \operatorname{dim}\left(X_{i}\right)$. (b) $\operatorname{dim}(X \times Y)=\operatorname{dim}(X)+\operatorname{dim}(Y)$.

Problem 28. The commutative algebra result lying over states that if $R \subset S$ is an integral extension of commutative rings and $P \subset R$ is a prime ideal, then there is some prime $Q \subset S$ such that $Q \cap R=P$.
(a) Use lying over to show that if $\varphi: X \rightarrow Y$ is a dominant morphism of irreducible varieties, then $\varphi(X)$ contains a dense open subset of Y.
(b) If $\varphi: X \rightarrow Y$ is any morphism of varieties, then its image $\varphi(X)$ is constructible, i.e. a finite union of locally closed subsets of Y.

Problem 29. [Hartshorne I.5.2]
Assume $\operatorname{char}(k) \neq 2$. Locate the singular points of the surfaces $X=V\left(x y^{2}-z^{2}\right)$, $Y=V\left(x^{2}+y^{2}-z^{2}\right)$, and $Z=V\left(x y+x^{3}+y^{3}\right)$ in \mathbb{A}^{3}. (Take a look at the nice pictures in Hartshorne!)

Problem 30. Assume $\operatorname{char}(k)=0$. Let $X=V_{+}(f) \subset \mathbb{P}^{n}$ be a hypersurface given by a square-free homogeneous polynomial $f \in k\left[x_{0}, \ldots, x_{n}\right]$.
(a) Show that $X_{\text {sing }}=V_{+}\left(\frac{\partial f}{\partial x_{0}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$.
(b) Show that $X_{\text {sing }} \neq X$.

Problem 31. [Shafarevich II.1.13]
(a) Show that an intersection of r hypersurfaces in \mathbb{P}^{r} is never empty.
(b) Let $X \subset \mathbb{P}^{n}$ be a hypersurface of degree at least two, such that X contains a linear subspace $L \subset \mathbb{P}^{n}$ of dimension $r \geq n / 2$. Prove that X is singular. [Hint: Choose the coordinates on \mathbb{P}^{n} such that $L=V_{+}\left(x_{r+1}, x_{r+2}, \ldots, x_{n}\right) \subset \mathbb{P}^{n}$.]

Problem 32. [Shafarevich II.1.10].
Let $X \subset \mathbb{P}^{n}$ be a hypersurface of degree three. If X has two different singular points, then X contains the line joining them.

Problem 33. If X is a variety and $x \in X$, we define the Zariski cotangent space to X at x to be $\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$. The Zariski tangent space is the dual vector space $\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{*}$. Show that if $f: X \rightarrow Y$ is a morphism of varieties with $f(x)=y$, then f induces linear maps $\mathfrak{m}_{y} / \mathfrak{m}_{y}^{2} \rightarrow \mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}$ and $\left(\mathfrak{m}_{x} / \mathfrak{m}_{x}^{2}\right)^{*} \rightarrow\left(\mathfrak{m}_{y} / \mathfrak{m}_{y}^{2}\right)^{*}$.

Problem 34. [Mostly Hartshorne I.6.3]
Give examples of varieties X and Y, a point $P \in X$, and a morphism φ : $X \backslash\{P\} \rightarrow Y$ such that φ can't be extended to a morphism on all of X in each of the cases:
(a) X is a non-singular curve and Y is not projective.
(b) X is a curve, P is a singular point on X, Y is projective.
(c) X is non-singular of dimension at least two, Y is projective.

Problem 35. Let X and Y be curves and $\varphi: X \rightarrow Y$ a birational morphism.
(a) $X_{\text {sing }}$ is a proper closed subset of X.
(b) $\varphi\left(X_{\text {sing }}\right) \subset Y_{\text {sing }}$.
(c) If $y \in Y$ is a non-singular point, then $\varphi^{-1}(y)$ contains at most one point.

Problem 36. Two non-singular projective curves are isomorphic if and only if they have the same function field.

Problem 37. Resolution of singularities for curves.
Let X be a curve with smooth locus $U=X-X_{\text {sing }}$. Prove that there exists a non-singular curve \tilde{X} with a finite morphism $\varphi: \tilde{X} \rightarrow X$ such that the restriction $\varphi: \varphi^{-1}(U) \rightarrow U$ is an isomorphism. (For resolution of singularities in higher dimension, one can only hope for a "proper" morhism φ.)

