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Abstract. LetX be a symplectic or odd orthogonal Grassmannian. We prove

a Giambelli formula which expresses an arbitrary Schubert class in H∗(X,Z)
as a polynomial in certain special Schubert classes. This polynomial, which
we call a theta polynomial, is defined using raising operators, and we study its

image in the ring of Billey-Haiman Schubert polynomials.

0. Introduction

Let G = G(m,N) denote the Grassmannian of m-dimensional subspaces of CN .
To each integer partition λ = (λ1, . . . , λm) whose Young diagram is contained in an
m× (N −m) rectangle, we associate a Schubert class σλ in the cohomology ring of
G. The special Schubert classes σ1, . . . , σN−m are the Chern classes of the universal
quotient bundle Q over G(m,N); they generate the cohomology ring H∗(G,Z). The
classical Giambelli formula [G]

(1) σλ = det(σλi+j−i)i,j

is an explicit expression for σλ as a polynomial in the special classes; as is customary,
we agree here and in later formulas that σ0 = 1 and σr = 0 for r < 0.

The relation between the Schubert calculus on the Grassmannian G(m,N) and
the algebra of Schur’s S-functions sλ (originally defined by Cauchy [C] and Jacobi
[J]) is well known. Given an infinite list x = (x1, x2, . . .) of commuting independent
variables, we define the elementary symmetric functions er(x) by the formal relation

∞∏

i=1

(1 + xit) =
∞∑

r=0

er(x)t
r

and set, for any partition λ, sλ′(x) = det(eλi+j−i(x))i,j . Here λ′ is the par-
tition whose Young diagram is the transpose of the diagram of λ. The ring
Λ = Z[e1, e2, . . .] of symmetric functions in x has a free Z-basis consisting of the
Schur functions sλ, for all partitions λ. These Schur S-functions enjoy many good
combinatorial properties, such as nonnegativity of their coefficients, and multiply
exactly like the Schubert classes on G(m,N), when m and N are sufficiently large.

There is a closely analogous story to the above for the Lagrangian Grassmannian
LG(n, 2n) which parametrizes maximal isotropic subspaces of C2n, with respect to a
symplectic form. The Schubert classes in H∗(LG,Z) are indexed by strict partitions,
i.e., partitions with distinct (non-zero) parts, whose diagrams fit in a square of side
n. The special Schubert classes σr = cr(Q) again generate the cohomology ring,
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and there is a Giambelli-type formula due to Pragacz [Pra]. This latter may be
described in two steps: For partitions λ = (a, b) with only two parts, we have

(2) σa,b = σaσb − 2σa+1σb−1 + 2σa+2σb−2 − · · ·

while for λ with 3 or more parts,

(3) σλ = Pfaffian(σλi,λj
)i<j .

The identities (2) and (3) in fact also go back to the work of Schur [S], who
considered a family of symmetric functions {Qλ} known as Schur Q-functions. We
define qr(x) by the equation

∞∏

i=1

1 + xit

1− xit
=

∞∑

r=0

qr(x)t
r

and then use the same relations (2) and (3) with qr(x) in place of σr to defineQa,b(x)
and then Qλ(x), for each strict partition λ. If we let Γ = Z[q1, q2, . . .] denote the
ring of Schur Q-functions, then the {Qλ} for λ strict form a Z-basis for Γ, whose
algebra agrees with Schubert calculus on LG(n, 2n), as n → ∞. Moreover, there
is a well developed combinatorial theory for the Q-functions, analogous to that for
the S-functions.

Choose k ≥ 0 and consider now the Grassmannian IG(n − k, 2n) of isotropic
(n− k)-dimensional subspaces of C2n, equipped with a symplectic form. We call a
partition λ k-strict if no part greater than k is repeated, i.e., λj > k ⇒ λj > λj+1.
The Schubert classes on IG are indexed by k-strict partitions whose diagrams fit
in an (n− k)× (n+ k) rectangle. Given such a λ and a complete flag of subspaces
F

•
: 0 = F0 ( F1 ( · · · ( F2n = C2n such that Fn+i = F⊥n−i for 0 ≤ i ≤ n, we have

a Schubert variety

Xλ(F•
) := {Σ ∈ IG | dim(Σ ∩ Fpj(λ)) ≥ j ∀ 1 ≤ j ≤ ℓ(λ)} ,

where ℓ(λ) denotes the number of (non-zero) parts of λ and

(4) pj(λ) := n+ k + j − λj −#{i < j : λi + λj > 2k + j − i}.

This variety has codimension |λ| =
∑
λi and defines, using Poincaré duality, a

Schubert class σλ = [Xλ(F•
)] in H2|λ|(IG,Z). As above, we consider the special

Schubert classes σr = [Xr(F•
)] = cr(Q) for 1 ≤ r ≤ n+ k.

In [BKT1], we proved a Pieri rule for the products σrσλ in H∗(IG). Equipped
with this rule and the help of a computer, we observed that (i) when λj ≤ k for all j,
then σλ is given by the determinantal formula (1); (ii) when λj > k for all non-zero
λj , then λ is strict and σλ is given by the Pfaffian formulas (2), (3). It is tempting to
ask for an analogous Giambelli formula for σλ when λ is a general k-strict partition.
Note that the formula is determined only up to an ideal of relations; whatever the
answer, it must naturally interpolate between the Jacobi-Trudi determinant (1) and
the Schur Pfaffian (3). A similar question was also raised by Pragacz and Ratajski
[PR], who were using a different set of special Schubert classes.

The answer we give depends crucially on our choice of k-strict partitions to
index the Schubert classes, and uses Young’s raising operators [Y, p. 199]. For
any integer sequence α = (α1, α2, . . .) with finite support and i < j, we define
Rij(α) = (α1, . . . , αi + 1, . . . , αj − 1, . . .); a raising operator R is any monomial in
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these Rij ’s. Set mα =
∏
i σαi

and Rmα = mRα for any raising operator R.1 Using
these operators, the Giambelli formulas (1) and (2)–(3) can be expressed as

(5) σλ =
∏

i<j

(1−Rij)mλ and σλ =
∏

i<j

1−Rij
1 +Rij

mλ,

respectively.

Definition 1. For a general k-strict partition λ, we define the operator

Rλ =
∏

i<j

(1−Rij)
∏

λi+λj>2k+j−i

(1 +Rij)
−1

where the first product is over all pairs i < j and second product is over pairs i < j
such that λi + λj > 2k + j − i.

Theorem 1. For any k-strict partition λ, we have σλ = Rλmλ in the cohomology

ring of IG(n− k, 2n).

For example, in the ring H∗(IG(4, 10)) (where k = 1) we have

σ321 =
1−R12

1 +R12
(1−R13)(1−R23)m321 = (1−2R12+2R2

12−2R
3
12)(1−R13−R23)m321

= m321 − 2m411 +m42 + 2m51 −m33 = σ3σ2σ1 − 2σ4σ
2
1 + σ4σ2 + 2σ5σ1 − σ

2
3 .

Furthermore, the theorem implies that if the k-strict partition λ satisfies λi+λj ≤
2k + j − i for all i < j, then equation (1) is valid, while if λi + λj > 2k + j − i for
i < j ≤ ℓ(λ), then equations (2) and (3) hold.

Our proof of Theorem 1 proceeds by showing directly that the expression Rλmλ

satisfies the Pieri rule for isotropic Grassmannians from [BKT1]. This is sufficient
because the Pieri rule can be used recursively to show that a general Schubert class
may be written as a polynomial in the special Schubert classes. The argument is
challenging because the operator Rλ depends on λ, in contrast to the fixed raising
operator expressions in (5). We remark that the equations corresponding to (5) for
the Schur S- and Q-functions may be deduced from the formal identities

(6) det(xℓ−ji ) =
∏

i<j

(xi − xj) and Pfaffian

(
xi − xj
xi + xj

)
=

∏

i<j

xi − xj
xi + xj

due to Vandermonde and Schur, respectively (see e.g. [M, I.3 and III.8]).
We next use raising operators to define a family of polynomials {Θλ} indexed by

k-strict partitions whose algebra is the same as the Schubert calculus in the stable
cohomology ring of IG. Fix an integer k ≥ 0 and consider a finite set of variables
y = (y1, . . . , yk). For any r ≥ 0, define ϑr by the equation

∞∏

i=1

1 + xit

1− xit

k∏

j=1

(1 + yjt) =
∞∑

r=0

ϑr(x ; y)t
r,

so that ϑr(x ; y) =
∑
i qr−i(x)ei(y). We call Γ(k) := Z[ϑ1, ϑ2, . . .] the ring of theta

polynomials. For any finite integer sequence α, let ϑα =
∏
i ϑαi

, and for any k-strict

1As is customary, we slightly abuse the notation and consider that the raising operator R acts

on the index α, and not on the monomial mα itself.
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partition λ, define the theta polynomial2

Θλ := Rλϑλ.

When k = 0, we have that Θλ(x ; y) = Qλ(x) is a Schur Q-function. As a first
application of Theorem 1, we obtain the next two results. The first implies that
the algebra of theta polynomials agrees with the Schubert calculus on isotropic
Grassmannians IG(n− k, 2n) when n is sufficiently large.

Theorem 2. The Θλ, for λ k-strict, form a Z-basis of Γ(k). There is a surjective

ring homomorphism Γ(k) → H∗(IG(n − k, 2n)) such that Θλ is mapped to σλ, if λ
fits inside an (n− k)× (n+ k) rectangle, and to zero, otherwise.

Theorem 3. Let λ be a k-strict partition.

(a) If λi + λj ≤ 2k + j − i for all i < j, then

Θλ(x ; y) =
∑

µ⊂λ

Sµ(x)sλ′/µ′(y), where Sµ(x) = det(qµi+j−i(x)).

(b) If λi + λj > 2k + j − i for all i < j ≤ ℓ(λ), then

Θλ(x ; y) =
∑

µ⊂λ

Qµ(x)sS(λ/µ)′(y),

where the sum is over all strict partitions µ ⊂ λ such that ℓ(µ) ≥ ℓ(λ) − 1, and

S(λ/µ) denotes a shifted skew diagram.

Billey and Haiman [BH] have introduced a theory of type C Schubert polynomi-
als Cw(x, z) indexed by elements w of the hyperoctahedral group. To any k-strict
partition λ we associate a k-Grassmannian element wλ, and prove (Proposition
6.2) that Θλ(x ; z1, . . . , zk) = Cwλ

(x, z). Note that this is an equality in the full
ring Γ[z1, z2, . . .] of Billey-Haiman polynomials, where there are relations among
the generators qr(x) of Γ. Our Giambelli formula may therefore be used to further
understand these and related polynomials. For instance, it follows that the type C
Stanley symmetric function Fwλ

(x) of [BH, FK, L] is equal to Rλqλ(x) (Corollary
6.4). Moreover, this connection implies that the coefficients of Θλ(x ; y) are non-
negative integers. These integers have several combinatorial interpretations; the
one we provide stems from the work of Kraśkiewicz [Kr] and Lam [L].

