(Equivariant) Chern-Schwartz-MacPherson classes

Leonardo Mihalcea (joint with P. Aluffi)

November 14, 2015

Let X be a compact manifold, T_{X} tangent bundle, with Chern class

$$
c\left(T_{X}\right)=1+c_{1}\left(T_{X}\right)+\ldots+c_{n}\left(T_{X}\right)
$$

Gauss-Bonnet Theorem:

$$
c_{n}\left(T_{X}\right) \cap[X]=\chi(X)
$$

the topological Euler characteristic of X.
Question: What happens if X is singular ?

Constructible functions

Let X be an algebraic variety. Constructible functions:

$$
\mathcal{F}(X)=\left\{\sum c_{i} \mathbb{I}_{V_{i}}: c_{i} \in \mathbb{Z}, V_{i} \subset X \text { constructible }\right\} .
$$

If $f: X \rightarrow Y$ is a proper map, define a push-forward

$$
f_{*}: \mathcal{F}(X) \rightarrow \mathcal{F}(Y) ; \quad f_{*}\left(\mathbb{1}_{V}\right)(y)=\chi\left(f^{-1}(y) \cap V\right) .
$$

Chern-Schwartz-MacPherson classes

Theorem (Deligne - Grothendieck Conjecture; MacPherson '74, M. H. Schwartz)

There exists a unique natural transformation $c_{*}: \mathcal{F}(X) \rightarrow H_{*}(X)$ such that:
(1) If X is projective, non-singular, $c_{*}\left(\mathbb{1}_{X}\right)=c\left(T_{X}\right) \cap[X]$.
(1) c_{*} is functorial with respect to proper push-forwards $f: X \rightarrow Y$:

$$
\begin{aligned}
& \mathcal{F}(X) \xrightarrow{c_{*}} H_{*}(X) \\
& f_{*} \downarrow \\
& \mathcal{F}(Y) \xrightarrow{c_{*}} \begin{array}{l}
f_{*} \downarrow \\
H_{*}(Y)
\end{array}
\end{aligned}
$$

$$
\operatorname{css}(X):=c_{*}\left(\mathbb{1}_{X}\right)
$$

is the Chern-Schwartz- MacPherson class.

Aluffi's method

Let X closed, $\pi: Z \rightarrow X$ be a resolution of singularities, and $D_{X} \subset X$ a divisor such that

$$
\pi^{-1}\left(D_{X}\right)=D:=D_{1} \cup \ldots \cup D_{k}
$$

is simple normal crossing (SNC) and $\pi: Z \backslash D \simeq X \backslash D_{X}$. Then

$$
\begin{aligned}
\operatorname{CSM}\left(X \backslash D_{X}\right) & =\pi_{*}(\operatorname{cSM}(Z \backslash D)) \\
& =\pi_{*}\left(\operatorname{csM}^{\operatorname{CS}}(Z)-\operatorname{cSM}(D)\right) \\
& =\pi_{*}\left(\frac{c\left(T_{Z}\right)}{\left(1+D_{1}\right)\left(1+D_{2}\right) \ldots\left(1+D_{k}\right)} \cap[Z]\right) .
\end{aligned}
$$

Goal: Apply this to a (Schubert variety \backslash boundary divisor) and a Bott-Samelson resolution.

Lie and Schubert data

G - complex simple Lie group and $T \subset B \subset G$ (torus \subset Borel $\subset G$). E.g. $G=\mathrm{SL}_{n}(\mathbb{C})$ and $B=$ upper triangular matrices.
$W:=N_{G}(T) / T$ - the Weyl group.
$\ell: W \rightarrow \mathbb{N}$ - length function.
s_{i} - simple reflections; w_{0} - longest element in W.
G / B - generalized flag manifold; e.g. $\mathrm{Fl}(n)=\left\{F_{1} \subset \ldots \subset F_{n}=\mathbb{C}^{n}\right\}$. $X(w)^{0}:=B w B / B$ - Schubert cell.
$X(w):=\overline{B w B / B}$ - Schubert variety.

$$
\operatorname{dim}_{\mathbb{C}} X(w)=\ell(w) ; \quad \ell\left(w_{0}\right)=\operatorname{dim} G / B
$$

$\partial X(w):=X(w) \backslash X(w)^{\circ}$ - boundary divisor.

Bott-Samelson varieties and CSM classes

To any reduced decomposition $w=s_{i_{1}} \ldots s_{i_{k}}$ one can define the Bott-Samelson-(Demazure-Hansen) variety $Z(w)$ inductively as a tower of \mathbb{P}^{1}-bundles. It comes equipped with

$$
\pi: Z(w) \rightarrow X(w)
$$

proper, birational such that

$$
\pi^{-1}(\partial X(w))=D:=D_{1} \cup \ldots \cup D_{k}
$$

is a SNC divisor and $\pi: Z(w) \backslash D \simeq X(w) \backslash \partial X(w)$.