Problem 38. Let $E=V\left(y^{2}-x^{3}+x\right) \subset \mathbb{A}^{2}$. Show that if $P \in E$ is any point then $E \backslash\{P\}$ is affine.

Problem 39. [Hartshorne I.6.2]
Let $E=V\left(y^{2}-x^{3}+x\right) \subset \mathbb{A}^{2}, \operatorname{char}(k) \neq 2$.
(a) E is a non-singular curve.
(b) The units in $k[E]$ are the non-zero elements of k. [Hints: Define an automorphism $\sigma: k[E] \rightarrow k[E]$ fixing x and sending y to $-y$. Then define a norm $N: k[E] \rightarrow k[x]$ by $N(a)=a \sigma(a)$. Show that $N(1)=1$ and $N(a b)=N(a) N(b)$.
(c) $k[E]$ is not a unique factorization domain.
(d) Show that E is not rational.

Problem 40. Let $m_{0}, m_{1}, \ldots, m_{N} \in k\left[x_{0}, \ldots, x_{n}\right]$ be all the monomials of degree d. The Veronese embedding is the map $v_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$ defined by

$$
v_{d}\left(x_{0}: \cdots: x_{n}\right)=\left(m_{0}\left(x_{0}, \ldots, x_{n}\right): \cdots: m_{N}\left(x_{0}, \ldots, x_{n}\right)\right)
$$

(a) Show that v_{d} is an isomorphism of \mathbb{P}^{n} with a closed subvariety in \mathbb{P}^{N}.
(b) Let $S \subset \mathbb{P}^{n}$ be a hypersurface of degree d, i.e. $S=V_{+}(f)$ where $f \in$ $k\left[x_{0}, \ldots, x_{n}\right]$ is a form of degree d. Show that $S=v_{d}{ }^{-1}(H)$ for a unique hyperplane $H \subset \mathbb{P}^{N}$.

Problem 41. Let L_{1}, L_{2}, and L_{3} be lines in \mathbb{P}^{3} such that none of them meet.
(a) There exists a unique quadric surface $S \subset \mathbb{P}^{3}$ containing L_{1}, L_{2}, and L_{3}.
[Hint: Start by applying an automorphism of \mathbb{P}^{3} to make the lines nice.]
(b) S is the disjoint union of all lines $L \subset \mathbb{P}^{3}$ meeting L_{1}, L_{2}, and L_{3}.
(c) Let $L_{4} \subset \mathbb{P}^{3}$ be a fourth line which does not meet L_{1}, L_{2}, or L_{3}. Then the number of lines meeting L_{1}, L_{2}, L_{3}, and L_{4} is equal to the number of points in $L_{4} \cap S$, which is one, two, or infinitely many.

Problem 42. An algebraic group is a pre-variety G together with morphisms m : $G \times G \rightarrow G$ and $i: G \rightarrow G$, and an identity element $e \in G$, such that G is a group in the usual sense when m is used to define multiplication and i maps any element to its inverse element.
(a) Show that $\mathrm{GL}_{n}(k)$ is an algebraic group.
(b) Show that any algebraic group is separated.
(c) Show that \mathbb{P}^{1} is not an algebraic group, i.e. it is not possible to find morphisms $m: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ and $i: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ satisfying the group axioms.
(d) Challenge: How about \mathbb{P}^{n} for $n \geq 2$?

Problem 43. Let G be an irreducible algebraic group acting on a variety X, i.e. we have a morphism $G \times X \rightarrow X$ such that the axioms for a group action are satisfied.
(a) Show that each orbit in X is locally closed.
(b) Each orbit is a non-singular variety.

Problem 44. Let $\mathrm{GL}_{n}(k)$ act on $\operatorname{Gr}(d, n)$ by $g . V=\{g(x) \mid x \in V\}$. Show that for any points $V_{1}, V_{2} \in \operatorname{Gr}(d, n)$ there exists an element $g \in \mathrm{GL}_{n}(k)$ such that $g . V_{1}$ and $g . V_{2}$ are both in $U_{\{1, \ldots, d\}} \subset \operatorname{Gr}(d, n)$. Conclude that $\operatorname{Gr}(d, n)$ is separated.

