Genus of complete intersections in spherical varieties

Kiumars Kaveh

Modern Schubert calculus AMS meeting, Rutgers November 14-15, 2015

Newton polyhedra theory

Let $A \subset \mathbb{Z}^{n}$ finite.
$L_{A}:=\left\{f=\sum_{\alpha \in A} c_{\alpha} x^{\alpha}\right\}$ finite dim. subspace of
Laurent polynomials.
Fix $A_{1}, \ldots, A_{k} \subset \mathbb{Z}^{n}$ finite. $\Delta_{i}=\operatorname{conv}\left(A_{i}\right)$.
Pick $f_{i} \in L_{A_{i}}$ generic.
$X\left(f_{1}, \ldots, f_{k}\right):=\left\{x \in\left(\mathbb{C}^{*}\right)^{n} \mid f_{1}(x)=\cdots=\right.$
$\left.f_{k}(x)=0\right\}$.

Problem (Newton polyhedra theory)

Find formulae for discrete geo./top. invariants of $X\left(f_{1}, \ldots, f_{k}\right)$ in terms of the Δ_{i}.

Euler characteristic of a complete intersection in torus

Theorem (Khovanskii, 1978)

Euler characteristic of
$X\left(f_{1}, \ldots, f_{k}\right)=n!\left(\prod_{i=1}^{k} \Delta_{i}\left(1+\Delta_{i}\right)^{-1}\right)_{n}$, where:
$\Delta_{1}^{n_{1}} \cdots \Delta_{k}^{n_{k}}=V(\underbrace{\Delta_{1}, \ldots, \Delta_{1}}_{n_{1}}, \cdots, \underbrace{\Delta_{k}, \ldots, \Delta_{k}}_{n_{k}})$,
$n=n_{1}+\cdots+n_{k}$ and V denotes mixed volume.

Euler characteristic of a complete intersection in torus

Case $k=1$:
Corollary
Euler characteristic of $X(f)=(-1)^{n-1} \operatorname{vol}_{n}(\Delta)$.
Case $k=n$:
Corollary (Bernstein-Kushnirenko, 1978) $\#\left(X_{f_{1}, \ldots, f_{n}}\right)=n!V\left(\Delta_{1}, \ldots, \Delta_{n}\right)$.

Genus of a variety

- X compact complex manifold. $\operatorname{dim}(X)=n$.
- $p_{g}(X):=\operatorname{dim}\left(H^{0}\left(X, \Omega^{n}\right)\right)=h^{n, 0}(X)$.
- $p_{a}(X):=\sum_{p=0}^{n}(-1)^{p} h^{p, 0}(X)$.
- X Riemann surface, $p_{g}(X)=$ number of holes.
- Birationally invariant, so definition extends to singular varieties also.

Genus of a hypersurface in torus

$A \subset \mathbb{Z}^{n}$ finite, $f \in L_{A}$ generic, $\Delta=\operatorname{conv}(A)$.
Theorem (Khovanskii, 1978)
$p_{g}(X(f))=N^{\circ}(\Delta)$, the number of lattice points in interior of Δ.

Example: Generic degree d curve in $\mathbb{C P}^{2}$ is smooth. Genus is $(d-1)(d-2) / 2$.

Genus of a complete intersection in torus

$A_{1}, \ldots, A_{k} \subset \mathbb{Z}^{n}$ finite, $f_{i} \in L_{A_{i}}$ generic,
$\Delta_{i}=\operatorname{conv}\left(A_{i}\right)$.

Theorem (Khovanskii, 1978)

$$
\begin{aligned}
& p_{a}\left(X\left(f_{1}, \ldots, f_{k}\right)\right)=1-\sum_{i_{1}} N^{\prime}\left(\Delta_{i_{1}}\right)+ \\
& \sum_{i_{1}<i_{2}} N^{\prime}\left(\Delta_{i_{1}}+\Delta_{i_{2}}\right)-\cdots+(-1)^{k} N^{\prime}\left(\Delta_{1}+\cdots+\Delta_{k}\right) .
\end{aligned}
$$

where $N^{\prime}(\Delta)=(-1)^{\operatorname{dim}(\Delta)} N^{\circ}(\Delta)$.

