Algebraic construction of oriented cohomology of flag varieties

Changlong Zhong

SUNY-Albany

November 15, 2015

Notations

k : field
h : an oriented cohomology theory in the sense of Levine-Morel
$R=h(\operatorname{Spec}(k))$: the coefficient ring
G : a split semisimple linear algebraic group
$B \supset T$: Borel subgroup and maximal torus

Notations

k : field
h : an oriented cohomology theory in the sense of Levine-Morel
$R=h(\operatorname{Spec}(k))$: the coefficient ring
G : a split semisimple linear algebraic group
$B \supset T$: Borel subgroup and maximal torus
$\Lambda=T^{*}$: the group of characters of T
$\Sigma, \Pi=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}:$ the sets of roots and simple roots
W : the Weyl group, generated by $s_{i}=s_{\alpha_{i}}, i=1, \ldots, n$.
$J \subset \Pi$
$W_{J}<W$: the subgroup generated by J
$P_{J} \supset B$: the parabolic subgroup

Goal

To construct the following diagram:

Goal

To construct the following diagram:

The work follows Demazure (Chow group), Bernstein-Gelfand-Gelfand (singular cohomology), Arabia (equivariant cohomology), Kostant-Kumar (equivariant cohomology and equivariant Grothendieck group), and many others.

Formal group laws

Definition

A formal group law (FGL) F over a ring R is a power series $F(x, y) \in R[[x, y]]$ satisfying:

$$
F(x, 0)=x, \quad F(x, y)=F(y, x), \quad F(F(x, y), z)=F(x, F(y, z))
$$

Formal group laws

Definition

A formal group law (FGL) F over a ring R is a power series $F(x, y) \in R[[x, y]]$ satisfying:

$$
F(x, 0)=x, \quad F(x, y)=F(y, x), \quad F(F(x, y), z)=F(x, F(y, z))
$$

Example

- The additive FGL: $F_{a}=x+y$.
- The multiplicative FGL: $F_{m}=x+y-x y$
- The universal FGL: F_{U} over the Lazard ring \mathbb{L}.

Oriented cohomology theories

Oriented cohomology of algebraic varieties are cohomology theories with push-forward for projective morphisms.

Oriented cohomology theories

Oriented cohomology of algebraic varieties are cohomology theories with push-forward for projective morphisms.
Examples of oriented cohomology are Chow group, Grothendieck group and the algebraic cobordism.

Oriented cohomology theories

Oriented cohomology of algebraic varieties are cohomology theories with push-forward for projective morphisms.
Examples of oriented cohomology are Chow group, Grothendieck group and the algebraic cobordism.
The push-forward can be used to define characteristic classes.
Moreover, it defines a FGL F over $R:=h(k)$

$$
c_{1}^{h}\left(L_{1} \otimes L_{2}\right)=F\left(c_{1}^{h}\left(L_{1}\right), c_{1}^{h}\left(L_{2}\right)\right)
$$

L_{1}, L_{2} are line bundles.

Example

$$
C H \rightsquigarrow F_{a}, \quad K_{0} \rightsquigarrow F_{m}, \quad \text { algebraic cobordism } \rightsquigarrow F_{u} .
$$

The formal group algebra: $h_{T}(\operatorname{Spec}(k))$

[Calmès-Petrov-Zainoulline]
Let $R\left[\left[x_{\Lambda}\right]\right]=R\left[\left[x_{\lambda} \mid \lambda \in \Lambda\right]\right]$, and define

$$
S:=R[[\Lambda]]_{F}=R\left[\left[x_{\Lambda}\right]\right] /\left(x_{\lambda+\mu}-F\left(x_{\lambda}, x_{\mu}\right), x_{0}\right) .
$$

The formal group algebra: $h_{T}(\operatorname{Spec}(k))$

[Calmès-Petrov-Zainoulline]
Let $R\left[\left[x_{\Lambda}\right]\right]=R\left[\left[x_{\lambda} \mid \lambda \in \Lambda\right]\right]$, and define

$$
S:=R[[\Lambda]]_{F}=R\left[\left[x_{\Lambda}\right]\right] /\left(x_{\lambda+\mu}-F\left(x_{\lambda}, x_{\mu}\right), x_{0}\right)
$$