Theorem 4. For any k-strict partition λ, the polynomial Θλ is a linear combina-

tion of products of Schur Q-functions and S-polynomials:

Θλ(x ; y) =
∑

µ,ν

eλµνQµ(x)sν′(y)

where the sum is over partitions µ and ν such that µ is strict and ν ⊂ λ with

ν1 ≤ k. Moreover, the coefficients eλµν are nonnegative integers, equal to the number

of Kraśkiewicz tableaux for wλw
−1
ν of shape µ.

The definition of Kraśkiewicz tableaux is recalled in §6. In [T2], an approach to
tableau formulas via raising operators is applied to obtain a different expression for
Θλ(x ; y), which writes it as a sum of monomials 2n(U)(xy)U over all ‘k-bitableaux’
U of shape λ.

2We use the term ‘theta polynomial’ to denote both the Giambelli polynomial in Theorem 1

and its image in Γ(k); see Definition 5.3.
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The Billey-Haiman polynomials Cwλ
(x, z) represent the pullbacks of the Schubert

classes σλ in the stable cohomology ring of the complete flag variety Sp2n /B, as ex-
plained in [BH]. We emphasize that this theory does not imply our raising operator
Giambelli formula, which is an expression for σλ in terms of special Schubert classes
σr, analogous to the classical one in type A. Even in the case of Lagrangian Grass-
mannian classes, when Cwλ

(x, z) = Qλ(x), one deduces Pragacz’ formulas (2)–(3)
from op. cit. only by appealing to the corresponding known identities for Schur’s
Q-functions. The present paper provides a new proof of the classical Giambelli
formulas for cominuscule Grassmannians which extends to cover all symplectic and
orthogonal Grassmannians, where the Schubert calculus is less well understood.

We have described the theory here in the symplectic case, but there are entirely
analogous results for the odd orthogonal groups. In fact, for technical reasons, our
proof of Theorem 1 is obtained in the setting of orthogonal type B. We also have
analogues of these Giambelli formulas for the quantum cohomology rings of sym-
plectic and odd orthogonal Grassmannians; this application appears in [BKT2]. In
a sequel to this paper [BKT3], we discuss the Giambelli formula for even orthogonal
Grassmannians, which is more involved.

This article is organized as follows. The proof of Theorem 1 occupies §1–§4.
Section 5 develops the theory of theta polynomials in a manner parallel to the
theory of Schur Q-functions, and contains our proofs of Theorems 2 and 3. Finally,
in §6 we show that theta polynomials are equal to certain Billey-Haiman Schubert
polynomials for the hyperoctahedral group, and prove Theorem 4.

1. Preliminary Results

1.1. The Schubert varieties in IG = IG(n−k, 2n) are indexed by k-strict partitions
λ which are contained in an (n − k) × (n + k) rectangle; we denote the set of all
such partitions by P(k, n). Consider the exact sequence of vector bundles over IG

0→ S → E → Q→ 0,

where E denotes the trivial bundle of rank 2n and S is the tautological subbundle
of rank n− k. The special Schubert class σp is equal to the Chern class cp(Q).

The symplectic form on E gives a pairing S ⊗Q → OIG, which in turn produces
an injection S →֒ Q∗. For r > k we therefore have

c2r(Q⊕Q
∗) = c2r(E/S ⊕Q

∗) = c2r(Q
∗/S) = 0,

which implies that the relations

(7) σ2
r + 2

n+k−r∑

i=1

(−1)iσr+iσr−i = 0 for r > k

hold in H∗(IG,Z).

1.2. A composition α = (α1, α2, . . . , αr) is a vector of integers from the set N =
{0, 1, 2, . . .}; we let |α| =

∑
αi. For λ any sequence of (possibly negative) integers,

we say that λ has length ℓ if λi = 0 for all i > ℓ and ℓ ≥ 0 is the smallest number
with this property. All integer sequences in this paper have finite length, and we
will identify any integer sequence of length ℓ with the vector consisting of its first ℓ
entries. In analogy with Young diagrams of partitions, we will say that a pair [i, j]
is a box of the integer sequence λ if i ≥ 1 and 1 ≤ j ≤ λi.
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Let ∆◦ = {(i, j) ∈ N × N | 1 ≤ i < j} and define a partial order on ∆◦ by
agreeing that (i′, j′) ≤ (i, j) if i′ ≤ i and j′ ≤ j. We call a finite subset D of ∆◦

a valid set of pairs if it is an order ideal, i.e., (i, j) ∈ D implies (i′, j′) ∈ D for all
(i′, j′) ∈ ∆◦ with (i′, j′) ≤ (i, j).

Any valid set of pairs D defines the raising operator

RD =
∏

i<j

(1−Rij)
∏

i<j : (i,j)∈D

(1 +Rij)
−1.

Given a composition α and an integer ℓ > 0, we denote by m(D,α, ℓ) the number
of non-zero coordinates αi such that (i, ℓ) ∈ D. We say that α is (D, ℓ)-compatible

if αi ∈ {0, 1} whenever (i, ℓ) /∈ D.

Definition 1.1. For any valid set of pairs D and any integer sequence λ of length
ℓ we define a cohomology class Tλ = T (D,λ) recursively as follows. Set Tp = σp,
and for an arbitrary integer sequence µ = (µ1, . . . , µℓ−1) and r ∈ Z, set

(8) Tµ,r =
∑

α

(−1)|α|2m(D,α,ℓ)Tµ+αTr−|α| ,

where the sum is over all (D, ℓ)-compatible vectors α ∈ Nℓ−1.

The sum (8) is well defined because only finitely many of its summands are
non-zero; we also have Tµ,r = 0 if r < 0. Notice that definition (8) of T (D,λ) is
equivalent to expanding the raising operator formula

RDmλ =
∏

i<j<ℓ

(1−Rij)
∏

i<j<ℓ : (i,j)∈D

(1+Rij)
−1

ℓ−1∏

i=1

(1−Riℓ)
∏

i : (i,ℓ)∈D

(1+Riℓ)
−1mµ,r

after the last (i.e., the ℓ-th) entry of λ = (µ, r). Therefore Tλ = RDmλ.

1.3. If D = ∅ then for any integers r and s we have

Tr,s = TrTs − Tr+1Ts−1

and so Tr,r+1 = 0, while more generally Tr,s = −Ts−1,r+1.
We claim that if D 6= ∅ and r, s ∈ Z are such that r+ s > 2k, then Ts,r = −Tr,s;

in particular Tr,r = 0 whenever r > k. Indeed, from the definition we obtain

Tr,s = σrσs − 2σr+1σs−1 + 2σr+2σs−2 − · · ·

and hence Ts,r = −Tr,s whenever r + s is odd. If r + s = 2m > 2k is even, we see
that

(9) Tr,s + Ts,r = (−1)
r−s
2 2 (σ2

m − 2σm+1σm−1 + 2σm+2σm−2 − · · · ) = 0

using the relations (7) in the cohomology ring of IG.
The previous observations are generalized in the next two lemmas.

Lemma 1.2. Let λ = (λ1, . . . , λj−1) and µ = (µj+2, . . . , µℓ) be integer vectors.

Assume that (j, j + 1) /∈ D and that for each h < j, (h, j) ∈ D if and only if

(h, j + 1) ∈ D. Then for any integers r and s we have

Tλ,r,s,µ = −Tλ,s−1,r+1,µ .

In particular, Tλ,r,r+1,µ = 0.
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Proof. If µ = (τ, t) has positive length, we set ρ = (λ, r, s, τ) and the identity follows
by induction, because

Tρ,t =
∑

α

(−1)|α|2m(D,α,ℓ)Tρ+αTt−|α|.

Therefore, we may assume that µ is empty. Set ℓ = j + 1. Then we have

Tλ,r,s =
∑

α

(−1)|α| 2m(D,α,ℓ) Tλ+α,rTs−|α| −
∑

α

(−1)|α| 2m(D,α,ℓ) Tλ+α,r+1Ts−|α|−1

=
∑

α,β

(−1)|α|+|β| 2m(D,α,ℓ)+m(D,β,ℓ−1) Tλ+α+βTr−|β|Ts−|α|

−
∑

α,β

(−1)|α|+|β| 2m(D,α,ℓ)+m(D,β,ℓ−1) Tλ+α+βTr+1−|β|Ts−1−|α|

where the sums are over all (D, ℓ)-compatible sequences α ∈ Nj−1 and (D, ℓ − 1)-
compatible sequences β ∈ Nj−1. The assumptions on D imply that these two sets
of sequences coincide, and this proves the lemma. �

Lemma 1.3. Let λ = (λ1, . . . , λj−1) and µ = (µj+2, . . . , µℓ) be integer vectors,

assume (j, j + 1) ∈ D, and that for each h > j + 1, (j, h) ∈ D if and only if

(j + 1, h) ∈ D. If r, s ∈ Z are such that r + s > 2k, then we have

Tλ,r,s,µ = −Tλ,s,r,µ .

In particular, Tλ,r,r,µ = 0 for any r > k.

Proof. If µ = (τ, t) has positive length, we set ρ = (λ, r, s, τ) and ρ′ = (λ, s, r, τ),
and the identity follows by induction, because

Tρ,t =
∑

α

(−1)|α|2m(D,α,ℓ)Tρ+αTt−|α| = −
∑

α

(−1)|α|2m(D,α,ℓ)Tρ′+αTt−|α| = −Tρ′,t .

Thus we may assume that µ is empty. Set ℓ = j + 1, and note that (h, h′) ∈ D
for all h < h′ ≤ ℓ. If m > 0 is the least integer such that 2m ≥ ℓ, we claim that
Tρ = Tλ,r,s satisfies the relation

(10) Tρ =

2m∑

i=2

(−1)i Tρ1,ρi Tρ2,...,ρ̂i,...,ρ2m .

Equation (10) follows from the formal identity of raising operators

∏

1≤h<h′≤2m

1−Rhh′

1 +Rhh′

=

2m∑

i=2

(−1)i
1−R1i

1 +R1i

∏

2≤h<h′≤2m
h 6=i6=h′

1−Rhh′

1 +Rhh′

,

which is equivalent the classical formula

∏

1≤h<h′≤2m

xh − xh′

xh + xh′

= Pfaffian

(
xh − xh′

xh + xh′

)

1≤h,h′≤2m

due to Schur [S, Sec. IX]. The proof is completed using induction, starting from the
base case of j = 1, which was obtained in (9). �

During the above discussion the set D has remained fixed, but in subsequent
arguments we will need to modify it. For this, we use a simple observation.
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Lemma 1.4. If (i, j) /∈ D and D ∪ (i, j) is a valid set of pairs, then

T (D,λ) = T (D ∪ (i, j), λ) + T (D ∪ (i, j), Rijλ).

Proof. The assertion follows immediately from the identity

1−Rij =
1−Rij
1 +Rij

+
1−Rij
1 +Rij

Rij . �

2. From IG(n− k, 2n) to OG(n− k, 2n+ 1)

2.1. For each k ≥ 0, the odd orthogonal Grassmannian OG = OG(n − k, 2n + 1)
parametrizes the (n− k)-dimensional isotropic subspaces in C2n+1, equipped with
a nondegenerate symmetric bilinear form. Our aim is to show that if λ is any k-
strict partition, then σλ is given by the raising operator expression of Theorem 1.
For technical reasons, we will use an isomorphism to transfer this relation to the
cohomology ring of OG, and work with the latter space.

