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Type A quiver loci

I A quiver Q is a finite directed graph, and a representation of Q is an
assignment of vector space to each vertex and linear map to each arrow.

I Q is of type A if its underlying graph is a type A Dynkin diagram.

I Once the vector spaces K d0 , . . .K dn at the vertices are fixed, the
collection of representations is an algebraic variety, denoted by repQ(d).
This variety carries the action of a base change group:

GL(d) := GL(d0)× GL(d1)× · · · × GL(dn).

I These orbit closures are called quiver loci.

Example
A representation of an equioriented type A quiver:

K d0 V1−→ K d1 V2−→ K d2 · · · Vn−→ K dn .

Here, Vi is a di−1 × di matrix, and repQ(d) is the affine space of all sequences
(V1, . . . ,Vn). The base change group GL(d) acts by:

(g0, g1, . . . , gn−1, gn) · (V1, . . . ,Vn) = (g0V1g
−1
1 , . . . , gn−1Vng

−1
n ).



Equioriented type A quiver loci

The equioriented setting is well-understood. In particular:

I Orbits are determined by ranks of all products ViVi+1 · · ·Vj , i ≤ j .

I (Zelevinsky ’85) The collection of these rank conditions is equivalent to
certain Schubert-type rank conditions on an opposite Schubert cell in a
partial flag variety. Eg. if Q has three arrows,

(V1,V2,V3)
ζ−→


0 0 V1 Id0
0 V2 Id1 0
V3 Id2 0 0
Id3 0 0 0

 ⊆

∗ ∗ ∗ Id0
∗ ∗ Id1 0
∗ Id2 0 0
Id3 0 0 0

 ∼= P\PwB−.

This map ζ is an equioriented Zelevinsky map.

I (Lakshmibai-Magyar ’98) The Zelevinksy map is scheme-theoretic
isomorphism which takes each orbit closure to a Schubert variety
intersected with an opposite Schubert cell. Consequently, these quiver
loci are normal and Cohen-Macaulay with rational singularities, F-split...

I The coordinate rings of equioriented type A quiver loci are naturally
multigraded, and there exist multiple combinatorial formulas for their
multidegrees and K -polynomials.

Goal: Generalize to all orientations.



Bipartite type A quiver loci

A type A quiver is bipartite if every vertex is a source or sink:

K d0

K d1

K d2

K d3

K d4

K d5

K d6

V1V2V3V4V5V6

GL(d)-orbits of bipartite type A quivers are completely determined by ranks of
particular matrices: given an interval [i , j ] ⊆ Q, define the matrix

Z[i,j] =


Vi

Vi+2 Vi+1

. . .
. . .

Vj−1 Vj−2

Vj

 .

Let r[i,j] := rank Z[i,j], and let r be the array of all r[i,j]. Then, two
representations in repQ(d) lie in the same GL(d)-orbit if and only if they have
the same rank array r.



The bipartite Zelevinsky map

Theorem (Kinser-R)

I There is a closed immersion from each representation space of a bipartite
type A quiver to an opposite Schubert cell of a partial flag variety.

I This bipartite Zelevinsky map identifies each quiver locus with a
Schubert variety intersected with the above opposite Schubert cell.

I Consequently, quiver loci are normal and C-M with rational singularities,
F-split, orbit closure containment is determined by Bruhat order.

Example
The image of (V1,V2,V3,V4,V5,V6) under the bipartite Zelevinsky map is:

0 0 V1 Id0 0 0 0
0 V3 V2 0 Id2 0 0
V5 V4 0 0 0 Id4 0
V6 0 0 0 0 0 Id6
Id1 0 0 0 0 0 0
0 Id3 0 0 0 0 0
0 0 Id5 0 0 0 0


⊆
(
∗ I
I 0

)
∼= P\Pv0B−.



Multigradings, quiver polynomials, and K-polynomials

The maximal torus T ⊆ GL(d) consisting of matrices which are diagonal in
each factor induces a multigrading on K [repQ(d)] which makes the ideals of
orbit closures homogeneous:

y3

x3

y2

x2

y1

x1

y0

β3 α3 β2 α2 β1 α1

Associate an alphabet sj to the vertex xj , and an alphabet ti to the vertex yi :

sj = s j1, s
j
2, . . . , s

j
d(xj )

and ti = t i1, t
i
2, . . . , t

i
d(yi ).

The coordinate function f αk
ij (picking out (i , j)-entry of Mαk ) has degree

tk−1
i − skj , and f βkij has degree tki − skj .

With respect to the natural torus action on the opposite cell

[
∗ Idy
Idx 0

]
, the

bipartite Zelevinsky map is T -equivariant.



Notation

I The K -theoretic quiver polynomial KQr(t/s) (resp., quiver polynomial
Qr(t− s)) is the K -polynomial (resp., multidegree) of the quiver locus Ωr

with respect to its embedding in repQ(d) and multigrading above.