Corollary (Aluffi)

$$
c_{S M}\left(X(w)^{\circ}\right)=\pi_{*}\left(\frac{c\left(T_{Z(w)}\right)}{\left(1+D_{1}\right)\left(1+D_{2}\right) \ldots\left(1+D_{k}\right)} \cap[Z(w)]\right)
$$

Examples

Recall that $H^{*}(G / B)=\oplus_{w \in W} \mathbb{Z}[X(w)]$. Corollary immediately implies:

$$
\operatorname{csM}\left(X(w)^{o}\right)=\sum_{v \leq w} c(w ; v)[X(v)]=1 \cdot[X(w)]+\ldots+1 \cdot[p t] .
$$

(1) $G / B=\mathbb{P}^{1}$. Then

$$
c_{\mathrm{SM}}\left(\mathbb{P}^{1}\right)=c\left(T_{\mathbb{P}^{1}}\right) \cap\left[\mathbb{P}^{1}\right]=\left[\mathbb{P}^{1}\right]+2[p t]
$$

(2) $\operatorname{CSM}[p t]=[p t]$ thus

$$
\left.\operatorname{cSM}\left(\mathbb{A}^{1}\right)=\operatorname{csM}\left(\mathbb{P}^{1}\right)\right)-\operatorname{csM}([p t])=\left[\mathbb{P}^{1}\right]+[p t]
$$

Operators on $H^{*}(G / B)$

The BGG operator: let $P_{k} \subset G$ minimal parabolic.

$$
\begin{array}{ccc}
G / B \times \times^{G / P_{k}} G / B \xrightarrow{p r_{1}} & G / B \\
p r_{2} \downarrow & p \downarrow \\
G / B & \\
\partial_{k}=\left(p r_{2}\right)_{*}\left(p r_{1}\right)^{*}: H^{*}(G / B) \rightarrow & H^{*-2}(G / B) .
\end{array}
$$

Right Weyl group action: Let $s_{k} \in W$. Since $G / B \simeq_{\text {hom }} G / T$, right multiplication induces

$$
s_{k}: H^{*}(G / B) \rightarrow H^{*}(G / B) \quad \text { automorphism. }
$$

Alternatively, using Chevalley rule

$$
s_{k}=i d-c_{1}\left(\mathcal{L}_{-\alpha_{k}}\right) \partial_{k} .
$$

Formulas for left/right W-actions on $H_{T}^{*}(G / B)$ found by: Peterson, Knutson, Tymoczko,....

A Demazure-Lusztig type operator

Define $\mathcal{T}_{k}:=\partial_{k}-s_{k}$.
Note: This operator is a specialization of an operator which appears in the study of a degenerate affine Hecke algebra, in relation to the Steinberg variety in $T_{G / B}^{*} \times T_{G / B}^{*}$.

Lemma

The operators \mathcal{T}_{k} satisfy the following properties:
(1) (commutativity) E.g. in type $A, \mathcal{T}_{i} \mathcal{T}_{j}=\mathcal{T}_{j} \mathcal{T}_{i}$ if $|i-j| \geq 2$;
(2) (braid relations) E.g. in type $A: \mathcal{T}_{i} \mathcal{T}_{i+1} \mathcal{T}_{i}=\mathcal{T}_{i+1} \mathcal{T}_{i} \mathcal{T}_{i+1}$;
(3) (square) $\mathcal{T}_{i}^{2}=i d$.
(9) (Schubert action): $\mathcal{T}_{k}([X(w)])=$

$$
\begin{cases}-[X(w)] & \text { if } \ell\left(w s_{k}\right)<\ell(w) \\ {\left[X\left(w s_{k}\right)\right]+[X(w)]+\sum\left\langle\alpha_{k}, \beta^{\vee}\right\rangle\left[X\left(w s_{k} s_{\beta}\right)\right]} & \text { if } \ell\left(w s_{k}\right)>\ell(w)\end{cases}
$$

where $\beta>0, \beta \neq \alpha_{k}$ and $\ell\left(w s_{k} s_{\beta}\right)=\ell(w)$.

CSM classes of Schubert cells

Theorem (Aluffi-M.)

(1) Let $w \in W$ be a Weyl group element, and $X(w)^{\circ} \subset G / B$ the Schubert cell. Then

$$
\mathcal{T}_{k}\left(c_{S M}\left(X(w)^{o}\right)\right)=c_{S M}\left(X\left(w s_{k}\right)^{o}\right)
$$

(2) Let $P \subset G$ be any parabolic subgroup and $p r: G / B \rightarrow G / P$ be the projection. Then

$$
p r_{*}\left(c_{S M}\left(X(w)^{\circ}\right)\right)=c_{S M}\left(X\left(w W_{P}\right)^{o}\right)
$$

where $W_{P} \leq W$ the the subgroup generated by the reflections in P.

Positivity

$\mathrm{Fl}(3)=\left\{F_{1} \subset F_{2} \subset \mathbb{C}^{3}\right\}$ - the flag variety. $\operatorname{dim} \mathrm{Fl}(3)=\ell\left(w_{0}\right)=\ell\left(s_{1} s_{2} s_{1}\right)=3$.
$c_{\mathrm{SM}}\left(\mathrm{Fl}(3)^{\circ}\right)=[\mathrm{Fl}(3)]+\left[X\left(s_{2} s_{1}\right]+\left[X\left(s_{1} s_{2}\right)\right]+2\left[X\left(s_{1}\right)\right]+2\left[X\left(s_{2}\right)\right]+[p t]\right.$

Conjecture

The coefficients $c(w ; u)>0$ for any $u \leq w$.