The Schubert varieties in OG are indexed by the same set of k-strict partitions
P(k, n) as for IG(n− k, 2n). Given a complete flag F

•
of subspaces of C2n+1 such

that Fn+i = F⊥n+1−i for 1 ≤ i ≤ n+ 1 and λ ∈ P(k, n), we define the codimension
|λ| Schubert variety

Xλ(F•
) = {Σ ∈ OG | dim(Σ ∩ Fpj(λ)) ≥ j ∀ 1 ≤ j ≤ ℓ(λ)} ,

where

(11) pj(λ) = n+ k + 1 + j − λj −#{i ≤ j : λi + λj > 2k + j − i}.

Let τλ ∈ H2|λ|(OG,Z) be the cohomology class dual to the cycle given by Xλ(F•
).

For any λ ∈ P(k, n), let ℓk(λ) be the number of parts λi which are strictly
greater than k. Let QIG and QOG be the universal quotient vector bundles over
IG(n− k, 2n) and OG(n− k, 2n+ 1), respectively. It is known (see e.g. [BS, §3.1])
that the map which sends σp = cp(QIG) to cp(QOG) for all p extends to a ring

isomorphism φ : H∗(IG,Q)→ H∗(OG,Q). Moreover, we have φ(σλ) = 2ℓk(λ)τλ for
all λ ∈ P(k, n).

We let cp = cp(QOG). The Chern classes cp are related to the special Schubert
classes τp on OG by the equations

cp =

{
τp if p ≤ k,

2τp if p > k.

Using the isomorphism φ, we can therefore describe the Giambelli formula for
OG(n − k, 2n + 1) as follows. For any integer sequence α, set mα =

∏
i cαi

; then
for every λ ∈ P(k, n), we have

(12) τλ = 2−ℓk(λ)Rλmλ

in H∗(OG,Z).

2.2. For λ any k-strict partition, we say that the box [r, c] in row r and column c
of λ is k-related to the box [r′, c′] if |c− k− 1|+ r = |c′ − k− 1|+ r′. If c ≤ k < c′,
then this is equivalent to c + c′ = 2k + 2 + r − r′. For example, in the partition
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displayed below, the grey box [r, c] is k-related to [r′, c′]. The notion of k-related
boxes makes sense also for boxes outside the Young diagram of λ.

(r, c)
(r′, c′)

k

Given two Young diagrams µ and ν with µ ⊂ ν, the skew diagram ν/µ is called a
horizontal (resp. vertical) strip if it does not contain two boxes in the same column
(resp. row). For any two k-strict partitions λ and µ, we write λ → µ if µ may be
obtained by removing a vertical strip from the first k columns of λ and adding a
horizontal strip to the result, so that

(1) if one of the first k columns of µ has the same number of boxes as the same
column of λ, then the bottom box of this column is k-related to at most one box
of µr λ; and

(2) if a column of µ has fewer boxes than the same column of λ, then the removed
boxes and the bottom box of µ in this column must each be k-related to exactly
one box of µr λ, and these boxes of µr λ must all lie in the same row.

Equivalently, λ → µ means that λj − 1 ≤ µj ≤ λj−1 for each j, λj ≤ µj when
λj > k, and conditions (1) and (2) are true. Let A be the set of boxes of µr λ in
columns k+1 through k+n which are not mentioned in (1) or (2), and defineN(λ, µ)
to be the number of connected components of A. Here two boxes are connected if
they share at least a vertex. In [BKT1, Theorem 2.1] we proved that the Pieri rule

(13) cp · τλ =
∑

λ→µ, |µ|=|λ|+p

2N(λ,µ) τµ

holds, for any p ∈ [1, n+ k].

2.3. A comparison of (4) with (11) suggests modifying the definition of valid sets of
pairs from §1 to include elements along the diagonal {(i, i) | i > 0}. This convention
will make the formalism of our proof of Theorem 1 cleaner, and is in fact crucial in
the corresponding proof of Giambelli for even orthogonal Grassmannians.

Set ∆ = {(i, j) ∈ N× N | 1 ≤ i ≤ j} with the same partial order as in §1.2, and
define the notion of a valid set of pairs exactly as before. Given a k-strict partition
λ and an integer t ≥ ℓ(λ), we obtain a valid set of pairs Ct(λ) by

Ct(λ) = {(i, j) ∈ ∆ | λi + λj > 2k + j − i and j ≤ t}.

Furthermore, we let C(λ) = Cℓ(λ)(λ). Notice that C(λ) includes the pairs (i, i) such
that λi > k. It is easy to see that when k > 0, a set D ⊂ ∆ is a valid set of pairs if
and only if there exists a k-strict partition λ for which C(λ) = D.
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An outer corner of a valid set of pairs D ⊂ ∆ is a pair (i, j) ∈ ∆rD such that
D ∪ (i, j) is also a valid set of pairs. The outside rim ∂D of D is the set of pairs
(i, j) ∈ ∆rD such that i = 1 or (i− 1, j − 1) ∈ D.

Lemma 2.1. Let µ be a k-strict partition such that λ→ µ. Then for any t ≥ ℓ(λ),
we have Ct(λ) ⊂ Ct+1(µ) ⊂ Ct(λ) ∪ ∂ Ct(λ).

Proof. If (i, j) ∈ Ct+1(µ), then λi−1 + λj−1 ≥ µi + µj > 2k + j − i. This proves
that Ct+1(µ) ⊂ Ct(λ) ∪ ∂Ct(λ). If there exists a pair (i, j) ∈ Ct(λ) r Ct+1(µ), then
λi + λj > 2k + j − i ≥ µi + µj , so we must have µi = λi, µj = λj − 1, and
λi + λj = 2k+1+ j − i. Condition (2) of §2.2 implies that some box [h, c] of µr λ
is k-related to [j, λj ], and [h, c − 1] is also in µ r λ since this box is k-related to
[j − 1, λj ]. The equality λj + c = 2k + 2 + j − h implies that (h, j) ∈ Ct+1(µ),
and since Ct+1(µ) is a valid set of pairs, we must have h < i. But we also obtain
λh < c − 1 = 2k + 1 + j − h − λj = λi + i − h, contradicting the fact that λ is
k-strict. This proves that Ct(λ) ⊂ Ct+1(µ). �

Definition 2.2. For any valid set of pairs D ⊂ ∆ and any integer sequence λ we
define the cohomology class T (D,λ) ∈ H∗(OG) by

T (D,λ) = 2−#{i | (i,i)∈D} φ(T (D ∩∆◦, λ)),

where T (D ∩∆◦, λ) ∈ H∗(IG) is defined by (8).

To prove (12) and hence also establish Theorem 1, it suffices to show that if λ
is a k-strict partition, the Pieri rule

(14) cp · T (C(λ), λ) =
∑

λ→µ, |µ|=|λ|+p

2N(λ,µ) T (C(µ), µ)

holds in H∗(OG,Z), for all p. To see this, write µ ≻ λ if µ strictly dominates λ,
i.e., µ 6= λ and µ1 + · · · + µi ≥ λ1 + · · · + λi for each i ≥ 1. We deduce from (13)
and (14) that

2ℓk(λ) τλ +
∑

µ≻λ

aλµ τµ = cλ1
· · · cλℓ

= 2ℓk(λ) T (C(λ), λ) +
∑

µ≻λ

aλµ T (C(µ), µ),

for some constants aλµ ∈ Z. By induction on λ, it follows that τλ = T (C(λ), λ),
which is a restatement of (12).

Observe that Lemmas 1.2, 1.3, and 1.4 carry over verbatim to our current setting
where D ⊂ ∆. These lemmas are the main properties of the cohomology classes
T (D,λ) that we use, and as such constitute the technical core of our proof of
Theorem 1. But the non-trivial scheme that puts them to work together is an
algorithm with a substitution rule; this is explained in the next section.

3. The Substitution Rule

3.1. Throughout the next two sections we fix p > 0, the k-strict partition λ of
length ℓ, and choose n sufficiently large so that we can ignore it in the sequel. Set
C = C(λ). For any d ≥ 1 define the raising operator Rλd by

Rλd =
∏

1≤i<j≤d

(1−Rij)
∏

i<j : (i,j)∈C

(1 +Rij)
−1.
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Figure 1. A valid set of pairs C (white dots) and a subset of ∂C
(grey dots).

We compute that

cp · T (C, λ) = cp · 2
−ℓk(λ)Rλℓ mλ = 2−ℓk(λ)Rλℓ+1 ·

ℓ∏

i=1

(1−Ri,ℓ+1)
−1mλ,p

= 2−ℓk(λ)Rλℓ+1 ·
ℓ∏

i=1

(1 +Ri,ℓ+1 +R2
i,ℓ+1 + · · · )mλ,p

and therefore

(15) cp · T (C, λ) =
∑

ν∈N

T (C, ν),

where N = N (λ, p) is the set of all compositions ν ≥ λ such that |ν| = |λ|+ p and
νj = 0 for j > ℓ+ 1. Our strategy for proving Theorem 1 is to show that the right
hand side of equation (15) is equal to the right hand side of the Pieri rule (14).

3.2. The following objects will be used as book keeping tools in a delicate process
of rewriting the right hand side of (15). Let m ≥ 1 be minimal such that λm ≤ k;
we call m the middle row of λ. Notice that m is the smallest positive integer for
which (m,m) /∈ C.

Definition 3.1. A valid 4-tuple of level h is a 4-tuple ψ = (D,µ, S, h), such that
h is an integer with 0 ≤ h ≤ ℓ + 1, D is a valid set of pairs containing C, all
pairs (i, j) in D satisfy i ≤ m and j ≤ ℓ + 1, S is a subset of D r C, and µ is
an integer sequence of length at most ℓ + 1. The evaluation of ψ is defined by
ev(ψ) = T (D,µ) ∈ H∗(OG,Q).

All valid 4-tuples encountered in this paper will also satisfy that D ⊂ C∪∂C (see
Lemma 4.1), but for technical reasons we do not require this in the definition. We
will represent the set ∆ as the positions on or above the main diagonal of a matrix,
and the various sets of pairs D as sets of entries in this matrix. In Figure 1 the
white dots represent a set of pairs C, the grey dots are a subset of the outside rim
of C, and we have m = 10. The union of the white and grey dots form the set D in
a typical valid 4-tuple (D,µ, S, h).

In the following we set µ0 =∞ whenever µ is an integer sequence.

Definition 3.2. For any y ∈ Z we let r(y) denote the largest integer such that
r(y) ≤ ℓ+ 1 and λr(y)−1 > 2k + r(y)− y.
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h

bh gh

x

Figure 2. The set C near the pair x = (h, gh) ∈ ∂C.

Since λ0 = ∞ we have r(y) ≥ 1. Notice that for (i, j) ∈ ∆ and j ≤ ℓ we have
(i, j) ∈ C ⇔ λj > 2k + j − i− λi ⇔ j < r(i+ λi + 1). This gives the relation

(16) C = {(i, j) ∈ ∆ | j < r(i+ λi + 1)} .

