Knutson-Vakil puzzles compute equivariant K-theory of Grassmannians

Oliver Pechenik
University of Illinois at Urbana-Champaign
\section*{Fall Eastern AMS Sectional Meeting} Rutgers University, New Brunswick NJ
November 2015

Joint with Alexander Yong (UIUC)
arXiv:1506. 01992
arXiv:1508.00446

Setup

- Consider the Grassmannian $X=\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$ of k-dimensional subspaces of \mathbb{C}^{n}

Setup

- Consider the Grassmannian $X=\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$ of k-dimensional subspaces of \mathbb{C}^{n}
- $B=\left[\begin{array}{llll}\star & & & \\ \star & \star & & \\ \star & \star & \star & \\ \star & \star & \star & \star\end{array}\right] \curvearrowright X$

Setup

- Consider the Grassmannian $X=\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$ of k-dimensional subspaces of \mathbb{C}^{n}
- $\mathrm{B}=\left[\begin{array}{llll}\star & & & \\ \star & \star & & \\ \star & \star & \star & \\ \star & \star & \star & \star\end{array}\right] \curvearrowright X \quad \mathrm{~T}=\left[\begin{array}{llll}\star & & & \\ & \star & & \\ & & \star & \\ & & & \star\end{array}\right] \curvearrowright X$

Setup

- Consider the Grassmannian $X=\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$ of k-dimensional subspaces of \mathbb{C}^{n}
- $\mathrm{B}=\left[\begin{array}{llll}\star & & & \\ \star & \star & & \\ \star & \star & \star & \\ \star & \star & \star & \star\end{array}\right] \curvearrowright X \quad \mathrm{~T}=\left[\begin{array}{llll}\star & & & \\ & \star & & \\ & & \star & \\ & & & \star\end{array}\right] \curvearrowright X$
- T-fixed points \Longleftrightarrow partitions in $k \times(n-k)$

Setup

- Consider the Grassmannian $X=\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$ of k-dimensional subspaces of \mathbb{C}^{n}
- $\mathrm{B}=\left[\begin{array}{llll}\star & & & \\ \star & \star & & \\ \star & \star & \star & \\ \star & \star & \star & \star\end{array}\right] \curvearrowright X \quad \mathrm{~T}=\left[\begin{array}{llll}\star & & & \\ & \star & & \\ & & \star & \\ & & & \star\end{array}\right] \curvearrowright X$
- T-fixed points \Longleftrightarrow partitions in $k \times(n-k)$

- Their B-orbit closures are the Schubert varieties X_{λ}

Setup

- Consider the Grassmannian $X=\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$ of k-dimensional subspaces of \mathbb{C}^{n}
- $\mathrm{B}=\left[\begin{array}{llll}\star & & & \\ \star & \star & & \\ \star & \star & \star & \\ \star & \star & \star & \star\end{array}\right] \curvearrowright X \quad \mathrm{~T}=\left[\begin{array}{llll}\star & & & \\ & \star & & \\ & & \star & \\ & & & \star\end{array}\right] \curvearrowright X$
- T-fixed points \Longleftrightarrow partitions in $k \times(n-k)$

- Their B-orbit closures are the Schubert varieties X_{λ}
- Schubert classes σ_{λ} give a \mathbb{Z}-basis of $H^{\star}(X)$

Setup

- Consider the Grassmannian $X=\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$ of k-dimensional subspaces of \mathbb{C}^{n}
- $\mathrm{B}=\left[\begin{array}{llll}\star & & & \\ \star & \star & & \\ \star & \star & \star & \\ \star & \star & \star & \star\end{array}\right] \curvearrowright X \quad \mathrm{~T}=\left[\begin{array}{llll}\star & & & \\ & \star & & \\ & & \star & \\ & & & \star\end{array}\right] \curvearrowright X$
- T-fixed points \Longleftrightarrow partitions in $k \times(n-k)$

- Their B-orbit closures are the Schubert varieties X_{λ}
- Schubert classes σ_{λ} give a \mathbb{Z}-basis of $H^{\star}(X)$
- $\sigma_{\lambda} \cdot \sigma_{\mu}=\sum_{\nu} c_{\lambda, \mu}^{\nu} \sigma_{\nu}$

