GROTHENDIECK-RIEMANN-ROCH THEOREM

ANDERS SKOVSTED BUCH

1. THE TOPIC

This is a proposal for a first topic in Intersection Theory. The goal in the topic is to understand the Grothendieck-Riemann-Roch theorem and Prof. William Fulton's proof of it. The topic has been worked out under Prof. Madhav Nori's supervision. In doing the topic I have read F.A.C. [3], most of chapters 1-3 in Hartshorne's book [2], and chapters $1-8$ plus chapter 15 in Fulton's book [1]. Furthermore I used Borel and Serre's article on Grothendieck-Riemann-Roch theorem [4], and chapter 5 in Altman and Kleiman's book on Grothendieck duality [5]. Of these, Fulton's book has been the main reference.

During the topic I have done a number of exercises in Hartshorne's book. Fulton's book does not contain exercises, however it has taken a lot of work to understand and verify most of the examples. I also plan to do exercises from J. Harris' book [6] to see more examples of algebraic varieties.

2. Intersection Theory

A very simple problem in Intersection Theory is the following: If $f(X) \in \mathbb{C}[X]$ is a nonzero polynomial of degree d, then how many solutions $a \in \mathbb{C}$ exist to the equation

$$
f(a)=0 ?
$$

The answer is simple: If you count properly, then there are d solutions.
The above problem has a natural generalization to several variables. If $f_{1}, \ldots, f_{n} \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ are polynomials of degrees d_{1}, \ldots, d_{n}, then how many solutions $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{A}^{n}=\mathbb{C}^{n}$ exist to the set of equations

$$
f_{i}(a)=f_{i}\left(a_{1}, \ldots, a_{n}\right)=0
$$

for $1 \leq i \leq n$? Given that the number of solutions is finite, the answer to this question is almost as simple as in the above case. If you include solutions in the enlargement \mathbb{P}^{n} of \mathbb{A}^{n} and furthermore count properly, then there are exactly $\prod_{i} d_{i}$. This is a special case of Bézout's Theorem.

[^0]Intersection Theory is a branch of Algebraic Geometry, of which Bézout's Theorem is a particularly nice example. The basic question in Intersection Theory is what do you get when you intersect two subvarieties of an algebraic variety.

3. The group of cycle classes on a scheme

Let k be a field. In the following a scheme will mean a Noetherian scheme of finite type over k.

If X is a scheme, a cycle on X is an element of the free Abelian group generated by all subvarieties of X. The cycle of X is defined as $[X]=\sum \operatorname{ord}_{V}(X)[V]$, where the sum is over all irreducible components of X, and $\operatorname{ord}_{V}(X)$ is the length of the local ring of V in X. Note that if W is a closed subscheme of X, then $[W]$ may be considered as a cycle on X.

On the group of cycles on X, we define rational equivalence. Two cycles are rationally equivalent, if their difference lie in the subgroup generated by the cycles $[\operatorname{div}(f)]$ for all subvarieties V of X and rational functions $f \in k(V)$. The group $A(X)$ of cycle classes on X is defined to be the group of cycles modulo rational equivalence. If X is pure dimensional, $A(X)$ has a natural grading, where the degree of a subvariety is equal to its codimension in X.

Certain types of morphisms of schemes $f: X \rightarrow Y$ give rise to homomorphisms between $A(X)$ and $A(Y)$. If f is proper one may define a push-forward $f_{*}: A(X) \rightarrow A(Y)$. If V is a subvariety of X, we put $f_{*}[V]=\operatorname{deg}(V / W)[W]$, where $W=f(V)$ and $\operatorname{deg}(V / W)$ is nonzero only if $\operatorname{dim}(V)=\operatorname{dim}(W)$, in which case it is defined as $\operatorname{deg}(V / W)=[k(V): k(W)]$.

If f is a flat morphism (of some relative dimension), or an l.c.i. morphism, or if Y is a non-singular variety (and X is pure-dimensional), one may define a pull-back homomorphism $f^{*}: A(Y) \rightarrow A(X)$. If f is flat, this is given by $f^{*}[V]=\left[f^{-1}(V)\right]$ for a subvariety $V \subset Y$.