The function r(y) is also connected to the notion of k-relatedness of boxes.
Assume that some box [i, c] with c > k is k-related to a box [j, d] in the first k
columns of λ. Then λj ≥ d = 2k + 2 + j − i − c, which implies that j < r(i + c).
Furthermore, if [j + 1, d+ 1] 6∈ λ then r(i+ c) = j + 1.

Definition 3.3. Let h ∈ N satisfy 1 ≤ h ≤ m and let µ be an integer sequence.

(a) We define bh = r(h+ λh +1) and gh = bh−1. By convention we set g1 = ℓ+1.

(b) Set R(µ) = {[i, c] ∈ µr λ | c > k and µr(i+c) ≤ 2k + r(i+ c)− i− c}.

(c) Assume that h ≥ 2 and µh ≥ λh−1. If [h, λh−1] ∈ R(µ) then set eh(µ) = λh−1.
Otherwise choose eh(µ) > max {k, λh} minimal such that [h, c] 6∈ R(µ) for eh(µ) ≤
c ≤ λh−1. Finally, set fh(µ) = r(h+ eh(µ)).

Notice that for h < m we have bh = min{j ≥ m | (h, j) 6∈ C}. The integers bh
and gh are illustrated in Figure 2. In the definition of R(µ), suppose that some box
[i, c] ∈ µr λ with c > k is k-related to a box [j, d] in the first k columns of λ, such
that [j + 1, d + 1] 6∈ λ. Then we have r(i + c) = j + 1 and d = 2k + 2 + j − i − c.
It follows that [i, c] ∈ R(µ) if and only if µj+1 < d. In particular, if µ is a k-
strict partition such that λ → µ, then the set A from §2.2 consists of the boxes of
µ r λ in columns k + 1 and higher which are not in R(µ). Notice also that since
h + λh + 1 ≤ h + eh(µ) ≤ h + λh−1 and r(y) is a monotone increasing function of
y, we always have

(17) bh ≤ fh(µ) ≤ gh .

In particular we have fh(µ) ≥ m and (h, fh(µ)) /∈ C; when h = m the inequality is
true because λm−1 > 2k− eh(µ) = 2k+m− h− eh(µ). Furthermore, if [h, λh−1] ∈
R(µ), then fh(µ) = gh.

Example 3.4. Let k = 3, λ = (9, 7, 3, 2, 1, 1), and µ = (11, 12, 7, 2, 2). Then

C(λ) = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4)}.

Figure 3 illustrates λ and µ, with the boxes in µrλ shaded, and the boxes in R(µ)
marked. Note that there is one box in λrµ. We have e2(µ) = 8, f2(µ) = 5, g2 = 5,
e3(µ) = 6, f3(µ) = 4, and g3 = 5.

Lemma 3.5. If 2 ≤ h ≤ m then we have λh−1 − λh ≥ gh − bh + 1.
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R
R R

R

Figure 3. The shapes λ and µ, with µr λ shaded.

Proof. The inequality is clear if bh = gh, as λ is k-strict and h ≤ m. If bh < gh, then
since bh = r(h+ λh +1) and gh = r(h+ λh−1) we have λbh ≤ 2k+ bh − h− λh and
λgh−1 > 2k+gh−h−λh−1, which implies that λh−1−λh > gh−λgh−1−bh+λbh ≥
gh − bh. �

Lemma 3.6. Let µ be an integer sequence and 2 ≤ h ≤ m. If µh ≥ λh−1 and

λh−1 + µgh ≤ 2k + gh − h, then fh(µ) = gh.

Proof. We have λh−1 > k and [h, λh−1] ∈ µ r λ. Since gh = r(h + λh−1), the
inequality µgh ≤ 2k+ gh−h−λh−1 shows that [h, λh−1] ∈ R(µ). This implies that
eh(µ) = λh−1 and fh(µ) = r(h+ λh−1) = gh, as required. �

Lemma 3.7. Let 2 ≤ h ≤ m and let µ and µ′ be integer sequences such that

µh ≥ λh−1, µ
′
h ≥ λh−1, and µj = µ′j for max(m,h+1) ≤ j ≤ gh. Then [h, c] ∈ R(µ)

if and only if [h, c] ∈ R(µ′) for all c ≤ λh−1. In particular, we have eh(µ) = eh(µ
′)

and fh(µ) = fh(µ
′).

Proof. Let [h, c] ∈ µ r λ satisfy k < c ≤ λh−1, and set j = r(h + c). Since k-
strictness of λ implies that k +m + 1 ≤ h + c ≤ h + λh−1, we obtain m ≤ j ≤ gh
and hence µj = µ′j provided that j > h. It follows that [h, c] ∈ R(µ) if and only if
[h, c] ∈ R(µ′), as required. �

If we are given a fixed valid 4-tuple (D,µ, S, h) with 1 ≤ h ≤ m, we will use
the shorthand notation b = bh, g = gh, R = R(µ), e = eh(µ), and f = fh(µ); the
values e and f will be used only when µh ≥ λh−1. The precise value of f will play a
crucial role in our proof that the Pieri terms in (14) appear in (15) with the correct
multiplicities. For example, it is part of the following definition of a condition X,
that will be used to identify undesired valid 4-tuples.

Definition 3.8. Let (i, j) ∈ ∆ be arbitrary. We define two conditions W(i, j) and
X on a valid 4-tuple (D,µ, S, h) as follows.

W(i, j) : µi + µj > 2k + j − i .

Condition X is true if and only if (h, h) ∈ D and

µh ≥ µh−1 or µh > λh−1 or (µh = λh−1 and (h, f) /∈ S) .
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3.3. The following substitution rule will be applied iteratively to rewrite the right
hand side of (15). It may be applied to any valid 4-tuple of positive level and
will result in either a REPLACE statement, indicating that the 4-tuple should be
replaced by one or two new 4-tuples, or a STOP statement, indicating that the
4-tuple should not be replaced.

Substitution Rule

Let (D,µ, S, h) be a valid 4-tuple of level h ≥ 1. Assume first that (h, h) /∈ D. If

(i) there is an outer corner (i, h) of D with i ≤ m such that W(i, h) holds

then REPLACE (D,µ, S, h) with

(D ∪ (i, h), µ, S, h) and (D ∪ (i, h), Rihµ, S ∪ (i, h), h).

Otherwise, if

(ii) D has no outer corner in column h and µh > λh−1,

then STOP.

Assume now that (h, h) ∈ D. If

(iii) there is an outer corner (h, j) of D with j ≤ ℓ+ 1 such that W(h, j) holds,

then REPLACE (D,µ, S, h) with
{
(D ∪ (h, j), µ, S, h) and (D ∪ (h, j), Rhjµ, S ∪ (h, j), h) if µj ≤ µj−1,

(D ∪ (h, j), Rhjµ, S ∪ (h, j), h) if µj > µj−1.

Otherwise, if

(iv) W(h, g) or X holds, and D has an outer corner (i, g) with i ≤ h,

then REPLACE (D,µ, S, h) with

(D ∪ (i, g), µ, S, h) and (D ∪ (i, g), Rigµ, S ∪ (i, g), h).

Otherwise, if

(v) X holds,

then STOP.

If none of the above conditions hold, REPLACE (D,µ, S, h) with (D,µ, S, h−1).

Definition 3.9. Let (x) be one of the conditions (i)–(v) of the Substitution Rule.
We say that a valid 4-tuple ψ meets condition (x) if ψ reaches condition (x) in the
Substitution Rule, and condition (x) is satisfied. Whenever the Substitution Rule
REPLACES ψ by one or two 4-tuples ψi, we refer to ψ as the parent term and the
ψi are its children.
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3.4. Initially, we define the set Ψ = {(C, ν, ∅, ℓ+1) | ν ∈ N (λ, p)}; thus
∑
ψ∈Ψ ev(ψ)

agrees with the right hand side of (15). We then apply an algorithm which will
change this set by replacing some 4-tuples with one or two new valid 4-tuples. The
algorithm applies the Substitution Rule to each element (D,µ, S, h) of level h ≥ 1.
If the substitution rule results in a REPLACE statement, then the set is changed
accordingly; otherwise the substitution rule results in a STOP statement, in which
case the 4-tuple (D,µ, S, h) is left untouched. These substitutions are iterated until
no further elements can be REPLACED, i.e., until the substitution rule results in
a STOP statement when applied to any remaining 4-tuple with h ≥ 1.

Since the set of pairs D is not allowed to grow beyond column ℓ+1, the algorithm
will terminate after a finite number of steps. Notice that if ψ = (D,µ, S, h) is any
4-tuple produced by the algorithm, then the initial 4-tuple ψ0 = (C, ν, ∅, ℓ+1) that
gave rise to ψ can be recovered by the equation ν =

∏
(i,j)∈S Lijµ. Here Lij denotes

the lowering operator which is the inverse of Rij . Furthermore, the sequence of 4-
tuples leading from ψ0 to ψ is uniquely determined by ψ because all choices made
along the way are recorded in the set S. In particular, no 4-tuple can be produced
multiple times.

Suppose that the 4-tuple ψ = (D,µ, S, h) occurs in the algorithm. If ψ is RE-
PLACED by two 4-tuples ψ1 and ψ2, we deduce from Lemma 1.4 that ev(ψ) =
ev(ψ1)+ev(ψ2). Moreover, if ψ meets (iii) and is REPLACED by the single 4-tuple
ψ′ = (D ∪ (h, j), Rhjµ, S ∪ (h, j), h), then Lemmas 1.2 and 1.4 imply that ev(ψ) =
ev(ψ′). Indeed, it follows from Corollary 4.10 below that µj−1 = µj−1 andD∪(h, j)
has no outer corner in column j, so Lemma 1.2 shows that ev(D∪(h, j), µ, S, h) = 0.

When the algorithm terminates, let Ψ0 (respectively Ψ1) denote the collection
of all 4-tuples (D,µ, S, h) in the final set such that h = 0 (respectively h > 0). We
say that a 4-tuple ψ survives the algorithm if at least one of its successors lies in
Ψ0. The above analysis implies that

∑

ν∈N

T (C, ν) =
∑

ψ∈Ψ0

ev(ψ) +
∑

ψ∈Ψ1

ev(ψ).

In the next section, we will prove the following two claims.

Claim 1. For each 4-tuple ψ = (D,µ, S, 0) in Ψ0 with µℓ+1 ≥ 0, µ is a k-strict
partition with λ→ µ and ev(ψ) = T (C(µ), µ). Furthermore, for each such partition
µ, there are exactly 2N(λ,µ) such 4-tuples ψ, in accordance with the Pieri rule.

Claim 2. There exists an involution ι : Ψ1 → Ψ1 of the form ι(D,µ, S, h) =
(D,µ′, S′, h) such that ev(ψ) + ev(ι(ψ)) = 0, for every ψ ∈ Ψ1.

We remark that the 4-tuples ψ ∈ Ψ0 with µℓ+1 < 0 evaluate to zero trivially, by
Definition 1.1. The two claims therefore suffice to prove the Pieri rule (14).