Problem 45. (a) Let $0<p<q<n$ be integers and $E=k^{n}$. Show that the set $\{(V, W) \in \operatorname{Gr}(p, E) \times \operatorname{Gr}(q, E) \mid V \subset W\}$ is closed in $\operatorname{Gr}(p, E) \times \operatorname{Gr}(q, E)$.
(b) Let $0<d_{1}<d_{2}<\cdots<d_{m}<n$ be integers and let $\mathrm{F} \ell\left(d_{1}, \ldots, d_{m}\right.$; $\left.E\right)$ be the set of flags of subspaces $V_{1} \subset V_{2} \subset \cdots \subset V_{m} \subset E$ such that $\operatorname{dim} V_{i}=d_{i}$. Give this set a structure of projective variety.

Problem 46. Set $E=k^{n}, X=\operatorname{Gr}(d, E)$, and let $F_{1} \subset F_{2} \subset \cdots \subset F_{n}=E$ be a flag of subspaces such that $\operatorname{dim} F_{i}=i$. Given a sequence of integers $a=\left(0<a_{1}<\right.$ $\left.a_{2}<\cdots<a_{d} \leq n\right)$, let $\Omega_{a}^{\circ}\left(F_{\bullet}\right)$ be the set of all $V \in X$ such that $\operatorname{dim}\left(V \cap F_{p}\right)=i$ whenever $a_{i} \leq p<a_{i+1}, 0 \leq i \leq d$. (We set $a_{0}=0$ and $a_{d+1}=n+1$.)
(a) Show that $\Omega_{a}^{\circ}\left(F_{\bullet}\right) \cong \mathbb{A}^{m}$ where $m=\sum a_{i}-\binom{d+1}{2}$.
(b) Show that the orbits for the action of the upper triangular matrices on X are the sets $\Omega_{a}^{\circ}\left(F_{\bullet}\right)$ for all sequences a where $F_{i}=\operatorname{span}\left\{e_{1}, \ldots, e_{i}\right\}$.
(c) The Schubert varieties in X are the closures $\Omega_{a}\left(F_{\bullet}\right)=\overline{\Omega_{a}^{\circ}\left(F_{\bullet}\right)}$. Find a singular Schubert variety in some Grassmannian.

Problem 47. Let $X \subset \mathbb{P}^{5}$ be the subset of points $\left(x_{0}: \cdots: x_{5}\right)$ such that the matrix

$$
\left[\begin{array}{lll}
x_{0} & x_{1} & x_{2} \\
x_{3} & x_{4} & x_{5}
\end{array}\right]
$$

has rank one. Show that X is a non-singular rational closed subvariety of \mathbb{P}^{5}, and find its dimension and degree.

Problem 48. [Mostly Hartshorne I.7.1] In this problem, just find the numbers and give an argument why they are correct that could be expanded into a proof.
(a) Find the degree of $v_{d}\left(\mathbb{P}^{n}\right)$ in \mathbb{P}^{N} where v_{d} is the Veronese embedding.
(b) Find the degree of the Segre embedding of $\mathbb{P}^{n} \times \mathbb{P}^{m}$ in $\mathbb{P}^{n m+n+m}$.
(c) Challenge: Find the degree of $\operatorname{Gr}(2,5)$ in \mathbb{P}^{9}.

Problem 49. [Hartshorne I.5.3 and I.5.4]
Let $X \subset \mathbb{P}^{2}$ be a curve and $P \in \mathbb{P}^{2}$ any point. Let $I_{X, P} \subset \mathcal{O}_{\mathbb{P}^{2}, P}$ be the ideal of functions $f \in \mathcal{O}_{\mathbb{P}^{2}, P}$ such that $\left.f\right|_{U \cap X}=0$ for some open set U containing P. The multiplicity $\mu_{P}(X)$ of X at P is the largest number r such that $I_{X, P} \subset \mathfrak{m}_{P}^{r}$ where $\mathfrak{m}_{P} \subset \mathcal{O}_{\mathbb{P}^{2}, P}$ is the maximal ideal.
(a) $P \in X \Leftrightarrow \mu_{P}(X) \geq 1$.
(b) P is a non-singular point of X iff $\mu_{P}(X)=1$.
(c) Let $Y \subset \mathbb{P}^{2}$ be another curve such that $X \cap Y$ is a finite set. Show that if $P \in X \cap Y$ then $I(X \cdot Y ; P)=\operatorname{dim}_{k} \mathcal{O}_{\mathbb{P}^{2}, P} /\left(I_{X, P}+I_{Y, P}\right)$.
(d) $I(X \cdot Y ; P)=1$ iff P is a non-singular point of both X and Y, and the tangent directions at P are different.
(e) $I(X \cdot Y ; P) \geq \mu_{P}(X) \cdot \mu_{P}(Y)$.
(f) For all but a finite number of lines $L \subset \mathbb{P}^{2}$ through P we have $\mu_{P}(X)=$ $I(X \cdot L ; P)$.

