Three combinatorial formulas for type A quiver polynomials and K-polynomials

Ryan Kinser ${ }^{1}$ Allen Knutson ${ }^{2}$ Jenna Rajchgot* 3
${ }^{1}$ University of lowa
${ }^{2}$ Cornell University
${ }^{3}$ University of Michigan

AMS Special Session on Modern Schubert Calculus Rutgers University, Nov. 14-15, 2015

Type A quiver loci

- A quiver Q is a finite directed graph, and a representation of Q is an assignment of vector space to each vertex and linear map to each arrow.
- Q is of type \mathbf{A} if its underlying graph is a type A Dynkin diagram.
- Once the vector spaces $K^{d_{0}}, \ldots K^{d_{n}}$ at the vertices are fixed, the collection of representations is an algebraic variety, denoted by $\operatorname{rep}_{Q}(\mathbf{d})$. This variety carries the action of a base change group:

$$
G L(\mathbf{d}):=G L\left(d_{0}\right) \times G L\left(d_{1}\right) \times \cdots \times G L\left(d_{n}\right)
$$

- These orbit closures are called quiver loci.

Example

A representation of an equioriented type A quiver:

$$
K^{d_{0}} \xrightarrow{V_{1}} K^{d_{1}} \xrightarrow{V_{2}} K^{d_{2}} \cdots \xrightarrow{V_{n}} K^{d_{n}} .
$$

Here, V_{i} is a $d_{i-1} \times d_{i}$ matrix, and $\operatorname{rep}_{Q}(\mathbf{d})$ is the affine space of all sequences $\left(V_{1}, \ldots, V_{n}\right)$. The base change group $G L(\mathbf{d})$ acts by:

$$
\left(g_{0}, g_{1}, \ldots, g_{n-1}, g_{n}\right) \cdot\left(V_{1}, \ldots, V_{n}\right)=\left(g_{0} V_{1} g_{1}^{-1}, \ldots, g_{n-1} V_{n} g_{n}^{-1}\right)
$$

Equioriented type A quiver loci

The equioriented setting is well-understood. In particular:

- Orbits are determined by ranks of all products $V_{i} V_{i+1} \cdots V_{j}, i \leq j$.
- (Zelevinsky '85) The collection of these rank conditions is equivalent to certain Schubert-type rank conditions on an opposite Schubert cell in a partial flag variety. Eg. if Q has three arrows,

$$
\left(V_{1}, V_{2}, V_{3}\right) \stackrel{\zeta}{\leftrightarrows}\left[\begin{array}{cccc}
0 & 0 & V_{1} & I_{d_{0}} \\
0 & V_{2} & I_{d_{1}} & 0 \\
V_{3} & I_{d_{2}} & 0 & 0 \\
I_{d_{3}} & 0 & 0 & 0
\end{array}\right] \subseteq\left[\begin{array}{cccc}
* & * & * & I_{d_{0}} \\
* & * & I_{d_{1}} & 0 \\
* & I_{d_{2}} & 0 & 0 \\
I_{d_{3}} & 0 & 0 & 0
\end{array}\right] \cong P \backslash P w B_{-} .
$$

This map ζ is an equioriented Zelevinsky map.

- (Lakshmibai-Magyar '98) The Zelevinksy map is scheme-theoretic isomorphism which takes each orbit closure to a Schubert variety intersected with an opposite Schubert cell. Consequently, these quiver loci are normal and Cohen-Macaulay with rational singularities, F-split...
- The coordinate rings of equioriented type A quiver loci are naturally multigraded, and there exist multiple combinatorial formulas for their multidegrees and K-polynomials.

Goal: Generalize to all orientations.

Bipartite type A quiver loci

A type A quiver is bipartite if every vertex is a source or sink:

$G L(\mathbf{d})$-orbits of bipartite type A quivers are completely determined by ranks of particular matrices: given an interval $[i, j] \subseteq Q$, define the matrix

$$
Z_{[i, j]}=\left(\begin{array}{cccc}
& & & V_{i} \\
& . & V_{i+2} & V_{i+1} \\
V_{j-1} & V_{j-2} & & \\
V_{j} & & &
\end{array}\right)
$$

Let $\mathbf{r}_{[i, j]}:=\operatorname{rank} Z_{[i, j]}$, and let \mathbf{r} be the array of all $\mathbf{r}_{[i, j]}$. Then, two representations in $\operatorname{rep}_{Q}(\mathbf{d})$ lie in the same $\mathbf{G L}(\mathbf{d})$-orbit if and only if they have the same rank array \mathbf{r}.

The bipartite Zelevinsky map

Theorem (Kinser-R)

- There is a closed immersion from each representation space of a bipartite type A quiver to an opposite Schubert cell of a partial flag variety.
- This bipartite Zelevinsky map identifies each quiver locus with a Schubert variety intersected with the above opposite Schubert cell.
- Consequently, quiver loci are normal and C-M with rational singularities, F-split, orbit closure containment is determined by Bruhat order.