For each initial 4-tuple ψ0 = (C, ν, ∅, ℓ+1) of the sum (15), the algorithm produces
a tree of 4-tuples with root node given by ψ0. If the Substitution Rule REPLACES
a 4-tuple ψ by one or two other 4-tuples ψi, we have a branch in the tree from ψ
to the ψi. The leaves of the tree are exactly the 4-tuples with h = 0 or where the
Substitution Rule STOPS. The fate of all the terms of the sum (15) is encoded by
the collection of all the trees with root nodes (C, ν, ∅, ℓ + 1) for ν ∈ N (λ, p). This
collection will be called the substitution forest; the sum of the cohomology classes
represented by the roots of the substitution forest is equal to the sum of classes
given by the leaves.
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(i)

(i)

(v)

(i)

({11}, 2210, ∅, 4)

({11}, 2210, ∅, 2)

({11, 12}, 2210, ∅, 2)

({11, 12, 22}, 2210, ∅, 2)

({11}, 2111, ∅, 4)

({11}, 2111, ∅, 0)

({11}, 2120, ∅, 4)

({11}, 2120, ∅, 3)

({11}, 3110, ∅, 4)

({11}, 3110, ∅, 2)

({11, 12}, 4010, {12}, 2)

(iii)

({11, 12, 13}, 5000, {12, 13}, 1)

({11, 12, 13}, 5000, {12, 13}, 0)

({11, 12}, 4010, {12}, 1)

({11, 12}, 3110, {12}, 2) ({11, 12}, 3110, ∅, 2)

({11, 12, 22}, 2210, {22}, 2)

({11, 12}, 3110, {12}, 0)

(v)

(ii)

({11, 12}, 3110, ∅, 0)

Figure 4. The substitution forest for λ = 211 and k = p = 1.

Example 3.10. We discuss an example of the substitution forest in detail. Con-
sider the Grassmannian OG(n− 1, 2n+ 1) for n ≥ 5, and the Pieri product

c1 · τ2,1,1 = τ2,1,1,1 + 2 τ3,1,1 + τ5.

For simplicity, we will omit the commas in our notation for compositions and
pairs. Thus λ = 211, k = p = 1, and we have C(λ) = {11} and N (λ, p) =
{2111, 2120, 2210, 3110}. The substitution forest is pictured in Figure 4, except
that we have omitted those nodes (D,µ, S, h) which have (D,µ, S, h+ 1) as parent
and (D,µ, S, h− 1) as child.

Observe that the root ({11}, 2120, ∅, 4) is the only initial 4-tuple that does not
survive the algorithm. We have Ψ0 = { ({11}, 2111, ∅, 0), ({11, 12}, 3110, {12}, 0),
({11, 12}, 3110, ∅, 0), ({11, 12, 13}, 5000, {12, 13}, 0) }, which corresponds exactly to
the terms in the Pieri product c1 ·τ211. Furthermore, each 4-tuple in the set Ψ1 = {
({11, 12, 22}, 2210, ∅, 2), ({11, 12, 22}, 2210, {22}, 2), ({11}, 2120, ∅, 3) } evaluates to
zero in the cohomology ring of OG.

4. Proof of Theorem 1

4.1. Recall the fixed choices of p, λ, ℓ, C, and m from §3.1. In §4.1 through §4.3
we furthermore let ψ = (D,µ, S, h) denote a 4-tuple which occurs at some step in
the algorithm, i.e., a node of the substitution forest. The symbols D, µ, S, h will
refer to components of the 4-tuple ψ. We will occasionally work with more than
one valid 4-tuple. If (D′, µ′, S′, h′) is an additional 4-tuple, then the sets and values
that Definition 3.3 associates to this 4-tuple will be called R′, e′, f ′, and g′.

The algorithm has two phases. A 4-tuple ψ is in Phase 1 if (h, h) /∈ D, and in
Phase 2 if (h, h) ∈ D. The level h is always used to index an entry of the integer
sequence µ in ψ; it begins at h = ℓ+1 and decreases as the 4-tuple proceeds through
the algorithm. In Phase 1 we have h ≥ m, while h ≤ m in Phase 2. Throughout
the algorithm we have i ≤ m ≤ j for each (i, j) ∈ S, so µ is obtained from the
initial composition ν by removing boxes from rows weakly below the middle row of
λ and adding them to rows weakly above the middle row.
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The set D is initially equal to C and grows when REPLACE statements are
encountered. Lemma 4.1 below shows that all pairs added to D come from the
outer rim ∂C. In Phase 1, pairs are added by rule (i) to column h, so as the level
h decreases from ℓ + 1 to m, these pairs are added along vertical columns of ∂C,
proceeding from top (row 1) to bottom (row m) and right to left. In Phase 2, the
set D mainly grows when rule (iii) adds pairs to row h, in which case the pairs are
added in horizontal rows of ∂C, from left to right and bottom to top. In some cases
rule (iv) will add extra pairs (i, g) to D, where i ≤ h. Lemma 4.6 implies that if
ψ meets (iv), then it will not survive the algorithm, and only pairs from column g
of ∂C can be added to its successors. In particular, all 4-tuples in Ψ0 are produced
from the the initial 4-tuples by applications of rules (i) and (iii).

Our proof of Theorem 1 occupies the remainder of this section. In §4.2 we
prove some properties satisfied by 4-tuples that occur in the algorithm. Additional
properties for 4-tuples in Ψ0 are proved in §4.3. The proof of Claim 1 is then given
in §4.4, while Claim 2 is justified in §4.5.

4.2. We prove some lemmas that reveal what can happen to the 4-tuple ψ =
(D,µ, S, h) during the algorithm.

Lemma 4.1. We have D ⊂ C ∪ ∂C.

Proof. It is enough to show that if the substitution rule adds the pair (i, j) to D,
then (i, j) ∈ ∂C. Notice first that i ≤ h ≤ j. If (i, j) 6∈ ∂C, then i > 1 and
(i− 1, j − 1) 6∈ C. Let ψ′ = (D′, µ′, S′, h′) be the most recent predecessor of ψ such
that (i − 1, j) 6∈ D′. Then ψ′ meets rule (i), (iii), or (iv), which adds the pair
(i− 1, j) to D′. Since the pair (i− 1, j − 1) ∈ D′r C was added to a predecessor of
ψ′ of level smaller than j, it follows that i ≤ h ≤ h′ ≤ j − 1, so ψ′ does not meet
(i) or (iii). But ψ′ also does not meet (iv) because g′ ≤ j− 1, a contradiction. �

Lemma 4.2. If j > h and (j, j) 6∈ D, then µj ≤ λj−1.

Proof. Assume that µj > λj−1 and let ψ′ = (D′, µ′, S′, j) be the most recent
predecessor of ψ of level j. Then µ′j ≥ µj , and since ψ′ does not meet (ii), it follows
that D′ has an outer corner (i, j) in column j. If i < j, then since (i, j − 1) ∈ C we
obtain µ′j + µ′i > λj−1 + λi > 2k + (j − 1) − i, and otherwise we have i = j = m
and µ′j > λm−1 > k. In both cases ψ′ satisfies W(i, j). But then ψ′ meets (i) and
is not the most recent predecessor of ψ of level j, a contradiction. �

Lemma 4.3. If 2 ≤ h ≤ m, µh ≥ λh−1, and f < g, then µg = λg−1 and (h, g) /∈ S.

Proof. By assumption we have h ≤ m ≤ f < g, and Lemma 4.2 implies that
µg ≤ λg−1 ≤ λm ≤ k. Set x = 2k + g − h − µg. Since (h, f) /∈ C we get
(h, g − 1) /∈ C which implies λh < x. Since [h, λh−1] /∈ R we also obtain x < λh−1.
Assume that µg < λg−1. Then we get λg−1 > 2k + g − h − x, which implies that
g ≤ r(h + x) ≤ r(h + λh−1) = g. The definition of x now shows that [h, x] ∈ R,
from which we deduce that x < e and g = r(h+x) ≤ r(h+ e) = f , a contradiction.
Finally assume that (h, g) ∈ S. Since (h, g− 1) /∈ C we deduce that the parent of ψ
is ψ′ = (Dr (h, g), µ′, Sr (h, g), h), where µ′ = Lhgµ. But Lemma 4.2 then implies
that µg < µ′g ≤ λg−1, a contradiction. �

We next make some observations concerning condition X and rules (iv) and (v).
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Lemma 4.4. If condition X holds for ψ, then X also holds for the children of ψ.
In particular, ψ does not survive the algorithm, and all its successors have level h.

Proof. Assume that ψ = (D,µ, S, h) satisfies condition X and let ψ′ = (D′, µ′, S′, h)
be a child of ψ. If S′ = S then µ′ = µ and X also holds for ψ′, so we may assume
that S′ r S = {(i, j)} and µ′ = Rijµ, where i ≤ h. We can also assume that
λh−1 = µh = µ′h < µ′h−1. Since (h, h) ∈ D and (i, j) 6∈ D, we get i < h < j.

In particular, ψ meets (iv) and j = g. Let ψ = (D,µ, S, g) be the most recent
predecessor of ψ of level g, and let (a, g) be the outer corner of D in column g.
Then a ≤ h− 1, and W(a, g) fails for ψ since it does not meet (i). Using this and
k-strictness of λ, we obtain λh−1 + µ′g < λh−1 + µg ≤ (λa + a − h + 1) + µg ≤
µa + µg + 1 + a − h ≤ 2k + 1 + g − h. Lemma 3.6 now implies that f ′ = g. We
conclude that ψ′ satisfies condition X as µ′h = λh−1 and (h, f ′) = (h, g) 6∈ S′. �

Lemma 4.5. Assume that (h, h) ∈ D and ψ satisfies X or W(h, g).

(a) If h < g and (h, g − 1) /∈ D, then ψ meets (iii).

(b) If ψ meets (v), then (h, g) ∈ D.

Proof. Assume that h < g and (h, g − 1) /∈ D, and let (h, d) be the outer corner of
D in row h. Then d ≤ g− 1 and (h− 1, d) ∈ C. Using Lemma 4.2 and the fact that
C and D have equally many pairs in column d, we obtain µg ≤ λg−1 ≤ λd ≤ µd. If
ψ satisfies condition X, then µh ≥ λh−1 and it follows that µh + µd ≥ λh−1 + λd >
2k+d−h+1. If ψ satisfies W(h, g), then µh+µd ≥ µh+µg > 2k+g−h ≥ 2k+d−h.
This shows that ψ satisfies W(h, d) and (a) follows. If ψ meets (v) and (h, g) /∈ D,
then part (a) implies that D has an outer corner in column g, so ψ meets (iii) or
(iv). This contradiction proves (b). �

The following result implies that no term meeting (iv) survives the algorithm,
and also that applications of (iv) happen in an uninterrupted sequence.

Lemma 4.6. Assume that ψ meets (iv) and let ψ′ = (D′, µ′, S′, h) be any successor

of ψ of level h.

(a) We have (h, g − 1) ∈ D.

(b) If (h, g) /∈ D′ then ψ′ meets (iii) or (iv).

(c) If (h, g) ∈ D′ and ψ′ does not meet (v), then S′ = S, the child (D′, µ, S, h− 1)
of ψ′ meets (v), and gh−1 = g.