Problem 50. Let \mathcal{F} be a sheaf on X and $p \in X$ a point. Prove the following from the definition of the stalk \mathcal{F}_{p} :
(a) Each element of \mathcal{F}_{p} has the form s_{p} for some section $s \in \mathcal{F}(U), p \in U$.
(b) Let $s \in \mathcal{F}(U), p \in U$. Then $s_{p}=\left.0 \Leftrightarrow s\right|_{V}=0$ for some $p \in V \subset U$.
(c) Let $s \in \mathcal{F}(U)$. Prove that $s=0$ if and only if $s_{p}=0 \forall p \in U$.

Problem 51. [Hartshorne II.1.2]
Let $\varphi: \mathcal{F} \rightarrow \mathcal{G}$ be a morphism of sheaves on X. Show that φ is surjective if and only if the following condition holds: for every open set $U \subset X$, and for every $s \in \mathcal{G}(U)$, there is a covering $U=\bigcup V_{i}$ of U and sections $t_{i} \in \mathcal{F}\left(V_{i}\right)$ such that $\varphi_{V_{i}}\left(t_{i}\right)=\left.s\right|_{V_{i}}$ for all i.

Problem 52. [Hartshorne II.1.14]
Let \mathcal{F} be a sheaf on X and $s \in \mathcal{F}(X)$ a global section. Show that the set $\left\{p \in X \mid s_{p} \neq 0\right\}$ is a closed subset of X.
Problem 53. Let $\varphi: \mathcal{F} \rightarrow \mathcal{G}$ be a morphism of abelian sheaves on X. Show that $\operatorname{ker}(\varphi)_{p}=\operatorname{ker}\left(\varphi_{p}\right)$ and $\operatorname{Im}(\varphi)_{p}=\operatorname{Im}\left(\varphi_{p}\right)$ for all $p \in X$.
Problem 54. Let $f: X \rightarrow Y$ be a continuous map and \mathcal{G} a sheaf on Y. Show that $\left(f^{-1} \mathcal{G}\right)_{p}=\mathcal{G}_{f(p)}$ for all $p \in X$.
Problem 55. Let $f: X \rightarrow Y$ be a continuous map, \mathcal{F} a sheaf on X, and \mathcal{G} a sheaf on Y. Show that the map $\operatorname{Hom}\left(\mathcal{G}, f_{*} \mathcal{F}\right) \rightarrow \operatorname{Hom}\left(f^{-1} \mathcal{G}, \mathcal{F}\right)$ constructed in class is bijective.

Problem 56. (a) Let X be an affine variety, M a $k[X]$-module, and \mathcal{F} an $\mathcal{O}_{X^{-}}$ module. Show that $\operatorname{Hom}_{k[X]}(M, \Gamma(X, \mathcal{F})) \cong \operatorname{Hom}_{\mathcal{O}_{X}}(\tilde{M}, \mathcal{F})$.
(b) If X is affine and M and N are $k[X]$-modules then $\tilde{M} \otimes_{\mathcal{O}_{X}} \tilde{N}=\left(M \otimes_{k[X]} N\right)^{\sim}$.
(c) If $f: X \rightarrow Y$ is a morphism of varieties and \mathcal{G} is a (quasi-) coherent $\mathcal{O}_{Y^{-}}$ module, then $f^{*} \mathcal{G}$ is a (quasi-) coherent \mathcal{O}_{X}-module.