Example

The image of $\left(V_{1}, V_{2}, V_{3}, V_{4}, V_{5}, V_{6}\right)$ under the bipartite Zelevinsky map is:

$$
\left(\begin{array}{ccc|cccc}
0 & 0 & V_{1} & I_{d_{0}} & 0 & 0 & 0 \\
0 & V_{3} & V_{2} & 0 & I_{d_{2}} & 0 & 0 \\
V_{5} & V_{4} & 0 & 0 & 0 & I_{d_{4}} & 0 \\
V_{6} & 0 & 0 & 0 & 0 & 0 & I_{d_{6}} \\
\hline I_{d_{1}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & I_{d_{3}} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & I_{d_{5}} & 0 & 0 & 0 & 0
\end{array}\right) \subseteq\left(\begin{array}{cc}
* & I \\
I & 0
\end{array}\right) \cong P \backslash P V_{0} B^{-} .
$$

Multigradings, quiver polynomials, and K-polynomials

The maximal torus $T \subseteq \mathbf{G L}(\mathbf{d})$ consisting of matrices which are diagonal in each factor induces a multigrading on $K\left[\operatorname{rep}_{Q}(\mathbf{d})\right]$ which makes the ideals of orbit closures homogeneous:

Associate an alphabet \boldsymbol{s}^{j} to the vertex x_{j}, and an alphabet \mathbf{t}^{i} to the vertex y_{i} :

$$
\mathbf{s}^{j}=s_{1}^{j}, s_{2}^{j}, \ldots, s_{\mathbf{d}\left(x_{j}\right)}^{j} \quad \text { and } \quad \mathbf{t}^{i}=t_{1}^{i}, t_{2}^{i}, \ldots, t_{\mathbf{d}\left(y_{i}\right)}^{i}
$$

The coordinate function $f_{i j}^{\alpha_{k}}$ (picking out (i, j)-entry of $M_{\alpha_{k}}$) has degree $t_{i}^{k-1}-s_{j}^{k}$, and $f_{i j}^{\beta_{k}}$ has degree $t_{i}^{k}-s_{j}^{k}$.
With respect to the natural torus action on the opposite cell $\left[\begin{array}{cc}* & I_{d_{y}} \\ I_{d_{x}} & 0\end{array}\right]$, the bipartite Zelevinsky map is T-equivariant.

Notation

- The K-theoretic quiver polynomial $K \mathcal{Q}_{r}(\mathbf{t} / \mathbf{s}$) (resp., quiver polynomial $\mathcal{Q}_{\mathbf{r}}(\mathbf{t}-\mathbf{s})$) is the K-polynomial (resp., multidegree) of the quiver locus Ω_{r} with respect to its embedding in $\operatorname{rep}_{Q}(\mathbf{d})$ and multigrading above.
- Let $\mathcal{A}=\left(a_{1}, a_{2}, \ldots\right)$ and $\mathcal{B}=\left(b_{1}, b_{2}, \ldots\right)$ be alphabets. Denote by $\mathfrak{G}_{w}(\mathcal{A} ; \mathcal{B})$ the double Grothendieck polynomial associated to w : if w_{0} the longest element of the symmetric group S_{m} then

$$
\mathfrak{G}_{w_{0}}(\mathcal{A} ; \mathcal{B})=\prod_{i+j \leq m}\left(1-\frac{a_{i}}{b_{j}}\right)
$$

and $\mathfrak{G}_{s_{i} w}(\mathcal{A} ; \mathcal{B})=\bar{\partial}_{i} \mathfrak{G}_{w}(\mathcal{A} ; \mathcal{B})$ whenever $\ell\left(s_{i} w\right)<\ell(w)$.

- The double Schubert polynomial $\mathfrak{S}_{v}(\mathcal{A} ; \mathcal{B})$ of a permutation v is obtained from $\mathfrak{G}_{v}(\mathcal{A} ; \mathcal{B})$ by substituting $1-\star$ for each variable \star, and then taking lowest degree terms.

The bipartite ratio formulas

- Let \mathbf{r} be an array of ranks that determines a bipartite quiver orbit.
- Let $v(\mathbf{r})$ be the associated Zelevinsky permutation.
- Let v_{*} be the Zelevinsky permutation of the big $G L(\mathbf{d})$-orbit (which has closure $\operatorname{rep}_{Q}(\mathbf{d})$).

Theorem (Kinser-Knutson-R)

$$
K \mathcal{Q}_{\mathbf{r}}(\mathbf{t} / \mathbf{s})=\frac{\mathfrak{G}_{v(r)}(\mathbf{t}, \mathbf{s} ; \mathbf{s}, \mathbf{t})}{\mathfrak{G}_{v_{*}}(\mathbf{t}, \mathbf{s} ; \mathbf{s}, \mathbf{t})} \quad \text { and } \quad \mathcal{Q}_{\mathbf{r}}(\mathbf{t}-\mathbf{s})=\frac{\mathfrak{S}_{v(\mathbf{r})}(\mathbf{t}, \mathbf{s} ; \mathbf{s}, \mathbf{t})}{\mathfrak{S}_{v_{*}}(\mathbf{t}, \mathbf{s} ; \mathbf{s}, \mathbf{t})}
$$

Main idea of proof.
Use the bipartite Zelevinsky map along with [Woo-Yong '12] on K-polynomials and multidegrees of Kazhdan-Lusztig varieties.