- J. Huh proved the conjecture in the case $G / P=$ Grassmannian.
- Positivity has been checked for $\mathrm{Fl}(n), n \leq 7$.
- We proved the conjecture in some cases: $\ell(w)-\ell(u) \leq 1$ or if w has a reduced decomposition into distinct reflections.

Equivariant case

T. Ohmoto defined an equivariant version of MacPherson's transformation:

$$
c_{*}^{T}: \mathcal{F}_{T}(X) \rightarrow H_{*}^{T}(X)
$$

which satisfies functoriality and

$$
c_{*}^{T}\left(\mathbb{1}_{X}\right)=c^{T}\left(T_{X}\right) \cap[X]_{T} \text { if } X \text { is projective, nonsingular. }
$$

A. Weber proved properties of localizations of CSM classes, and Rimányi-Varchenko used these and Maulik-Okounkov stable envelopes to obtain localization formulas for CSM classes $\operatorname{CSM}^{T}\left(X(w)^{\circ}\right)_{\mid u}$.

Theorem (Aluffi - M.)
Let $\mathcal{T}_{k}^{T}:=\partial_{k}-s_{k}$. Then

$$
\mathcal{T}_{k}^{T}\left(c_{S M}^{T}\left(X(w)^{o}\right)\right)=c_{S M}{ }^{T}\left(X\left(w s_{k}\right)^{\circ}\right)
$$

The equivariant operator

The operator \mathcal{T}_{k}^{T} acts almost as \mathcal{T}_{k} on Schubert classes: $\mathcal{T}_{k}([X(w)])=$

$$
\left\{\begin{array}{l}
-[X(w)] \\
\left(1+w\left(\alpha_{k}\right)\right)\left[X\left(w s_{k}\right)\right]+[X(w)]+\sum\left\langle\alpha_{k}, \beta^{\vee}\right\rangle\left[X\left(w s_{k} s_{\beta}\right)\right]
\end{array}\right.
$$

where branches are as before. The $(c(w ; u))$ matrix for cells in $\mathrm{Fl}(3)$ is:

$$
\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1+\alpha_{2} & 0 & 2+\alpha_{1}+\alpha_{2} & 1+\alpha_{2} & 2+\alpha_{1}+\alpha_{2} \\
0 & 0 & 1+\alpha_{1} & 1+\alpha_{1} & 2+\alpha_{1}+\alpha_{2} & 2+\alpha_{1}+\alpha_{2} \\
0 & 0 & 0 & \left(1+\alpha_{1}\right)\left(1+\alpha_{1}+\alpha_{2}\right) & 0 & \left(1+\alpha_{1}\right)\left(1+\alpha_{1}+\alpha_{2}\right) \\
0 & 0 & 0 & 0 & \left(1+\alpha_{2}\right)\left(1+\alpha_{1}+\alpha_{2}\right) & \left(1+\alpha_{2}\right)\left(1+\alpha_{1}+\alpha_{2}\right) \\
0 & 0 & 0 & 0 & 0 & \left(1+\alpha_{1}\right)\left(1+\alpha_{2}\right)\left(1+\alpha_{1}+\alpha_{2}\right)
\end{array}\right)
$$

Read on columns!

Conjecture (Equivariant positivity)

For any $u \leq w$, the coefficients $c(w ; u)$ are polynomials with non-negative coefficients in simple roots α_{i}.

Further connections

- Let $\iota: G / B \rightarrow T_{G / B}^{*}$ be the zero section and let $\operatorname{Stab}_{+}(w) \in H_{T \times \mathbb{C}^{*}}^{*}\left(T_{G / B}^{*}\right)$ be the stable envelope.
Changjian Su used the operator \mathcal{T}_{k}^{T} to prove:

$$
\iota^{*} \operatorname{Stab}_{+}(w)_{\mid \hbar=1}= \pm P . D . c_{S M}^{T}\left(X(w)^{o}\right)
$$

- Let $L_{\mathbb{C}^{*}}\left(T_{G / B}^{*}\right)$ be the group of Lagrangian cycles. Ginzburg proved that MacPherson's map c_{*} factors as

$$
\mathcal{F}(G / B) \xrightarrow{\simeq} L_{\mathbb{C}^{*}}\left(T_{G / B}^{*}\right) \xrightarrow{c_{*}^{G i}} H_{*}(G / B)
$$

Then (C. Su - M., J. Schürmann):

$$
c_{*}^{G i}\left(S t a b_{+}(w)\right)= \pm c_{\mathrm{SM}}\left(X(w)^{o}\right)
$$

- Seung-Jin Lee: in type A, the coefficients $c(w ; u)$ coincide with certain specializations in Fomin-Kirillov algebra.

THANK YOU!