Problem 57. (a) X is a ringed space, \mathcal{F} and \mathcal{G} are \mathcal{O}_{X}-modules. Then the assignment $U \mapsto \operatorname{Hom}_{\mathcal{O}_{U}}\left(\left.\mathcal{F}\right|_{U},\left.\mathcal{G}\right|_{U}\right)$ defines an \mathcal{O}_{X}-module. It is denoted $\mathcal{H o m}_{\mathcal{O}_{X}}(\mathcal{F}, \mathcal{G})$.
(b) Let \mathcal{L} be an invertible \mathcal{O}_{X}-module. Show that $\mathcal{L}^{-1}=\mathcal{H o m}_{\mathcal{O}_{X}}\left(\mathcal{L}, \mathcal{O}_{X}\right)$ is also invertible and that $\mathcal{L}^{-1} \otimes_{\mathcal{O}_{X}} \mathcal{L} \cong \mathcal{O}_{X}$.

Problem 58. Let X be a scheme of characteristic $p>0, F: X \rightarrow X$ the Frobenius morphism, and \mathcal{L} an invertible \mathcal{O}_{X}-module. Show that $F^{*} \mathcal{L} \cong L^{\otimes p}$.

Problem 59. A morphism $f: X \rightarrow Y$ of varieties is called affine if for every open affine set $V \subset Y$ the inverse image $f^{-1}(V)$ is also affine. f is called finite if it is affine and $k\left[f^{-1}(V)\right]$ is a finitely generated $k[V]$-module for all open affine $V \subset Y$.

Let $Y=\bigcup V_{i}$ be an open affine covering of Y such that $f^{-1}\left(V_{i}\right)$ is affine $\forall i$. Show that f is affine. If $k\left[f^{-1}\left(V_{i}\right)\right]$ is a finitely generated $k\left[V_{i}\right]$-module for all i then f is finite.

Problem 60. (a) Let X be a complete variety and $f: X \rightarrow Y=\operatorname{Spec}-\mathrm{m}(k)$ the unique morphism to a point. Show that $f^{*}: \mathcal{O}_{Y} \rightarrow f_{*} \mathcal{O}_{X}$ is an isomorphism.
(b) Find a projective variety X and a birational morphism $f: X \rightarrow Y$ such that $f_{*} \mathcal{O}_{X}$ is not locally free on Y.

Problem 61. (a) $Y \subset \mathbb{P}^{n}$ is a hypersurface of degree d with ideal sheaf $\mathcal{I}_{Y} \subset \mathcal{O}_{\mathbb{P}^{n}}$. Show that $\mathcal{I}_{Y} \cong \mathcal{O}(-d)$.
(b) Let $v_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N}$ be the Veronese embedding, $N=\binom{n+d}{n}-1$. Show that $\left(v_{d}\right)^{*}\left(\mathcal{O}_{\mathbb{P}^{N}}(1)\right)=\mathcal{O}_{\mathbb{P}^{n}}(d)$.

Problem 62. Let $\varphi: \mathbb{P}^{n} \rightarrow \mathbb{P}^{m}$ be any non-constant morphism. Then $\operatorname{dim} \varphi\left(\mathbb{P}^{n}\right)=$ n. Furthermore, φ is the composition of a Veronese embedding $v_{d}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{N-1}$, a projection $\mathbb{P}\left(k^{N}\right)-\mathbb{P}(L) \rightarrow \mathbb{P}\left(k^{N} / L\right)$ for some linear subspace $L \subset k^{N}$, and an inclusion of a linear subspace $\mathbb{P}\left(k^{N} / L\right) \subset \mathbb{P}^{m}$.

Problem 63. (a) Let $\varphi: X \rightarrow Y$ be an affine morphism of pre-varieties. Show that if Y is separated then so is X.
(b) X is an irreducible affine variety, $U \subset X$ an open affine subset, $\bar{U} \subset \bar{X}$ their normalizations, and $\pi: \bar{X} \rightarrow X$ the normalization map. Show that $\pi^{-1}(U)=\bar{U}$.
(c) If X is any irreducible variety then $\pi: \bar{X} \rightarrow X$ is a finite morphism. Conclude that \bar{X} is separated.

Problem 64. (a) If Y is a normal variety and $f: Y \rightarrow X$ a dominant morphism, then there exists a unique morphism $\bar{f}: Y \rightarrow \bar{X}$ such that $f=\pi \circ \bar{f}$.
(b) Give a counter example to (a) when f is not dominant.