Proof. Part (a) follows from Lemma 4.5. If ψ satisfies condition X then assertions
(b) and (c) follow from Lemma 4.4, so we may assume that X fails and W(h, g)
holds for ψ. Without loss of generality we can also replace ψ with the most recent
predecessor whose parent did not meet (iv). Let (i, g) be the outer corner of D in
column g. Since ψ does not meet (iii) we have i < h. Furthermore W(i, g) fails for
ψ, since otherwise the most recent predecessor of ψ of level g meets (i). We obtain
µh+µg ≤ λh−1+µg ≤ λi−h+1+ i+µg ≤ µi+µg+1+ i−h ≤ 2k+1+g−h. Since
ψ satisfies W(h, g) we deduce that λi−h+1+ i = λh−1 = µh = 2k+1+g−h−µg.

If S′ ) S, then µ′g < µg, and Lemma 3.6 implies that f ′ = g. In addition, we
have either (h, g) /∈ S′ or µ′h > µh = λh−1. Since both possibilities imply that ψ′

satisfies condition X, it follows that assertions (b) and (c) are true for ψ′.
Otherwise, we have S′ = S and µ′ = µ. Then ψ′ satisfies W(h, g) and (b)

is true. Assume that (h, g) ∈ D′ and ψ′ does not meet (v). Then X fails for
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ψ′, so we must have λh−2 − 1 = λh−1 = µh < µh−1. Since (h − 1, g) /∈ S, we
deduce that (D′, µ, S, h− 1) satisfies condition X. Furthermore, since (h− 1, g) /∈ C
and λh−2 = λh−1 + 1, we obtain (h − 2, g) /∈ C, so gh−1 = g. We conclude that
(D′, µ, S, h− 1) meets (v), which completes the proof of (c). �

Definition 4.7. Let ∂1C = {(i, j) ∈ ∂C | (i, j − 1) ∈ C or i = j = m}.

Corollary 4.8. Let (i, j) ∈ D r C, and if 2 ≤ h ≤ m then assume that j 6= g. If

(i, j) ∈ ∂1C then this pair was added to D by rule (i), and otherwise it was added

by rule (iii).

Proof. Let ψ′ = (D′, µ′, S′, h′) be the most recent predecessor of ψ for which (i, j) /∈
D′. Then (i, j) is an outer corner of D′. If ψ′′ = (D′′, µ′′, S′′, h′′) is any predecessor
of ψ′ meeting (iv), then Lemma 4.6 implies that that h′′ = h′, gh′ = g, and
(h′, g − 1) ∈ D′, so we must have j = g, a contradiction. It follows that no
predecessor of ψ′ meets (iv). If ψ′ meets (i) then h′ = j, and since D′rC contains
no pairs in column j − 1 we deduce that (i, j) ∈ ∂1C. Finally assume that ψ′

meets (iii) and (i, j) ∈ ∂1C. Let ψ̃ = (D̃, S̃, µ̃, j) be the most recent predecessor

of ψ′ of level j. Then (i, j) = (h′, j) is an outer corner of D̃, since otherwise

(h′ − 1, j) ∈ D′ r D̃ was added to a 4-tuple on the path from ψ̃ to ψ′, which is

impossible. But then the inequality µ̃i + µ̃j = µ′i + µ′j > 2k + j − i implies that ψ̃
meets (i). This contradiction finishes the proof. �

We now prove some results that will be used later to show that surviving 4-tuples
ψ = (D,µ, S, 0) ∈ Ψ0 satisfy λ→ µ.

Lemma 4.9. Let ψ = (D,µ, S, h) and let j ≤ ℓ be a positive integer.

(a) If h ≥ 1 and (h, j) 6∈ C and (h+ 1, j) ∈ D, then we have µj ≥ λj.

(b) If h ≤ 1 or (h− 1, j) ∈ C, then we have µj ≥ λj − 1. Moreover, if µj = λj − 1,
then D r C contains exactly one pair in column j, and this pair is also in S.

Proof. Suppose that µj < λj and choose i > h maximal such that (i, j) ∈ D.
Let ψ′ = (D′, µ′, S′, h′) be the most recent predecessor of ψ with (i, j) 6∈ D′.
Then ψ′ meets rule (i), (iii), or (iv), which adds the pair (i, j) to D′. Let ψ =
(D′ ∪ (i, j), µ, S, h′) be the child of ψ′ that is a predecessor of ψ. Notice that
µ′t ≤ µt ≤ λt−1 for all integers t such that h < t ≤ h′ and (t, t) ∈ D′ ∪ (i, j),
since otherwise condition X holds for every successor of ψ of level t. We also have
µ′j ≤ λj , and if µ′j = λj then (i, j) ∈ S, i < j, µi > µ′i, and µj < µ′j .

If ψ′ meets (i), then h′ = j. Since (i− 1, j) 6∈ C we have µ′i + µ′j ≤ λi−1 + λj ≤
2k + j − i+ 1. As W(i, j) holds for ψ′, it follows that µ′i = λi−1 and µ′j = λj . But
this implies that µi > λi−1, a contradiction.

Therefore ψ′ meets (iii) with h′ = i, or it meets (iv) with h′ ≥ i. In either case
we have g′ = j, and since ψ′ does not satisfy condition X, it must satisfy W(h′, j).
Since (h′−1, j) 6∈ C and thus µ′h′ +µ′j ≤ λh′−1+λj ≤ 2k+ j−h′+1, it follows that
µ′h′ = λh′−1 and µj < µ′j = λj . We obtain λh′−1 + µj ≤ 2k + j − h′, so Lemma 3.6

shows that f = j. Since µi > µ′i, we must also have i < h′, so (h′, f) 6∈ S and ψ
satisfies condition X. This contradiction completes the proof of part (a).

If µj ≤ λj − 2, then Dr C contains at least two pairs in column j, say (a+1, j)
and (a, j), and the assumptions in (b) imply that a ≥ h. Let ψ′ = (D′, µ′, S′, a)
be the most recent predecessor of ψ of level a. Part (a) applied to ψ′ implies that
µ′j ≥ λj , a contradiction since µ′j = µj . �



20 ANDERS SKOVSTED BUCH, ANDREW KRESCH, AND HARRY TAMVAKIS

Corollary 4.10. Assume that ψ meets (iii) and let (h, j) be the outer corner of D
in row h. If µj > µj−1, then µj−1 = µj − 1 and D ∪ (h, j) has no outer corner in

column j.

Proof. Lemma 4.2 implies that µj−1 < µj ≤ λj−1. Since (h − 1, j − 1) ∈ C, it
follows from Lemma 4.9(b) that µj = λj−1 = µj−1+1 and DrC contains a unique
pair (i, j − 1) in column j − 1. Since i < j − 1, it is enough to show that i = h.
Lemma 4.6 implies that (i, j−1) was added by (i) or (iii), so ψ satisfies W(i, j−1),
and we obtain µi + µj = µi + µj−1 + 1 > 2k + j − i. Assume that i > h and let
ψ′ = (D′, µ′, S′, i) be the most recent predecessor of ψ of level i. Then (i, j−1) ∈ D′

and g′ = j. Since µ′i = µi and µ
′
j ≥ µj , W(i, j) holds for ψ′. But then ψ′ meets

(iv) and is not the most recent predecessor, a contradiction. �

Lemma 4.11. Assume that j > m. If h = 0 or (h, j) ∈ D, then µj ≤ µj−1.

Proof. Assume that µj > µj−1. Then Lemmas 4.2 and 4.9(b) imply that µj =
λj−1 = µj−1 + 1, and D r C contains a unique pair (i, j − 1) in column j − 1,
with i ≥ h. Let ψ′ = (D′, µ′, S′, i) be the most recent predecessor of ψ of level
i for which (i, j) 6∈ D′. The assumptions of the lemma then imply that ψ′ 6= ψ.
Lemma 4.6 shows that (i, j − 1) was added to D by (i) or (iii), so ψ′ satisfies
W(i, j − 1). Since µ′j ≥ µj > µj−1 = µ′j−1, ψ

′ also satisfies W(i, j), so ψ′ meets
(iii) or (iv). The choice of ψ′ implies that (i, j) must be the outer corner added to
D′, so in fact ψ′ meets (iii). Now the statement of rule (iii) implies that (i, j) ∈ S,
so µ′j > µj > µ′j−1. This contradicts Corollary 4.10. �

Lemma 4.12. Assume h < m. Then µj ≤ λj−1 and µj < µj−1 for h < j ≤ m.

Proof. If the statement is false, then choose i > h minimal such that µi > λi−1 or
µi ≥ µi−1, and let ψ′ = (D′, µ′, S′, i) be the most recent predecessor of ψ of level
i. Since µ′i > λi−1 or µ′i ≥ µ

′
i−1 and condition X fails for ψ′, we have (i, i) 6∈ D′, so

i = m and µ′m ≥ λm−1 > k. But then µ′t + µ′m ≥ λt + µ′m > (k +m − t) + k for
1 ≤ t < m, so ψ′ meets (i), a contradiction. �

Lemma 4.13. Assume that (h, h) ∈ D, µh = λh−1, and [h, λh−1] ∈ R. Then ψ
satisfies condition X and does not survive the algorithm.

Proof. Since [h, λh−1] ∈ R and r(h+ λh−1) = g, we have µg ≤ 2k + g − h− λh−1,
hence W(h, g) fails for ψ. Lemma 4.12 shows that µh > µh+1 > · · · > µm, so W(d, g)
fails for h ≤ d ≤ m. If (h, g) 6∈ D then condition X holds because (h, f) = (h, g) 6∈ S.
Otherwise choose i ≥ h maximal such that (i, g) ∈ D, and let ψ′ = (D′, µ′, S′, h′) be
the most recent predecessor of ψ for which (i, g) 6∈ D′. Then ψ′ meets (iv) and ψ is
a successor of the child ψ′′ = (D,µ, S, h′) of ψ′. If h′ > h, then Lemma 4.4 implies
that X fails and W(h′, g) holds for ψ′. Since W(h′, g) fails for ψ′′, it follows that
i < h′ and µh′ +µg = 2k+ g− h′. We also have λh′−1 +µg ≤ λh−1 +µg + h− h′ ≤
2k+g−h′, so µh′ ≥ λh′−1, and using Lemma 3.6 we get (h′, f ′′) = (h′, g) 6∈ S. But
then ψ′′ satisfies condition X, a contradiction. We therefore have h′ = h, W(h, g)
fails for ψ′, X holds for ψ′, and the result follows from Lemma 4.4. �

In our applications of Lemma 4.13 we only need the fact that ψ does not survive
the algorithm, so it is enough to know that a predecessor of ψ meets (iv). The last
six lines of the above proof could therefore be omitted.
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4.3. In this section we will study a 4-tuples ψ = (D,µ, S, 0) ∈ Ψ0 with µℓ+1 ≥ 0.
For such a 4-tuple, Corollary 4.8 implies that each pair (i, j) ∈ D r C was added
by (i) or (iii). More precisely, the pair (i, j) was added by (i) if (i, j) ∈ ∂1C, and
otherwise the pair was added by (iii).