Example

$$
R[[\Lambda]]_{F_{a}}=S_{R}^{*}(\Lambda)^{\wedge}, \quad R[[\Lambda]]_{F_{m}}=R[\Lambda]^{\Lambda} .
$$

$$
R[[\Lambda]]_{F} \cong R\left[\left[t_{1}, \ldots, t_{n}\right]\right] .
$$

The formal group algebra: $h_{T}(\operatorname{Spec}(k))$

[Calmès-Petrov-Zainoulline]
Let $R\left[\left[x_{\Lambda}\right]\right]=R\left[\left[x_{\lambda} \mid \lambda \in \Lambda\right]\right]$, and define

$$
S:=R[[\Lambda]]_{F}=R\left[\left[x_{\Lambda}\right]\right] /\left(x_{\lambda+\mu}-F\left(x_{\lambda}, x_{\mu}\right), x_{0}\right) .
$$

Example

$$
R[[\Lambda]]_{F_{a}}=S_{R}^{*}(\Lambda)^{\wedge}, \quad R[[\Lambda]]_{F_{m}}=R[\Lambda]^{\wedge} .
$$

$$
R[[\Lambda]]_{F} \cong R\left[\left[t_{1}, \ldots, t_{n}\right]\right] .
$$

Difficulty for generalization

- S is not (Laurent) polynomial ring but power series ring.
- The Bott-Samelson classes depend on the choices of reduced sequences.

Formal affine Demazure algebra

For each root α, define Demazure operators (divided difference operators, or BGG operators)

$$
\Delta_{\alpha}(z)=\frac{z-s_{\alpha}(z)}{x_{\alpha}} \in S, \quad z \in S .
$$

Formal affine Demazure algebra

For each root α, define Demazure operators (divided difference operators, or BGG operators)

$$
\Delta_{\alpha}(z)=\frac{z-s_{\alpha}(z)}{x_{\alpha}} \in S, \quad z \in S
$$

Object to study

The subring of $\operatorname{End}(S)$ generated by S and $\Delta_{\alpha}, \alpha \in \Sigma$.

Define

$$
Q=S\left[\left.\frac{1}{x_{\alpha}} \right\rvert\, \alpha \in \Sigma\right], \quad Q_{W}=Q \rtimes R[W], \quad S_{W}=S \rtimes R[W]
$$

Q_{W} has Q-basis $\left\{\delta_{w}\right\}_{w \in W}$ and the product is

$$
q \delta_{w} \cdot q^{\prime} \delta_{w^{\prime}}=q w\left(q^{\prime}\right) \delta_{w w^{\prime}}, \quad q, q^{\prime} \in Q, w, w^{\prime} \in W
$$

Define

$$
Q=S\left[\left.\frac{1}{x_{\alpha}} \right\rvert\, \alpha \in \Sigma\right], \quad Q_{W}=Q \rtimes R[W], \quad S_{W}=S \rtimes R[W]
$$

Q_{W} has Q-basis $\left\{\delta_{w}\right\}_{w \in W}$ and the product is

$$
q \delta_{w} \cdot q^{\prime} \delta_{w^{\prime}}=q w\left(q^{\prime}\right) \delta_{w w^{\prime}}, \quad q, q^{\prime} \in Q, w, w^{\prime} \in W
$$

Q_{W} acts on Q by

$$
q \delta_{w} \cdot\left(q^{\prime}\right)=q w\left(q^{\prime}\right), q^{\prime}, q \in Q, w \in W
$$

Define

$$
Q=S\left[\left.\frac{1}{x_{\alpha}} \right\rvert\, \alpha \in \Sigma\right], \quad Q_{W}=Q \rtimes R[W], \quad S_{W}=S \rtimes R[W]
$$

Q_{W} has Q-basis $\left\{\delta_{w}\right\}_{w \in W}$ and the product is

$$
q \delta_{w} \cdot q^{\prime} \delta_{w^{\prime}}=q w\left(q^{\prime}\right) \delta_{w w^{\prime}}, \quad q, q^{\prime} \in Q, w, w^{\prime} \in W
$$

Q_{W} acts on Q by

$$
q \delta_{w} \cdot\left(q^{\prime}\right)=q w\left(q^{\prime}\right), q^{\prime}, q \in Q, w \in W
$$