4. The Chow ring of a non-singular variety

Let X be a non-singular variety with subvarieties V and W of codimensions c_{1} and c_{2}. One may define an intersection product $V \cdot W$ in $A(X)$, which is the class of a cycle on $V \cap W$, of degree $c_{1}+c_{2}$. This intersection product makes $A(X)$ into a graded ring with unit element [X].

In very nice situations, $V \cdot W$ is merely $[V \cap W]$. For example this is true if W is a hypersurface, not containing V. In general the formula is more likely to hold, if V and W meet transversally at their points
of intersection, and when all components of $V \cap W$ have the expected codimension $c_{1}+c_{2}$.

The intersection product commutes with pull-back homomorphisms, so $A(-)$ is a contravariant functor from non-singular varieties to commutative rings.

Bézout's Theorem may be reformulated as $A\left(\mathbb{P}^{n}\right)=\mathbb{Z}[t] /\left(t^{n+1}\right)$, where t^{i} is the class of a subspace of codimension i in \mathbb{P}^{n}. To see that this version implies the above statement, let $f_{1}, \ldots, f_{n} \in k\left[X_{0}, \ldots, X_{n}\right]$ be homogeneous polynomials of degrees d_{1}, \ldots, d_{n}, and let S_{i} be the hypersurface $V\left(f_{i}\right)$. Assume that the intersection $W=S_{1} \cap \cdots \cap S_{n}$ is a finite set of points. Then we have

$$
\begin{aligned}
{\left[S_{1}\right] \cdots\left[S_{n}\right] } & =[W] \\
& =\sum_{P \in W} \operatorname{ord}_{P}(W)[P] .
\end{aligned}
$$

On the other hand $\left[S_{i}\right]=d_{i} t$ in $A\left(\mathbb{P}^{n}\right)$, so the above product is also equal to $\left(\prod_{i} d_{i}\right) t^{n}$. As t^{n} is the class of any rational point in \mathbb{P}^{n}, we see that W contains $\prod_{i} d_{i}$ points, if we count properly.

Bézout's theorem also has applications to counting solutions in more complicated situations. For example it predicts that the number of lines intersecting four given lines in \mathbb{P}^{3} is two or infinite.

5. Chern classes

If L is a line bundle on a non-singular variety X, we define the Chern class of L to be the class $c_{1}(L)=[D]$ in $A(X)$, where D is the divisor corresponding to L.

Now let E be a vector bundle of rank r on X with a filtration

$$
E=E_{r} \supset E_{r-1} \supset \cdots \supset E_{0}=0
$$

such that the quotients $L_{i}=E_{i} / E_{i-1}$ are line bundles. Then we define the Chern roots of E to be the classes $\alpha_{1}=c_{1}\left(L_{1}\right), \ldots, \alpha_{r}=c_{1}\left(L_{r}\right)$. We define the i 'th Chern class $c_{i}(E)$ of E to be i 'th symmetric polynomial in the α_{j}. With the notation $A(X)_{\mathbb{Q}}=A(X) \otimes \mathbb{Q}$, we define the classes in $A(X)_{\mathbb{Q}}$

$$
\begin{aligned}
\operatorname{ch}(E) & =\sum_{j} \exp \left(\alpha_{j}\right) \\
\operatorname{td}(E) & =\prod_{j} Q\left(\alpha_{j}\right)
\end{aligned}
$$

where $Q(x)=x /\left(1-e^{-x}\right)=1+\frac{1}{2} x+\frac{1}{12} x^{2}+\cdots$. Here $\operatorname{ch}(E)$ is called the Chern character of $E, \operatorname{td}(E)$ the Todd class.