Pipe dreams and lacing diagrams

Consider the dimension vector $\mathbf{d}=(2,2,2,3,2,2,1)$, so that representations have the form:

Work with the orbit through:

$$
P=\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0
\end{array}\right]\right)
$$

This sequence of partial permutations can be visualized with a lacing diagram:

Pipe dreams and lacing diagrams

The Zelevinsky image of the associated quiver locus is a Kazhdan-Lusztig variety which has pipe dreams supported inside the diagram of v_{0} (i.e. the northwest quadrant of $\left[\begin{array}{cc}* & I_{d_{y}} \\ I_{d_{x}} & 0\end{array}\right]$). For example:

Denote by $\operatorname{Pipes}\left(v_{0}, v(\mathbf{r})\right)$ all pipe dreams of $v(\mathbf{r})$ supported inside the Rothe diagram for v_{0}. Let P_{*} be the pipe dream which has a + at position (i, j) if and only if (i, j) lies outside of the "zig-zag" region.

Lemma

Every element of Pipes $\left(v_{0}, v(\mathbf{r})\right)$ contains P_{*} as a subdiagram, and furthermore $\operatorname{Pipes}\left(v_{0}, v_{*}\right)=\left\{P_{*}\right\}$.

Bipartite pipe formulas and component formulas

Theorem (Bipartite Pipe formula, Kinser-Knutson-R)
For any rank array \mathbf{r}, we have

$$
K \mathcal{Q}_{\mathbf{r}}(\mathbf{t} / \mathbf{s})=\sum_{P \in \operatorname{Pipes}\left(v_{0}, v(r)\right)}(-1)^{|P|-/(v(\mathbf{r}))}(\mathbf{1}-\mathbf{t} / \mathbf{s})^{P \backslash P_{*}}
$$

and

$$
\mathcal{Q}_{\mathbf{r}}(\mathbf{t}-\mathbf{s})=\sum_{P \in \operatorname{RedPipes}\left(v_{0}, v(\mathbf{r})\right)}(\mathbf{t}-\mathbf{s})^{P \backslash P_{*}} .
$$

Theorem (Bipartite component formula, Buch-Rimányi, Kinser-Knutson-R)

$$
K \mathcal{Q}_{\mathbf{r}}(\mathbf{t} / \mathbf{s})=\sum_{\mathbf{w} \in K W(\mathbf{r})}(-1)^{|\mathbf{w}|-\ell(v(r))} \mathfrak{G}_{\mathbf{w}}(\mathbf{t}, \mathbf{s})
$$

and

$$
\mathcal{Q}_{\mathbf{r}}(\mathbf{t}-\mathbf{s})=\sum_{\mathbf{w} \in W(\mathbf{r})} \mathfrak{S}_{\mathbf{w}}(\mathbf{t}, \mathbf{s})
$$

From the bipartite orientation to arbitrary orientation

Associate a bipartite type A quiver to an arbitrarily oriented quiver by inserting vertices and arrows. Let Q be the quiver:

We construct an associated bipartite quiver \widetilde{Q} by adding two new vertices w_{1}, w_{3}, and two new arrows δ_{1}, δ_{3}.

From bipartite to arbitrary orientation

Theorem (Kinser-R)

Let Q be a quiver of type A, and \widetilde{Q} the associated bipartite quiver defined above. Let U be the open set in $\operatorname{rep}_{\widetilde{Q}}(\mathbf{d})$ where the maps over the added arrows are invertible. Then there is a morphism $\pi: U \rightarrow \operatorname{rep}_{Q}(\mathbf{d})$ which is equivariant with respect to the natural projection of base change groups $\mathbf{G L}(\widetilde{\mathbf{d}}) \rightarrow \mathbf{G L}(\mathbf{d})$. Each orbit closure $\overline{\mathcal{O}} \subseteq \operatorname{rep}_{Q}(\mathbf{d})$ for an arbitrary type A quiver is isomorphic to an open subset of an orbit closure of $\operatorname{rep}_{\widetilde{Q}}(\widetilde{\mathbf{d}})$, up to a smooth factor. Namely, we have

$$
\overline{\pi^{-1}(\mathcal{O})} \simeq G^{*} \times \overline{\mathcal{O}}
$$

where the closure on the left hand side is taken in U.

Substitution to obtain formulas for arbitrary orientation

We can show that the K-polynomial of an orbit closure for Q is obtained from the K-polynomial of its corresponding orbit closure for \widetilde{Q} by substitution of variables.

Thank you.