We define the Demazure element

$$
X_{\alpha}=\frac{1}{x_{\alpha}}\left(1-\delta_{s_{\alpha}}\right) .
$$

Then

$$
X_{\alpha} \cdot z=\Delta_{\alpha}(z)
$$

Denote $X_{i}=X_{\alpha_{i}}$.
(1) $X_{i}^{2}=\kappa_{i} X_{i}$, where $\kappa_{i}=\frac{1}{x_{\alpha_{i}}}+\frac{1}{x_{-\alpha_{i}}} \in S$.
(1) $X_{i}^{2}=\kappa_{i} X_{i}$, where $\kappa_{i}=\frac{1}{x_{\alpha_{i}}}+\frac{1}{X_{-\alpha_{i}}} \in S$.
(2) $X_{i} q=s_{i}(q) X_{i}+\Delta_{i}(q), q \in Q$.
(1) $X_{i}^{2}=\kappa_{i} X_{i}$, where $\kappa_{i}=\frac{1}{x_{\alpha_{i}}}+\frac{1}{x_{-\alpha_{i}}} \in S$.
(2) $X_{i} q=s_{i}(q) X_{i}+\Delta_{i}(q), q \in Q$.
(3) $\underbrace{X_{i} X_{j} X_{i} \cdots}_{m_{i j}}-\underbrace{X_{j} X_{i} X_{j} \cdots}_{m_{i j}}=$ extra terms, where $\left(s_{i} s_{j}\right)^{m_{i j}}=1$.

The formal affine Demazure algebra

Definition (Hoffnung-MalagónLópez-Savage-Zainoulline)

We define the formal affine Demazure algebra

$$
\mathbf{D}_{F}=R<S, X_{\alpha} \mid \alpha \in \Sigma>\subset Q_{W} .
$$

The formal affine Demazure algebra

Definition (Hoffnung-MalagónLópez-Savage-Zainoulline)

We define the formal affine Demazure algebra

$$
\mathbf{D}_{F}=R<S, X_{\alpha} \mid \alpha \in \Sigma>\subset Q_{W} .
$$

$$
\begin{gathered}
\mathbf{D}_{F}=R<S, X_{i} \mid i=1, \ldots, n .> \\
\delta_{s_{\alpha}}=1-x_{\alpha} X_{\alpha} \in \mathbf{D}_{F} \quad \Rightarrow \quad W \subset \mathbf{D}_{F} .
\end{gathered}
$$

The formal affine Demazure algebra

Definition (Hoffnung-MalagónLópez-Savage-Zainoulline)

We define the formal affine Demazure algebra

$$
\mathbf{D}_{F}=R<S, X_{\alpha} \mid \alpha \in \Sigma>\subset Q_{W} .
$$

$$
\begin{gathered}
\mathbf{D}_{F}=R<S, X_{i} \mid i=1, \ldots, n .> \\
\delta_{s_{\alpha}}=1-x_{\alpha} X_{\alpha} \in \mathbf{D}_{F} \quad \Rightarrow \quad W \subset \mathbf{D}_{F} .
\end{gathered}
$$

For each $w=s_{i_{1}} \cdots s_{i_{k}}$, let $I_{w}=\left(i_{1}, \ldots, i_{k}\right)$ and

$$
X_{I_{w}}=X_{i_{1}} \cdots X_{I_{k}} .
$$

It depends on the choice of I_{w} unless F is F_{a} or F_{m}.

Theorem (Calmès-Zainoulline-Z.)

\mathbf{D}_{F} is a free S-module with basis $\left\{X_{I_{w}}\right\}_{w \in W}$
(1) $\mathbf{D}_{F_{a}}=$ affine nil-Hecke algebra
(2) $\mathbf{D}_{F_{m}}=$ affine 0-Hecke algebra

Both were constructed by Kostant-Kumar

$h_{T}(G / B)$

Recall that $S_{W}=S \rtimes R[W]$.

Definition

$\mathbf{D}_{F}^{*}=\operatorname{Hom}_{S}\left(\mathbf{D}_{F}, S\right)$ and $S_{W}^{*}=\operatorname{Hom}_{S}\left(S_{W}, S\right) \cong \operatorname{Hom}(W, S)$.