Setup

- Consider the Grassmannian $X=\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$ of k-dimensional subspaces of \mathbb{C}^{n}
- $\mathrm{B}=\left[\begin{array}{llll}\star & & & \\ \star & \star & & \\ \star & \star & \star & \\ \star & \star & \star & \star\end{array}\right] \curvearrowright X \quad \mathrm{~T}=\left[\begin{array}{llll}\star & & & \\ & \star & & \\ & & \star & \\ & & & \star\end{array}\right] \curvearrowright X$
- T-fixed points \Longleftrightarrow partitions in $k \times(n-k)$

- Their B-orbit closures are the Schubert varieties X_{λ}
- Schubert classes σ_{λ} give a \mathbb{Z}-basis of $H^{\star}(X)$
- $\sigma_{\lambda} \cdot \sigma_{\mu}=\sum_{\nu} c_{\lambda, \mu}^{\nu} \sigma_{\nu} \quad$ (Littlewood-Richardson coefficients)

Setup

- Consider the Grassmannian $X=\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$ of k-dimensional subspaces of \mathbb{C}^{n}
- $\mathrm{B}=\left[\begin{array}{llll}\star & & & \\ \star & \star & & \\ \star & \star & \star & \\ \star & \star & \star & \star\end{array}\right] \curvearrowright X \quad \mathrm{~T}=\left[\begin{array}{llll}\star & & & \\ & \star & & \\ & & \star & \\ & & & \star\end{array}\right] \curvearrowright X$
- T-fixed points \Longleftrightarrow partitions in $k \times(n-k)$

- Their B-orbit closures are the Schubert varieties X_{λ}
- Schubert classes σ_{λ} give a \mathbb{Z}-basis of $H^{\star}(X)$
-

$$
c_{\lambda, \mu}^{\nu} \in \mathbb{Z}_{\geq 0}
$$

Cohomological puzzles

- Partitions inside $k \times(n-k) \longleftrightarrow$ binary strings of length n with k 1's

Cohomological puzzles

- Partitions inside $k \times(n-k) \longleftrightarrow$ binary strings of length n with k 1's

- Let $\Delta_{\lambda, \mu, \nu}$ be an equilateral triangle of side length n with the boundary labeled by
- λ as read \nearrow along the left side;
- μ as read \searrow along the right side; and
- ν as read \rightarrow along the bottom side.

Cohomological puzzles

- Partitions inside $k \times(n-k) \longleftrightarrow$ binary strings of length n with k 1's

- Let $\Delta_{\lambda, \mu, \nu}$ be an equilateral triangle of side length n with the boundary labeled by
- λ as read \nearrow along the left side;
- μ as read \searrow along the right side; and
- ν as read \rightarrow along the bottom side.

Theorem (A. Knutson-T. Tao 1999)

$c_{\lambda, \mu, \nu}$ counts tilings of $\Delta_{\lambda, \mu, \nu}$ by the following puzzle pieces:

Example puzzle calculation

$c_{\text {畀:TP }}^{\text {PI }}=2$ is calculated by the tilings:

- In K-theory, structure coefficients are computed by puzzles with an extra (non-rotatable) piece due to A. Buch:

It has weight -1 .

Puzzles in richer cohomology theories

- In K-theory, structure coefficients are computed by puzzles with an extra (non-rotatable) piece due to A. Buch:

It has weight -1 .

- In T-equivariant cohomology, structure coefficients are computed by puzzles with an extra (non-rotatable) piece due to A. Knutson-T. Tao:

It has weight $t_{i}-t_{j}$, where i, j depend on the location.