If E does not have a filtration as above, the Chern classes of E may still be defined. The Chern character and Todd class of E can then be defined as a polynomials in the Chern classes. If $c_{i}=c_{i}(E)$ is the i 'th Chern class, then

$$
\begin{aligned}
\operatorname{ch}(E) & =r+c_{1}+\frac{1}{2}\left(c_{1}^{2}-2 c_{2}\right)+\frac{1}{6}\left(c_{1}^{3}-3 c_{1} c_{2}+3 c_{3}\right)+\cdots \\
\operatorname{td}(E) & =1+\frac{1}{2} c_{1}+\frac{1}{12}\left(c_{1}^{2}+c_{2}\right)+\frac{1}{24} c_{1} c_{2}+\cdots
\end{aligned}
$$

The Chern character satisfies $\operatorname{ch}(E \otimes F)=\operatorname{ch}(E) \cdot \operatorname{ch}(F)$ for E and F vector bundles on X, and $\operatorname{ch}(E)=\operatorname{ch}\left(E^{\prime}\right)+\operatorname{ch}\left(E^{\prime \prime}\right)$ for $0 \rightarrow E^{\prime} \rightarrow E \rightarrow$ $E^{\prime \prime} \rightarrow 0$ an exact sequence of vector bundles. By this we can define a ring homomorphism from the Grothendieck group of vector bundles on X,

$$
\mathrm{ch}: K(X) \rightarrow A(X)_{\mathbb{Q}} .
$$

6. Grothendieck-Riemann-Roch theorem

Let $f: X \rightarrow Y$ be a proper morphism of non-singular varieties. Then f gives rise to a homomorphism of Grothendieck groups $f_{*}: K(X) \rightarrow$ $K(Y)$, defined by

$$
f_{*}[E]=\sum_{i \geq 0}(-1)^{i}\left[R^{i} f_{*} E\right]
$$

f also gives rise to a morphism $f_{*}: A(X) \rightarrow A(Y)$ as defined above. Grothendieck-Riemann-Roch theorem states that for any vector bundle E on X we have in $A(Y)_{\mathbb{Q}}$

$$
f_{*}\left(\operatorname{ch}(E) \cdot \operatorname{td}\left(T_{X}\right)\right)=\operatorname{ch}\left(f_{*}[E]\right) \cdot \operatorname{td}\left(T_{Y}\right)
$$

If X is complete, we may take $Y=\operatorname{Spec}(k)$ to be a point, and we use the notation $\int_{X} \alpha=f_{*}(\alpha) \in A(Y)=\mathbb{Z}$ for any $\alpha \in A(X)$. Furthermore $K(Y)=\mathbb{Z}, \operatorname{td}\left(T_{Y}\right)=1$, and $\left[R^{i} f_{*} E\right]=\operatorname{dim}_{k} H^{i}(X, E)$ in $K(Y)$. It follows that $f_{*}[E]=\chi(X, E)$. In this case Grothendieck-Riemann-Roch implies Hirzebruch's formula

$$
\chi(X, E)=\int_{X} \operatorname{ch}(E) \cdot \operatorname{td}\left(T_{X}\right)
$$

7. Applications to non-singular curves

Let X be a complete non-singular curve, $g=\operatorname{dim}_{k} H^{1}\left(X, \mathcal{O}_{X}\right)$ the genus of X, and $K=c_{1}\left(\omega_{X}\right)$ a canonical divisor. For any divisor D on X we define $\operatorname{deg}(D)=\int_{X} D$ and $\ell(D)=\operatorname{dim}_{k} H^{0}(X, L(D))$. Note that $\ell(D)>0$ if and only if D is equivalent to an effective divisor. It
follows from Serre duality that $\chi(X, L(D))=\ell(D)-\ell(K-D)$. Since $T_{X}=\omega_{X}^{\vee}$, we get $\operatorname{td}\left(T_{X}\right)=1-\frac{1}{2} K$, and so by Hirzebruch's formula

$$
1-g=\chi\left(X, \mathcal{O}_{X}\right)=\int_{X} \operatorname{ch}\left(\mathcal{O}_{X}\right) \operatorname{td}\left(T_{X}\right)=-\frac{1}{2} \operatorname{deg}(K)
$$

In particular K has even degree. Applying Hirzebruch to $L(D)$, we get

$$
\ell(D)-\ell(K-D)=\int_{X} \exp (D)\left(1-\frac{1}{2} K\right)=\operatorname{deg}(D)+1-g
$$

This is known as Riemann-Roch theorem for curves.
Not that if $\operatorname{deg}(D)<0, D$ can't be equivalent to an effective divisor, and so $\ell(D)=0$. It follows that if $\operatorname{deg}(D)>\operatorname{deg}(K)=2 g-2$, we have $\ell(D)=\operatorname{deg}(D)+1-g$.