$h_{T}(G / B)$

Recall that $S_{W}=S \rtimes R[W]$.

Definition

$\mathbf{D}_{F}^{*}=\operatorname{Hom}_{S}\left(\mathbf{D}_{F}, S\right)$ and $S_{W}^{*}=\operatorname{Hom}_{S}\left(S_{W}, S\right) \cong \operatorname{Hom}(W, S)$.
Let $\left\{f_{w}\right\}_{w \in W}$ be the standard basis of S_{W}^{*} with product

$$
f_{v} f_{w}=\delta_{v, w} f_{v}, \quad v, w \in W
$$

$h_{T}(G / B)$

Recall that $S_{W}=S \rtimes R[W]$.

Definition

$\mathbf{D}_{F}^{*}=\operatorname{Hom}_{S}\left(\mathbf{D}_{F}, S\right)$ and $S_{W}^{*}=\operatorname{Hom}_{S}\left(S_{W}, S\right) \cong \operatorname{Hom}(W, S)$.
Let $\left\{f_{w}\right\}_{w \in W}$ be the standard basis of S_{W}^{*} with product

$$
f_{v} f_{w}=\delta_{v, w} f_{v}, \quad v, w \in W
$$

Theorem (Calmes-Zainoulline-Z.)

$h_{T}(G / B) \cong \mathbf{D}_{F}^{*}$, and the embedding $\mathbf{D}_{F}^{*} \hookrightarrow S_{W}^{*}$, corresponds to $h_{T}(G / B)=h_{T}(G / T) \rightarrow h_{T}\left((G / T)^{T}\right)=h_{T}(W) \cong S_{W}^{*}$. Moreover,

$$
\mathbf{D}_{F}^{*}=\left\{\sum_{w \in W} q_{w} f_{w} \in S_{W}^{*} \left\lvert\, \frac{q_{w}-q_{s_{\alpha} w}}{x_{\alpha}}\right. \text { for all } \alpha \in \Sigma\right\}
$$

$h_{T}(G / B)$

Definition

For $J \subset \Pi$, define

$$
\begin{gathered}
x_{J}=\prod_{\alpha \in \Sigma_{J}^{-}} x_{\alpha} \in S \\
Y_{J}=\sum_{w \in W_{J}} \delta_{w} \frac{1}{x_{J}} \in \mathbf{D}_{F} \\
{[p t]=x_{\Pi} f_{e} \in \mathbf{D}_{F}^{*} \subset S_{W}^{*},} \\
\mathbf{1}=\sum_{w \in W} f_{w} \in \mathbf{D}_{F}^{*} \subset S_{W}^{*}
\end{gathered}
$$

$h_{T}(G / B)$

Definition

For $J \subset \Pi$, define

$$
\begin{gathered}
x_{J}=\prod_{\alpha \in \Sigma_{J}^{-}} x_{\alpha} \in S \\
Y_{J}=\sum_{w \in W_{J}} \delta_{w} \frac{1}{x_{J}} \in \mathbf{D}_{F} \\
{[p t]=x_{\Pi} f_{e} \in \mathbf{D}_{F}^{*} \subset S_{W}^{*}} \\
\mathbf{1}=\sum_{w \in W} f_{w} \in \mathbf{D}_{F}^{*} \subset S_{W}^{*}
\end{gathered}
$$

$\operatorname{Via} \mathbf{D}_{F}^{*} \cong h_{T}(G / B)$,

$$
\begin{aligned}
{[p t] } & =\text { the class of the identity point } \\
\mathbf{1} & =[G / B] .
\end{aligned}
$$

$h_{T}(G / B)$

\mathbf{D}_{F} acts on \mathbf{D}_{F}^{*} by

$$
\begin{gathered}
(z \bullet f)\left(z^{\prime}\right)=f\left(z^{\prime} z\right), \quad z, z^{\prime} \in \mathbf{D}_{F} . \\
\left(p \delta_{v}\right) \bullet\left(q f_{w}\right)=q w v^{-1}(p) f_{w v^{-1}}, \quad w, v \in W, p, q \in S .
\end{gathered}
$$

$h_{T}(G / B)$

\mathbf{D}_{F} acts on \mathbf{D}_{F}^{*} by

$$
\begin{gathered}
(z \bullet f)\left(z^{\prime}\right)=f\left(z^{\prime} z\right), \quad z, z^{\prime} \in \mathbf{D}_{F} . \\
\left(p \delta_{v}\right) \bullet\left(q f_{w}\right)=q w v^{-1}(p) f_{w v^{-1}}, \quad w, v \in W, p, q \in S .
\end{gathered}
$$

Theorem (Calmes-Zainoulline-Z.)