Problem 65. $X=V\left(x y-z^{2}\right) \subset \mathbb{A}^{3}$ is normal. [Hint: $k[X]=k\left[x, x t, x t^{2}\right] \subset k(x, t)$ where $t=z / x$.]

Problem 66. If X is any normal rational variety then $\mathrm{C} \ell(X)$ is a finitely generated Abelian group.

Problem 67. (a) Let $X \subset \mathbb{P}^{2}$ be a non-singular curve of degree 3 and $P \in X$ a point. Show that $\operatorname{dim}_{k} \Gamma(X, \mathcal{L}(n[P])) \geq n$ for all n.
(b) Any proper open subset of X is affine.

Problem 68. (a) Let $F, G, H \in k[x, y, z]$ be forms such that $V_{+}(G, H, z)=\emptyset$ in \mathbb{P}^{2}. Show that if $z F \in(G, H)$ then $F \in(G, H)$. [Hint: Use that $G_{0}=G(x, y, 0)$ and $H_{0}=H(x, y, 0)$ are relatively prime.]
(b) Let $C \subset \mathbb{P}^{2}$ be a curve, and set $\mathcal{O}_{C}(n)=\left.\mathcal{O}_{\mathbb{P}^{2}}(n)\right|_{C}$. Then $\Gamma\left(C, \mathcal{O}_{C}(n)\right)=$ $(k[x, y, z] / I(C))_{n}$ for all $n \geq 0$. [Hint: If $C=V_{+}(H) \subset D_{+}(y) \cup D_{+}(z)$ and if σ is a global section of $\mathcal{O}_{C}(n)$ then $\sigma / y^{n}=F(x, y, z) / y^{m}$ and $\sigma / z^{n}=A(x, y, z) / z^{m}$ for forms $F, A \in k[x, y, z]$ of degree $m \geq n$. Now use part (a).]
(c) Define the arithmetic genus of C to be $1-P_{C}(0)$ where $P_{C}(m)$ is the Hilbert polynomial of $C \subset \mathbb{P}^{2}$. Show that $p_{a}=\frac{(d-1)(d-2)}{2}$ where d is the degree of C and that $\operatorname{dim}_{k} \Gamma\left(C, \mathcal{O}_{C}(n)\right)=n d+1-p_{a}$ for all large integers n.

Problem 69. (a) Let $C \subset \mathbb{P}^{2}$ be a non-singular curve and $Y \subset \mathbb{P}^{2}$ an irreducible curve different from C. Set $Y . C=\sum_{P} I(Y \cdot C ; P) P \in \operatorname{Div}(C)$. Show that $\left.\mathcal{L}([Y])\right|_{C} \cong \mathcal{L}(Y . C)$ on C.
(b) Let $L=V_{+}(f)$ and $M=V_{+}(g) \subset \mathbb{P}^{2}$ be lines (not equal to C) where $f, g \in$ $k[x, y, z]$ are linear forms. Then the divisor of $f / g \in k(C)$ is $(f / g)=L . C-M . C$.

Problem 70. Let $E \subset \mathbb{P}^{2}$ be an elliptic curve and $P_{0} \in E$ any point. Show that the map $E \rightarrow \mathrm{C} \ell^{\circ}(E)$ given by $P \mapsto P-P_{0}$ is bijective.
Problem 71. Let $D: S \rightarrow M$ be an R-derivation and $p\left(x_{1}, \ldots, x_{n}\right) \in R\left[x_{1}, \ldots, x_{n}\right]$ a polynomial. Then $D\left(p\left(a_{1}, \ldots, a_{n}\right)\right)=\sum_{i=1}^{n} \frac{\partial p}{\partial x_{i}}\left(a_{1}, \ldots, a_{n}\right) D\left(a_{i}\right)$ for all elements $a_{1}, \ldots, a_{n} \in S$.

Problem 72. Let $E=V_{+}\left(z y^{2}-x^{3}+z^{2} x\right) \subset \mathbb{P}^{2}, \operatorname{char}(k) \neq 2$. Show that $\Omega_{E} \cong \mathcal{O}_{E}$. [Hint: Compute the divisor of the section $d(x / z)$ of Ω_{E}.]