Proposition 4.14. Suppose that ψ = (D,µ, S, 0) and µℓ+1 ≥ 0. Then µ is a k-
strict partition with |µ| = |λ| + p, satisfying λj − 1 ≤ µj ≤ λj−1 for every j ≥ 1,
and λj ≤ µj when λj > k. Furthermore, we have D = Cℓ+1(µ).

Proof. By Lemma 4.12 we have µj ≤ λj−1 and µj < µj−1 for 1 ≤ j ≤ m, and
Lemmas 4.2 and 4.11 show that µj ≤ min(λj−1, µj−1) for j > m. We deduce that
µ is a k-strict partition. Lemma 4.9(b) implies that λj−1 ≤ µj for every j. Clearly
λj ≤ µj when λj > k, and |µ| = |λ|+ p.

It remains to show that the set Cℓ+1(µ) is equal to D. If D 6⊂ Cℓ+1(µ), then
since Cℓ+1(µ) and D are both valid sets of pairs, we can find an inner corner
(i, j) ∈ D r Cℓ+1(µ) such that (i+ 1, j) 6∈ D and (i, j + 1) 6∈ D. Since (i, j) 6∈ C by
Lemma 2.1, the pair (i, j) was added by (i) or (iii), and W(i, j) holds since µi and
µj did not change since this event.

On the other hand, if Cℓ+1(µ) 6⊂ D, then we can find an outer corner (i, j) of D
such that (i, j) ∈ Cℓ+1(µ). If (i, j) = (m,m) or if (i, j−1) ∈ C, then the most recent
predecessor of ψ of level j meets (i), and otherwise we deduce from Lemma 2.1 that
the most recent predecessor of ψ of level i meets (iii). This contradiction finishes
the proof. �

Lemma 4.15. Assume that ψ = (D,µ, S, 0) and j are such that µj = λj − 1 ≥ 0,
and let (i, j) be the unique pair in column j of Dr C. Then the removed box [j, λj ]
and the above box [j−1, λj ] are k-related to the boxes [i, c] and [i, c−1], respectively,
where c = 2k + 2 + j − i− λj, and these latter boxes belong to R.

Proof. Let ψ′ = (D′, µ′, S′, h′) be the most recent predecessor of ψ for which (i, j) 6∈
D′. Since µ′j = λj and ψ′ satisfies W(i, j), we obtain µi ≥ µ′i + 1 ≥ c, and since
(i, j) 6∈ C we similarly have λi ≤ c − 2. The boxes [i, c] and [i, c − 1] belong to R
because µj+1 < λj and µj < λj (see §3.2). �

Lemma 4.16. Assume that ψ = (D,µ, S, 0), µℓ+1 ≥ 0, and let i ≤ m be any

integer such that µi = λi−1. Then [i, λi−1] 6∈ R and (i, fi(µ)) ∈ S.

Proof. Let ψ′ = (D′, µ′, S′, i) be the most recent predecessor of ψ of level i. Then
µ′i = µi and (i, i) ∈ D′; if i = m this follows because µ′m = λm−1 > k. Lemma 4.13
implies that [i, λi−1] 6∈ R

′. Since all pairs (c, d) ∈ D rD′ were added by (iii) and
satisfy d > g′, it follows that µ′j = µj for m ≤ j ≤ g′, so Lemma 3.7 shows that
[i, λi−1] 6∈ R and f ′ = fi(µ). Finally, we must have (i, f ′) ∈ S′ ⊂ S since ψ′ does
not satisfy condition X. �

Proposition 4.17. If ψ = (D,µ, S, 0) and µℓ+1 ≥ 0, then we have λ→ µ.

Proof. By Proposition 4.14, it suffices to check that conditions (1) and (2) of §2.2
are true. Condition (1) follows from Lemma 4.16 since [i, λi−1] 6∈ R for each i.
Suppose that µj + 1 = λj = d for j1 ≤ j ≤ j2. According to Lemma 4.15, each
removed box [j, d] for j1 ≤ j ≤ j2 is k-related to some box [ij , cj ] ∈ µr λ, and the
box [ij , cj−1] is also in µrλ. Condition (1) implies that each box [j, d] is k-related
to at most one box of µrλ. It follows that if j < j2, then [ij , cj ] = [ij+1, cj+1− 1],
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so all the boxes [ij , cj ] lie in the same row of µrλ. Condition (2) follows from this
since we also know that the box [j1 − 1, d] is k-related to [ij1 , cj1 − 1]. �

4.4. Propositions 4.14 and 4.17 tell us that if ψ = (D,µ, S, 0) is any 4-tuple in Ψ0

with µℓ+1 ≥ 0, then µ is a k-strict partition with λ → µ, D = Cℓ+1(µ) is uniquely
determined by µ, and ev(ψ) = T (C(µ), µ) is a term appearing in the Pieri rule (14).
To account for the multiplicities, we give an explicit construction of the possible
sets S in these 4-tuples. In this section we fix an arbitrary k-strict partition µ such
that λ→ µ and |µ| = |λ|+ p.

A component means an (edge or vertex) connected component of the set A of
§2.2. We say that a box B of A is distinguished if the box directly to the left of
B does not lie in A. We say that B is optional if it is the rightmost distinguished
box in its component. Notice that N(λ, µ) is equal to the number of optional
distinguished boxes in A. To each distinguished box B = [i, c] we associate the
pair (i, j) = (i, r(i+ c)). The inequality λi−1 > 2k + i− (i+ c) implies that i ≤ j,
so (i, j) ∈ ∆. Let E (respectively F ) be the set of pairs associated to optional
(respectively non-optional) distinguished boxes. We furthermore let G be the set
of all pairs (i, j) ∈ ∆ for which some box in row i of µr λ is k-related to a box in
row j of λr µ.

Lemma 4.18. (a) We have E ∪ F ∪G ⊂ Cℓ+1(µ) ∩ ∂C.

(b) Each pair in E ∪ F is associated to exactly one distinguished box of A.

(c) The sets E, F , and G are pairwise disjoint.

(d) If (i, j) ∈ F , then j = fi(µ).

(e) If (i, j) ∈ E ∪ F ∪G, i < j, and (i, j − 1) 6∈ C, then µj < λj−1.

Proof. Let (i, j) ∈ G. Then µj = λj − 1 and the boxes [j, λj ] and [j − 1, λj ]
are k-related to [i, d] and [i, d − 1], where d = 2k + 2 + j − i − λj . We also
have λi + 1 < d ≤ µi. Therefore λi + λj < d + λj − 1 = 2k + 1 + j − i and
µi + µj ≥ d + µj = 2k + 1 + j − i, so (i, j) ∈ Cℓ+1(µ) r C. Assume that (i, j) is
associated to a distinguished box [i, c] ∈ A. Since r(i + c) = j < j + 1 = r(i + d),
we must have c < d, hence µj = 2k + 1 + j − i − d ≤ 2k + j − i − c. But then
[i, c] ∈ R(µ), a contradiction. It follows that G ∩ (E ∪ F ) = ∅.

Now let [i, c] ∈ A be distinguished and set j = r(i+ c). Then j ≥ r(i+ λi + 1),
so (16) shows that (i, j) 6∈ C. Since [i, c] 6∈ R(µ) we get µj > 2k + j − i − c ≥
2k + j − i − µi, hence (i, j) ∈ Cℓ+1(µ). Using Lemma 2.1, this establishes (a). If
[i, c′] ∈ R(µ) is any box with c′ > c, then we must have j < r(i+c′), since otherwise
µj ≤ 2k + j − i− c′ < 2k + j − i− c. This proves (b) and finishes the proof of (c).
If (i, j) ∈ F , then µi = λi−1, c = ei(µ), and j = fi(µ). This establishes part (d).

In the situation of (e), notice that if µj = λj−1, then (i, j) ∈ E ∪F is associated
to a distinguished box [i, c] ∈ A. We must have c > k + 1, since otherwise λi ≤ k,
i = m, and j = r(m+ k+1) = i. Since [i, c] 6∈ R(µ) and (i, j− 1) 6∈ C, we also have
c > 2k+ j− i−µj = 2k+ j− i−λj−1 ≥ λi+1. It follows that [i, c−1] ∈ R(µ). Set
j′ = r(i+ c− 1). Then j′ ≤ j and µj′ − j

′ ≤ 2k − i− c+ 1 ≤ µj − j, which shows
that j′ = j and µj = 2k + j − i− c+ 1 < λj−1. This contradiction proves (e). �

To every subset E′ of E we associate the set of pairs S(E′) := E′ ∪ F ∪G. This
is a disjoint union, and there are exactly 2N(λ,µ) sets of this form. The following
proposition therefore completes the proof of Claim 1.
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Proposition 4.19. Let S ⊂ ∆ be any subset. Then (Cℓ+1(µ), µ, S, 0) ∈ Ψ0 if and

only if S = S(E′) for some subset E′ ⊂ E.

Proof. We first assume that ψ = (Cℓ+1(µ), µ, S, 0) ∈ Ψ0. Lemmas 4.16 and 4.18(d)
then imply that F ⊂ S. We next show that G = {(i, j) ∈ S | µj < λj}. If µj < λj
then S contains a unique pair (i, j) in column j. Lemma 4.15 shows that [j, λj ] is
k-related to a box in row i of µ r λ, and condition (1) implies that no other box
in µ r λ is k-related to [j, λj ]. It follows that (i, j) is also the unique pair of G in
column j.

Let (i, j) ∈ SrG. We will show that (i, j) is the pair associated to a distinguished
box of A. If i = j = m, then λm ≤ k < µm and (m,m) is associated to the
distinguished box [m, k + 1] ∈ A. We can therefore assume that i < j, hence
µi > λi. Since (i, j) 6∈ G we also have λj ≤ µj . If λi + µj ≥ 2k + j − i, then the
inequality λj−1 ≥ µj > 2k + j − i − λi − 1 implies that j ≤ r(i + λi + 1). Since
(i, j) 6∈ C, it follows from (16) that j = r(i+λi+1). We deduce that [i, λi+1] ∈ A

is a distinguished box and (i, j) is the associated pair.
Otherwise we have λi + µj < 2k + j − i. In this case we set c = 2k + j − i− µj .

Since (i, j) ∈ Cℓ+1(µ) we have λi < c < µi. We also have c > k; if i = m this
follows because µj ≤ λm ≤ k. We claim that µj < λj−1. If (i, j − 1) ∈ C, then this
follows because µj < 2k + j − i − λi ≤ λj−1, so assume that (i, j − 1) 6∈ C. Then
we must have j > m, and (i, j) was added to S in Phase 2 of the algorithm. By
Lemma 4.2 the first predecessor (D′, µ′, S′, i) of ψ of level i satisfies that µ′j ≤ λj−1.
Since (i, j) 6∈ S′, this implies that µj < λj−1, as claimed.

The inequality λj−1 > µj = 2k + j − i − c implies that r(i + c) ≥ j, and since
λj ≤ µj we also have r(i+ c+ 1) ≤ j. We deduce that r(i+ c) = r(i+ c+ 1) = j,
[i, c] ∈ R(µ), and [i, c+ 1] ∈ A. This shows that [i, c+ 1] is distinguished and (i, j)
is the associated pair. We conclude that the set E′ := S r (F ∪ G) is a subset of
E, hence S = S(E′) has the required form.