(1) $\left(\mathbf{D}_{F}^{*}\right)^{W_{J}} \cong h_{T}\left(G / P_{J}\right)$
(2) $Y_{J} \bullet \mathbf{D}_{F}^{*} \rightarrow\left(\mathbf{D}_{F}^{*}\right)^{W_{J}} \subset \mathbf{D}_{F}^{*}$ gives $h_{T}(G / B) \rightarrow h_{T}\left(G / P_{J}\right)$.

- \mathbf{D}_{F}^{*} is a free \mathbf{D}_{F}-module via the \bullet-action, with basis $[p t]$.

$h_{T}(G / B)$

\mathbf{D}_{F} acts on \mathbf{D}_{F}^{*} by

$$
\begin{gathered}
(z \bullet f)\left(z^{\prime}\right)=f\left(z^{\prime} z\right), \quad z, z^{\prime} \in \mathbf{D}_{F} . \\
\left(p \delta_{v}\right) \bullet\left(q f_{w}\right)=q w v^{-1}(p) f_{w v^{-1}}, \quad w, v \in W, p, q \in S .
\end{gathered}
$$

Theorem (Calmes-Zainoulline-Z.)

(1) $\left(\mathbf{D}_{F}^{*}\right)^{W_{J}} \cong h_{T}\left(G / P_{J}\right)$
(2) $Y_{J} \bullet ـ_{-}: \mathbf{D}_{F}^{*} \rightarrow\left(\mathbf{D}_{F}^{*}\right)^{W_{J}} \subset \mathbf{D}_{F}^{*}$ gives $h_{T}(G / B) \rightarrow h_{T}\left(G / P_{J}\right)$.
(3) \mathbf{D}_{F}^{*} is a free \mathbf{D}_{F}-module via the \bullet-action, with basis $[p t]$.

The Bott-Samelson class is

$$
X_{I_{w}^{-1}} \bullet[p t] \in \mathbf{D}_{F}^{*} \cong h_{T}(G / B) .
$$

Theorem (Calmes-Zainoulline-Z.)

The equivariant characteristic map $h_{T}(\operatorname{Spec}(k)) \rightarrow h_{T}(G / B)$ is

$$
c_{S}: S \rightarrow \mathbf{D}_{F}^{*}, \quad q \mapsto q \bullet \mathbf{1}
$$

Theorem (Calmes-Zainoulline-Z.)

The equivariant characteristic map $h_{T}(\operatorname{Spec}(k)) \rightarrow h_{T}(G / B)$ is

$$
c_{S}: S \rightarrow \mathbf{D}_{F}^{*}, \quad q \mapsto q \bullet \mathbf{1}
$$

We define

$$
\rho: S \otimes_{S w} S \rightarrow \mathbf{D}_{F}^{*}, q_{1} \otimes q_{2} \mapsto q_{1} c_{S}\left(q_{2}\right) \in \mathbf{D}_{F}^{*}
$$

```
Theorem (Calmes-Zainoulline-Z.)
If R\supset\mathbb{Q}\mathrm{ , or for type }A,C\mathrm{ , or if }F=\mp@subsup{F}{m}{},\rho\mathrm{ is an isomorphism.}
```

We define another action of \mathbf{D}_{F} on \mathbf{D}_{F}^{*} by

$$
q \delta_{w} \odot\left(p f_{v}\right)=q w(p) f_{w v}, \quad q, p \in S, w, v \in W
$$

For $z \in \mathbf{D}_{F}$,

$$
\begin{aligned}
& S \otimes_{S}{ }^{W} S \xrightarrow{\rho} \mathbf{D}_{F}^{*} \\
& 1 \otimes(z--) \downarrow \quad \downarrow^{z \bullet-} \\
& S \otimes_{S^{w}} S \xrightarrow{\rho} \mathbf{D}_{F}^{*} .
\end{aligned}
$$

We define another action of \mathbf{D}_{F} on \mathbf{D}_{F}^{*} by

$$
q \delta_{w} \odot\left(p f_{v}\right)=q w(p) f_{w v}, \quad q, p \in S, w, v \in W .
$$

For $z \in \mathbf{D}_{F}$,

- commutes with \odot.
- •: the right Hecke action
- \odot : the left Hecke action.