The Knutson-Vakil conjecture

- The equivariant green rhombus now has weight $1-\frac{t_{i}}{t_{j}}$
- The purple and yellow gashed triangles have weight -1

The Knutson-Vakil conjecture

- The equivariant green rhombus now has weight $1-\frac{t_{i}}{t_{j}}$
- The purple and yellow gashed triangles have weight -1
- The yellow gashed triangle may only appear with attached to its left, as

The Knutson-Vakil conjecture

- The equivariant green rhombus now has weight $1-\frac{t_{i}}{t_{j}}$
- The purple and yellow gashed triangles have weight -1
- The yellow gashed triangle may only appear with attached to its left, as
- There is a 'non-local' requirement for using :
"It may only be placed (when completing the puzzle from top to bottom and left to right as usual) if the edges to its right are a (possibly empty) series of horizontal 0 's followed by a 1"

The Knutson-Vakil conjecture

- The equivariant green rhombus now has weight $1-\frac{t_{i}}{t_{j}}$
- The purple and yellow gashed triangles have weight -1
- The yellow gashed triangle may only appear with attached to its left, as
- There is a 'non-local' requirement for using $\overline{\text { : }}$
"It may only be placed (when completing the puzzle from top to bottom and left to right as usual) if the edges to its right are a (possibly empty) series of horizontal 0 's followed by a 1"

Conjecture (A. Knutson-R. Vakil 2005)

The T-equivariant K-theory coefficient $c_{\lambda, \mu}^{\nu}$ is the weighted count of all such puzzle fillings of $\Delta_{\lambda, \mu, \nu}$.

Counterexample

For $c_{\square, \mathrm{a}}^{\mathbb{D}}$ for $\operatorname{Gr}_{2}\left(\mathbb{C}^{5}\right)$, there are six KV-puzzles $P_{1}, P_{2}, \ldots, P_{6}$.

$$
\mathrm{wt}\left(P_{1}\right)=-1
$$

$$
\mathrm{wt}\left(P_{4}\right)=(-1)^{2}\left(1-\frac{t_{2}}{t_{3}}\right) \quad \operatorname{wt}\left(P_{5}\right)=(-1)^{2}\left(1-\frac{t_{2}}{t_{3}}\right) \quad \mathrm{wt}\left(P_{6}\right)=(-1)^{3}\left(1-\frac{t_{3}}{t_{4}}\right)\left(1-\frac{t_{2}}{t_{3}}\right)
$$

Counterexample

For $c_{\square, \mathrm{a}}^{\mathbb{D}}$ for $\operatorname{Gr}_{2}\left(\mathbb{C}^{5}\right)$, there are six KV-puzzles $P_{1}, P_{2}, \ldots, P_{6}$.

$$
\mathrm{wt}\left(P_{1}\right)=-1
$$

$$
\mathrm{wt}\left(P_{4}\right)=(-1)^{2}\left(1-\frac{t_{2}}{t_{3}}\right) \quad \operatorname{wt}\left(P_{5}\right)=(-1)^{2}\left(1-\frac{t_{2}}{t_{3}}\right) \quad \mathrm{wt}\left(P_{6}\right)=(-1)^{3}\left(1-\frac{t_{3}}{t_{4}}\right)\left(1-\frac{t_{2}}{t_{3}}\right)
$$

- However

$$
c_{\mathrm{m}, \mathrm{a}}^{\mathrm{P}}=-\left(1-\frac{t_{2}}{t_{4}}\right)=\mathrm{wt}\left(P_{2}\right)+\mathrm{wt}\left(P_{3}\right)+\mathrm{wt}\left(P_{5}\right)+\mathrm{wt}\left(P_{6}\right)
$$

- Knutson-Vakil conjecture is false

Modified KV-puzzles compute $c_{\lambda, \mu}^{\nu}$

- But the Knutson-Vakil conjecture is almost correct
- Replace the complicated 'non-local' condition on with the condition that only appears in the combination pieces

Modified KV-puzzles compute $c_{\lambda, \mu}^{\nu}$

- But the Knutson-Vakil conjecture is almost correct
- Replace the complicated 'non-local' condition on with the condition that only appears in the combination pieces

Theorem (P.-Yong 2015)

The T-equivariant K-theory coefficient $c_{\lambda, \mu}^{\nu}$ is the weighted count of all modified KV-puzzles with boundary $\Delta_{\lambda, \mu, \nu}$.

Bijection to genomic tableaux

Bijection to genomic tableaux

THANK YOU!