Long exact sequence

X compact complex manifold, L line bundle.
D_{1}, \ldots, D_{k} smooth transverse hypersurfaces, $X_{m}=D_{1} \cap \cdots \cap D_{m}$.
$0 \rightarrow \mathcal{O}\left(X_{m-1}, L \otimes L_{m}^{-1}\right) \xrightarrow{i} \mathcal{O}\left(X_{m-1}, L\right) \xrightarrow{j}$
$\mathcal{O}\left(X_{m}, L\right) \rightarrow 0$.
$0 \rightarrow H^{0}\left(X_{m-1}, L \otimes L_{m}^{-1}\right) \rightarrow H^{0}\left(X_{m-1}, L\right) \rightarrow$ $H^{0}\left(X_{m}, L\right) \rightarrow \cdots$

G-varieties

G connected reductive group, $X=G / H$
homogen. space.
$L_{1}, \ldots, L_{k} G$-line bundles.
$E_{i} \subset H^{0}\left(X, L_{i}\right) G$-inv. linear system, $D_{i} \in E_{i}$ generic element.

Problem

Find formulae for discrete geo./top. invariants of $X_{k}=D_{1} \cap \cdots \cap D_{k}$ in terms of convex geo. data.

Spherical varieties

Definition

G-variety X is spherical if a Borel subgroup has a dense orbit.

- X spherical with G-line bundle $L \Rightarrow$ $H^{0}(X, L)$ multiplicity free G-module.
- One has a hope of answering the above problem for spherical varieties.

Examples of spherical varieties

- Toric variety with $G=T$-action.
- G / P with left G-action.
- G with $G \times G$-action.
- Space of quadrics $P G L(n, \mathbb{C}) / P O(n, \mathbb{C})$ with $G=P G L(n, \mathbb{C})$-action.

String polytopes of irreducible

 representationG conn. reductive group. λ dominant weight.

- There is a basis B_{λ} for V_{λ} called crystal or canonical basis (Kashiwara-Lusztig).
- Fix a reduced decomposition \underline{w}_{0} for $w_{0} . \exists$ parametrization $\iota_{\underline{w}_{0}}: B_{\lambda} \rightarrow \mathbb{Z}^{N}$ with lattice points in a polytope $\Delta_{\underline{w}_{0}}(\lambda)$ (string polytopes of Littelmann- Berenstein-Zelevinsky).
- (K., 2012) $\iota_{\underline{w}_{0}}$ coincides with the highest term valuation corr. to the coor. system on a Bott-Samelson variety ass. to \underline{w}_{0}.

12

Degree of generalized Plücker embedding

$G / P \hookrightarrow \mathbb{P}\left(V_{\lambda}\right)$. Let $n=\operatorname{dim}(G / P)$.
L_{λ} ass. line bundle.

Degree of generalized Plücker embedding

$G / P \hookrightarrow \mathbb{P}\left(V_{\lambda}\right)$. Let $n=\operatorname{dim}(G / P)$.
L_{λ} ass. line bundle.

Theorem

degree of $L_{\lambda}=n!\operatorname{vol}_{n}\left(\Delta_{\underline{w}_{0}}(\lambda)\right)$.
One can think of $\Delta_{\underline{w}_{0}}(\lambda)$ as Newton polytopes for G / P.

Gelfand-Zetlin polytopes

$$
\begin{gathered}
G=G L(n, \mathbb{C}) . \lambda=\left(\lambda_{1} \leq \cdots \leq \lambda_{n}\right) \\
\lambda_{1} \begin{array}{cccccc}
\lambda_{2} & \cdots & \cdots & \cdots & \lambda_{n} \\
& x_{1, n-1} & x_{2, n-1} & \cdots & \cdots & x_{n-1, n-1} \\
\Delta_{G Z}(\lambda)= & & & \cdots & \cdots & \cdots \\
& & & & x_{1,2} & x_{2,2} \\
& & & & & x_{1,1}
\end{array}
\end{gathered}
$$

where $\begin{array}{ll}a & b \\ c\end{array}$ means $a \leq c \leq b$.
$\Delta_{G Z}(\lambda) \subset \mathbb{R}^{n(n-1) / 2}$.
15

Moment polytope of a G-variety

G-variety $X, L G$-line bundle.