The \odot-action for singular cohomology was studied by Brion, Knutson, Peterson, Tymoczko.

$h_{T}\left(G / P_{J}\right)$

Theorem (Lenart-Zainoulline-Z.)

$\left(\mathbf{D}_{F}^{*}\right)^{W_{J}}$ is a \mathbf{D}_{F}-module via the \odot action, generated by $Y_{J} \bullet p t \in\left(\mathbf{D}_{F}^{*}\right)^{W_{J}}$.

$h_{T}\left(G / P_{J}\right)$

Theorem (Lenart-Zainoulline-Z.)

$\left(\mathbf{D}_{F}^{*}\right)^{W_{J}}$ is a \mathbf{D}_{F}-module via the \odot action, generated by $Y_{J} \bullet p t \in\left(\mathbf{D}_{F}^{*}\right)^{W_{J}}$.
The Bott-Samelson class of $h_{T}\left(G / P_{J}\right)$ is given by

$$
X_{l_{w}} \odot\left(Y_{J} \bullet[p t]\right)=Y_{J} X_{l_{w}^{-1}} \bullet[p t], \quad w \in W^{J}
$$

Remark

- There is an isomorphism $\left(h_{T}(G / B), \circ\right) \cong \mathbf{D}_{F}$, which gives some relation between some integral representation category of \mathbf{D}_{F} and the category of Chow motives (Neshitov-Petrov-Semenov-Zainoulline).
- We are trying to generalize the above construction to the Kac-Moody setting (Calmes-Zainoulline-Z.)
- There is a parallel construction of formal affine Hecke algebra \mathbf{H}_{F} for F, which generalizes the affine degenerate Hecke algebra (for F_{a}) and the affine Hecke algebra (for F_{m}). It is isomorphic to $h_{G \times G_{m}}(Z)$ where Z is the Steinberg variety. (G. Zhao-Z.)
- For elliptic formal group law, H_{F} is isomorphic to the stalk of Ginzburg-Kapranov-Vasserot's elliptic Hecke algebra. (G. Zhao-Z.)
[Deodhar(1987), Lenart-Zainoulline-Z (to appear soon).]
There is chain complex of \mathbf{D}_{F}-modules

$$
0 \rightarrow h_{T}(G / B) \rightarrow^{d_{0}} \bigoplus_{|J|=1} h_{T}\left(G / P_{J}\right) \rightarrow^{d_{1}} \bigoplus_{|J|=2} h_{T}\left(G / P_{J}\right) \rightarrow^{d_{2}} \cdots
$$

d_{i} is alternating sum of

$$
h_{T}\left(G / P_{J}\right) \rightarrow h_{T}\left(G / P_{J^{\prime}}\right) \rightarrow h_{T}\left(G / P_{J}\right), J \subset J^{\prime}
$$

[Deodhar(1987), Lenart-Zainoulline-Z (to appear soon).]
There is chain complex of \mathbf{D}_{F}-modules

$$
0 \rightarrow h_{T}(G / B) \rightarrow^{d_{0}} \bigoplus_{|J|=1} h_{T}\left(G / P_{J}\right) \rightarrow^{d_{1}} \bigoplus_{|J|=2} h_{T}\left(G / P_{J}\right) \rightarrow^{d_{2}} \cdots
$$

d_{i} is alternating sum of

$$
h_{T}\left(G / P_{J}\right) \rightarrow h_{T}\left(G / P_{J^{\prime}}\right) \rightarrow h_{T}\left(G / P_{J}\right), J \subset J^{\prime}
$$

It is exact except at $h_{T}(G / B)$, whose cohomology is a free S-module of rank 1 in "some" cases, generated by $X_{w_{0}} \bullet[p t]$.