I Let A = (a1, a2, . . . ) and B = (b1, b2, . . . ) be alphabets. Denote by
Gw (A;B) the double Grothendieck polynomial associated to w : if w0

the longest element of the symmetric group Sm then

Gw0(A;B) =
∏

i+j≤m

(
1− ai

bj

)
,

and Gsiw (A;B) = ∂iGw (A;B) whenever `(siw) < `(w).

I The double Schubert polynomial Sv (A;B) of a permutation v is
obtained from Gv (A;B) by substituting 1− ? for each variable ?, and
then taking lowest degree terms.



The bipartite ratio formulas

I Let r be an array of ranks that determines a bipartite quiver orbit.

I Let v(r) be the associated Zelevinsky permutation.

I Let v∗ be the Zelevinsky permutation of the big GL(d)-orbit (which has
closure repQ(d)).

Theorem (Kinser-Knutson-R)

KQr(t/s) =
Gv(r)(t, s; s, t)

Gv∗(t, s; s, t)
and Qr(t− s) =

Sv(r)(t, s; s, t)

Sv∗(t, s; s, t)
.

Main idea of proof.
Use the bipartite Zelevinsky map along with [Woo-Yong ’12] on K-polynomials
and multidegrees of Kazhdan-Lusztig varieties.



Pipe dreams and lacing diagrams

Consider the dimension vector d = (2, 2, 2, 3, 2, 2, 1), so that representations
have the form:

K 2

K 2

K 2

K 3

K 2

K 2

K

Vβ3 Vα3 Vβ2 Vα2 Vβ1 Vα1

Work with the orbit through:

P =

([
0 1
0 0

]
,

[
1 0
0 1

]
,

[
1 0 0
0 1 0

]
,

[
0 1 0
0 0 1

]
,

[
1 0
0 1

]
,
[
1 0

])
This sequence of partial permutations can be visualized with a lacing diagram:



Pipe dreams and lacing diagrams

The Zelevinsky image of the associated quiver locus is a Kazhdan-Lusztig
variety which has pipe dreams supported inside the diagram of v0 (i.e. the

northwest quadrant of

[
∗ Idy
Idx 0

]
). For example:

s31 s32 s21 s22 s23 s11 s12
t01
t11
t12
t21
t22
t31
t32

Denote by Pipes(v0, v(r)) all pipe dreams of v(r) supported inside the Rothe
diagram for v0. Let P∗ be the pipe dream which has a + at position (i , j) if
and only if (i , j) lies outside of the “zig-zag” region.

Lemma
Every element of Pipes(v0, v(r)) contains P∗ as a subdiagram, and furthermore
Pipes(v0, v∗) = {P∗}.



Bipartite pipe formulas and component formulas

Theorem (Bipartite Pipe formula, Kinser-Knutson-R)
For any rank array r, we have

KQr(t/s) =
∑

P∈Pipes(v0,v(r))

(−1)|P|−l(v(r))(1− t/s)P\P∗

and
Qr(t− s) =

∑
P∈RedPipes(v0,v(r))

(t− s)P\P∗ .

Theorem (Bipartite component formula, Buch-Rimányi,
Kinser-Knutson-R)

KQr(t/s) =
∑

w∈KW (r)

(−1)|w|−`(v(r))Gw(t, s)

and
Qr(t− s) =

∑
w∈W (r)

Sw(t, s)



From the bipartite orientation to arbitrary orientation

Associate a bipartite type A quiver to an arbitrarily oriented quiver by inserting
vertices and arrows. Let Q be the quiver:

z5

z4

z3

z2

z1

z0

γ3 γ2

γ4 γ1γ5

We construct an associated bipartite quiver Q̃ by adding two new vertices
w1,w3, and two new arrows δ1, δ3.

z5

z4

w3

z3

z2

w1

z1

z0
γ4

δ3

γ3
γ2

δ1
γ1γ5



From bipartite to arbitrary orientation

Theorem (Kinser-R)
Let Q be a quiver of type A, and Q̃ the associated bipartite quiver defined
above. Let U be the open set in repQ̃(d) where the maps over the added arrows
are invertible. Then there is a morphism π : U → repQ(d) which is equivariant

with respect to the natural projection of base change groups GL(d̃)→ GL(d).
Each orbit closure O ⊆ repQ(d) for an arbitrary type A quiver is isomorphic to

an open subset of an orbit closure of repQ̃(d̃), up to a smooth factor. Namely,
we have

π−1(O) ' G∗ ×O,
where the closure on the left hand side is taken in U.



Substitution to obtain formulas for arbitrary orientation

We can show that the K -polynomial of an orbit closure for Q is obtained from
the K -polynomial of its corresponding orbit closure for Q̃ by substitution of
variables.



Thank you.
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