Definition (Brion, 1987)

$\Delta_{\text {mom }}(X, L)=\overline{\left\{\lambda / k \mid V_{\lambda} \text { appears in } H^{0}\left(X, L^{\otimes k}\right)\right\}}$.
$\Delta_{m o m}(X, L) \subset \Lambda_{\mathbb{R}}^{+}$convex polytope called moment polytope.
L ample $\Rightarrow \Delta_{\text {mom }}(X, L)$ coincides with the Kirwan polytope in symplectic geometry (for action of K).

Newton-Okounkov polytope of a spherical variety

X spherical G-variety with G-line bundle L,
$n=\operatorname{dim}(X)$.
Definition (Okounkov, 1997; Alexeev-Brion, 2004)
$\Delta_{\underline{w}_{0}}(X, L)=\bigcup_{\lambda \in \Delta_{\operatorname{mom}}(X, L)}\left(\{\lambda\} \times \Delta_{\underline{w}_{0}}(\lambda)\right)$.

Newton-Okounkov polytope of a spherical variety
X spherical G-variety with G-line bundle L, $n=\operatorname{dim}(X)$.

Definition (Okounkov, 1997; Alexeev-Brion, 2004)
$\Delta_{\underline{w}_{0}}(X, L)=\bigcup_{\lambda \in \Delta_{\text {mom }}(X, L)}\left(\{\lambda\} \times \Delta_{\underline{w}_{0}}(\lambda)\right)$.
Theorem (Okounkov, Alexeev-Brion)
degree of $L=n!\operatorname{vol}\left(\Delta_{\underline{w}_{0}}(X, L)\right)$.

Polytopes associated to a G-invariant linear system

$E \subset H^{0}(X, L) G$-inv. linear system.
Definition
$\Delta_{\text {mom }}(X, E)=\overline{\left\{\lambda / k \mid V_{\lambda} \text { appears in } E^{k}\right\}}$.
Similar definition for $\Delta_{\underline{w}_{0}}(X, E)$.

Genus of a hypersurface in a spherical

 variety$X=G / H$ spherical, $n=\operatorname{dim}(X)$.
E globally generated G-inv. linear system.
Let X_{1} generic element of E.
Theorem (K.-Khovanskii, 2015)

$$
p_{g}\left(X_{1}\right)=N^{\circ}\left(\Delta_{\underline{w}_{0}}(X, E)\right) .
$$

Genus of a complete intersection in a spherical variety

E_{1}, \ldots, E_{k} globally gen. G-inv. linear system.
$D_{i} \in E_{i}$ generic.
Let $X_{k}=D_{1} \cap \cdots \cap D_{k}$.
Theorem (K.-Khovanskii, 2015)

$$
\begin{aligned}
& p_{a}\left(X_{k}\right)=1-\sum_{i_{1}} N^{\prime}\left(\Delta_{w_{0}}\left(X, E_{i_{1}}\right)\right)+ \\
& \sum_{i_{1}<i_{2}} N^{\prime}\left(\Delta_{\underline{w}_{0}}\left(X, E_{i_{1}} E_{i_{2}}\right)\right)-\cdots+ \\
& (-1)^{k} N^{\prime}\left(\Delta_{\underline{w}_{0}}\left(X, E_{1} \cdots E_{k}\right)\right) . \\
& \hline
\end{aligned}
$$

Genus of complete intersections in flag

 variety$$
G=G L(n, \mathbb{C}), \lambda=\left(\lambda_{1} \leq \cdots \leq \lambda_{n}\right)
$$

Corollary

$$
\begin{aligned}
& p_{a}\left(X_{k}\right)=1-\sum_{i_{1}} N^{\prime}\left(\Delta_{G Z}\left(\lambda_{i_{1}}\right)\right)+ \\
& \sum_{i_{1}<i_{2}} N^{\prime}\left(\Delta_{G Z}\left(\lambda_{i_{1}}\right)+\Delta_{G Z}\left(\lambda_{i_{2}}\right)\right)-\cdots+ \\
& (-1)^{k} N^{\prime}\left(\Delta_{G Z}\left(\lambda_{1}\right)+\cdots+\Delta_{G Z}\left(\lambda_{k}\right)\right) .
\end{aligned}
$$

Remarks

Ingredients of the proof:

- Equivariant resolution of singularities for spherical varieties.
- Ehrhart-Macdonald reciprocity and more generally Khovanskii-Pukhlikov theory.
- Vanishing of higher cohomologies of G-line bundles for spherical varieties (Brion).
We also obtain conditions for when X_{k} is irreducible.

Thank you!

24