8. Applications to non-singular surfaces

Let X be a complete non-singular surface, and let $c_{i}=c_{i}\left(T_{X}\right)$. Then $\chi\left(X, \mathcal{O}_{X}\right)=\frac{1}{12} \int_{X}\left(c_{1}^{2}+c_{2}\right)$. If E is a vector bundle of rank r on X with Chern classes $d_{i}=c_{i}(E)$, we get

$$
\chi(X, E)=\int_{X} \operatorname{ch}(E) \operatorname{td}\left(T_{X}\right)=\frac{1}{2} \int_{X}\left(d_{1}^{2}-2 d_{2}+d_{1} c_{1}\right)+r \chi\left(X, \mathcal{O}_{X}\right) .
$$

In case $E=L(D)$ is a line bundle, this says

$$
\chi(X, L(D))=\frac{1}{2} \int_{X}(D \cdot D-D \cdot K)+\chi\left(X, \mathcal{O}_{X}\right)
$$

where $K=c_{1}\left(\omega_{X}\right)=-c_{1}$ is a canonical divisor.
If D is an effective Cartier divisor, we have a short exact sequence $0 \rightarrow L(-D) \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{D} \rightarrow 0$. We get the following formula for the arithmetic genus of D :

$$
p_{a}(D)=1-\chi\left(X, \mathcal{O}_{X}\right)+\chi(X, L(-D))=\frac{1}{2} \int_{X}(D \cdot D+D \cdot K)+1
$$

In the special case $X=\mathbb{P}^{2}$ we have $\omega_{X}=\mathcal{O}(-3)$, so $K=-3 h$, where h is the class of a hyperplane. We get

$$
\chi\left(\mathbb{P}^{2}, \mathcal{O}(n)\right)=\frac{1}{2}\left(n^{2}+3 n\right)+1=\frac{1}{2}(n+1)(n+2) .
$$

If C is a curve of degree n on \mathbb{P}^{2}, we get

$$
p_{a}(C)=\frac{1}{2}\left(n^{2}-3 n\right)+1=\frac{1}{2}(n-1)(n-2) .
$$

If $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$, we have $A(X)=\mathbb{Z}[s, t] /\left(s^{2}, t^{2}\right)$, where $s=\left[0 \times \mathbb{P}^{1}\right]$ and $t=\left[\mathbb{P}^{1} \times 0\right]$. From $T_{X}=\operatorname{pr}_{1}^{*}\left(T_{\mathbb{P}^{1}}\right) \oplus \operatorname{pr}_{2}^{*}\left(T_{\mathbb{P}^{1}}\right)=L(2 s) \oplus L(2 t)$, we
find $K=-2(s+t)$ and $\operatorname{td}\left(T_{X}\right)=\operatorname{td}(L(2 s)) \cdot \operatorname{td}(L(2 t))=(1+s)(1+t)=$ $1+s+t+s t$, and so $\chi\left(X, \mathcal{O}_{X}\right)=\int_{X} \operatorname{td}\left(T_{X}\right)=1$. We find

$$
\chi\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, L(m s+n t)\right)=m n+m+n+1=(m+1)(n+1)
$$

If C is a curve on X of bidegree (m, n), we have $[C]=m s+n t$, and so $p_{a}(C)=\frac{1}{2} \int_{X}(C \cdot C+C \cdot K)+1=m n-m-n+1=(m-1)(n-1)$.

References

[1] William Fulton. Intersection Theory
[2] Robin Hartshorne. Algebraic Geometry
[3] J-P. Serre. Faisceaux algébriques cohérents
[4] A. Borel, J-P. Serre. Le théorème de Riemann-Roch (d'aprés Grothendieck)
[5] A. B. Altman, S. L. Kleiman. Introduction to Grothendieck duality theory
[6] J. Harris. Algebraic Geometry

[^0]: Date: April 13, 2001.