Now let E′ ⊂ E be an arbitrary subset and set S = S(E′). We must show that
(Cℓ+1(µ), µ, S, 0) ∈ Ψ0. Set ν =

∏
(i,j)∈S Lij µ. The definition of S ensures that

ν ≥ λ, so ν ∈ N (λ, p). We now construct a path P in the substitution forest by
applying the substitution rule of §3.3 repeatedly to the initial 4-tuple (C, ν, ∅, ℓ+1).
Whenever the substitution rule assigns two children to a 4-tuple ψ′ of P, we use
the set S to determine which child is to follow ψ′ on the path. More precisely,
if ψ′ = (D′, µ′, S′, h′) meets (i) or (iii) and has two children, and if (i, j) is the
outer corner being added to D′, then we choose the child ψ′′ = (D′′, µ′′, S′′, h′)
for which S′′ r S′ = S ∩ {(i, j)}. We will show that P terminates in the 4-tuple
(Cℓ+1(µ), µ, S, 0).

For h ≥ 0 we set Dh = C∪{(i, j) ∈ Cℓ+1(µ) | i > h or (j > h and (i, j−1) ∈ C)}.
Lemma 2.1 implies that this is a valid set of pairs. We will say that the 4-tuple
ψ′ = (D′, µ′, S′, h′) is good if it satisfies Dh′ ⊂ D′ ⊂ Dh′−1 and S′ = S ∩D′. It is
enough to show that if ψ′ is any good 4-tuple on P with h′ > 0, then ψ′ has a good
child that also belongs to P.

Let ψ′ be a good 4-tuple of P. We then have µ =
∏

(i,j)∈SrD′ Rij µ
′. We

first show that if ψ′ meets (i) or (iii), and (i, j) is the pair being added to D′,
then (i, j) is also in Dh′−1. If µi + µj = µ′i + µ′j then this is true because ψ′

satisfies W(i, j), and otherwise S r D′ must contain at least one pair in row i or
column j, which implies that (i, j) ∈ Dh′−1 by Lemma 4.18(a). On the other hand,
assume that D′ ( Dh′−1. Then Dh′−1 r Dh′ contains an outer corner (i, j) of
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D′. If we choose c ≥ j maximal such that (i, c) ∈ Cℓ+1(µ), then the inequalities
µ′i + µ′j ≥ µi + µj − (c − j) ≥ µi + µc − c + j > 2k + j − i show that ψ′ satisfies
W(i, j). If h′ = j then ψ′ meets (i), and otherwise we have h′ = i < j and ψ′

meets (iii). Notice also that if ψ′ meets (iii) and µ′j > µ′j−1, then we must have
(h′, j) ∈ S since µ is a partition. These observations show that ψ′ meets (i) or (iii)
if and only if D′ ( Dh′−1, and in this case ψ′ is succeeded on P by a good child.

Now consider a good 4-tuple ψ′ of P such that D′ = Dh′−1. It remains to
show that the substitution rule simply decreases the level of ψ′, i.e. ψ′ does not
meet (ii), (iv), or (v). Assume that ψ′ meets (ii) and choose i ≥ 1 minimal such
that (i, h′) 6∈ D′. Then µ′h′ > λh′−1 and (i, h′) is not an outer corner of D′. We
have i < h′ and (i, h′ − 1) 6∈ C. Using Lemma 2.1 we deduce that (i, h′) ∈ S and
µh′ = λh′−1; however this contradicts Lemma 4.18(e).

If ψ′ satisfies condition X, then h′ ≤ m and µ′h′ = µh′ = λh′−1. It follows that
A contains a non-optional distinguished box in row h′, and Lemma 4.18(d) implies
that (h′, fh′(µ)) ∈ F is the associated pair. But Lemma 3.7 shows that f ′ = fh′(µ),
so (h′, f ′) ∈ S∩Dh′−1 = S′. We conclude that condition X fails for ψ′. In particular,
ψ′ does not meet (v). Finally, if ψ′ meets (iv), then (h′, g′) 6∈ Cℓ+1(µ), and since
µ′h′ = µh′ and µ′g′ = µg′ , we deduce that W(h′, g′) fails for ψ′. This contradiction

finishes the proof that the level of ψ′ is decreased. �

Example 4.20. Consider the partitions λ = (22, 21, 18, 16, 14, 7, 5, 4, 3, 3, 1) and
µ = (25, 21, 19, 17, 15, 14, 6, 5, 3, 2, 2), and set k = 5. Then λ → µ. The diagrams
of λ and µ are displayed in Figure 5, with boxes from R(µ) labeled with R and
distinguished boxes labeled with O for optional and N for non-optional. The figure
also shows the pairs in C(λ) and Cℓ+1(µ), where ℓ = 11. The pairs from E, F , and G
are labeled accordingly, and the one additional pair from Cℓ+1(µ)r C(λ) is labeled
D. The skew dotted lines help to identify the pairs in E and F associated to the
distinguished boxes. The compositions ν for which some 4-tuple (Cℓ+1(µ), µ, S, 0)
originates from (C, ν, ∅, ℓ + 1) may or may not include the boxes labelled with
question marks, which can be traded for boxes from the rows of corresponding
optional distinguished boxes. There are 25 such compositions ν, and for each of
them there are two sets S, one of which contains the diagonal pair (7, 7) ∈ E.

Remark 4.21. The most subtle ingredient of the Substitution Rule is the reference
to condition W(h, g) in rule (iv). In fact, if we modify the algorithm so that 4-
tuples can meet (iv) only when they satisfy condition X, then Claim 1 still holds
but Claim 2 fails. To see this, let ψ = (D,µ, S, h) be a 4-tuple that meets (iv) but
does not satisfy condition X, and assume that the parent of ψ does not meet (iv).
Then the modified algorithm replaces ψ with (D,µ, S, h − 1), and the arguments
in the proofs of Lemmas 4.4 and 4.6 can be used to show that the latter 4-tuple
satisfies X and does not survive the modified algorithm. It follows from this that
Claim 1 is true. However, if the modified algorithm is applied with λ = (4, 3, 1, 1),
p = 6, and k = 1, then the resulting set Ψ1 of 4-tuples meeting (ii) or (v) contains
1119 elements, and 543 of these have non-zero evaluations. This implies that there
is no involution ι : Ψ1 → Ψ1 such that ev(ψ) + ev(ι(ψ)) = 0 for every ψ ∈ Ψ1.

4.5. In this section we construct a sign-reversing involution ι : Ψ1 → Ψ1 and show
that it has the properties required by Claim 2.
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Figure 5. (i) λ and µ, (ii) C(λ) and Cℓ+1(µ) in Example 4.20.

Given a valid 4-tuple ψ = (D,µ, S, h) with h ≥ 2 and µh ≥ λh−1, we define
a new 4-tuple ιψ as follows. If (h, h) /∈ D, then set ιψ = (D, µ̃, S, h), where the
composition µ̃ is defined by µ̃h−1 = µh − 1, µ̃h = µh−1 + 1, and µ̃t = µt for
t /∈ {h − 1, h}. If (h, h) ∈ D and µh−1 = µh, then set ιψ = ψ. Assume that
(h, h) ∈ D and µh−1 6= µh. Let ̟ be the involution of ∆ that exchanges (h− 1, g)

with (h, f), and fixes all other pairs. Then set ιψ = (D, µ̃, S̃, h), where S̃ = ̟(S),
and µ̃ is the composition obtained from µ by switching the parts µh−1 and µh.

Lemma 4.22. If ψ ∈ Ψ1, then ι(ιψ) = ψ and ev(ψ) + ev(ιψ) = 0.

Proof. Assume that (h, h) /∈ D. Then ι(ιψ) = ψ is clear, and since ψ meets (ii), it
follows from Lemma 1.2 that ev(ψ) + ev(ιψ) = 0. Next, assume that (h, h) ∈ D.

Then ψ meets (v) and Lemma 4.5 shows that (h, g) ∈ D. It follows that S̃ ⊂ D
and ιψ is a valid 4-tuple. Lemma 3.7 implies that the same values of e, f , and g are
assigned to ψ and ιψ, so we have ι(ιψ) = ψ. Finally, since ψ satisfies condition X,
we have µh ≥ λh−1 > k, so it follows from Lemma 1.3 that ev(ψ)+ ev(ιψ) = 0. �

Given any valid 4-tuple ψ = (D,µ, S, h), a valid set of pairs D′ ⊂ D, and an
integer h′ ≥ h, we define the 4-tuple ψ(D′, h′) = (D′,

∏
(i,j)∈SrD′ Lijµ, S ∩D

′, h′).

Notice that if ψ occurs in the substitution forest, then every predecessor of ψ can
be written as ψ(D′, h′). In particular, the initial 4-tuple leading to ψ is ψ(C, ℓ+1).

To finish the proof of Claim 2, we will show that ι(Ψ1) ⊂ Ψ1. Fix an element
ψ = (D,µ, S, h) ∈ Ψ1. We will show that the substitution forest has a path leading
to ιψ and that this 4-tuple meets (ii) or (v). Define compositions ν and ν̃ by
(C, ν, ∅, ℓ+ 1) = ψ(C, ℓ+ 1) and (C, ν̃, ∅, ℓ+ 1) = ιψ(C, ℓ+ 1).
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The following lemma shows that ιψ ∈ Ψ1 whenever ψ meets (ii). We will say
that two valid 4-tuples meet the same rule, if both meet the same rule among (i)–
(v) in the substitution rule, or if the substitution rule decreases the level of both
4-tuples.

Lemma 4.23. Assume that ψ ∈ Ψ1 meets (ii).

(a) We have ν̃ ∈ N (λ, p).

(b) Let ψ′ = ψ(D′, h′) be any predecessor of ψ. Then ιψ(D′, h′) meets the same

rule as ψ′. In particular, ιψ meets (ii).

Proof. Notice first that h > m, asD has no outer corner in column h and (h, h) /∈ D.
Part (a) is true because ν̃h−1 = µ̃h−1 = µh − 1 ≥ λh−1, ν̃h ≥ µ̃h = µh−1 + 1 >
λh−1 ≥ λh, and ν̃t = νt ≥ λt for t /∈ {h− 1, h}. The inequality µ̃h > λh−1 implies
that ιψ meets (ii). Let ψ(D′, h′) be a strict predecessor of ψ. If h′ > h and (i, h′)
is an outer corner of D′, then i ≤ m − 1 < h − 1 and W(i, h′) holds for ιψ(D′, h′)
if and only if it holds for ψ(D′, h′). Part (b) follows from this when h′ > h, and
when h′ = h it follows from Lemma 4.2. �

From now on we assume that ψ meets (v) and that µh−1 6= µh, so that ιψ 6= ψ.
We have (h, h) ∈ D, ψ satisfies condition X, and µh ≥ λh−1. We also have µ̃h =
µh−1 ≥ λh−1, and in case of equality µh−1 = λh−1 we must have (h− 1, g) /∈ S or

equivalently (h, f) /∈ S̃. This shows that ιψ satisfies condition X.

Lemma 4.24. We have ν̃ ∈ N (λ, p).

Proof. Notice that ν ≥ λ and ν̃i = νi for i /∈ {h − 1, h, f, g}. Observe also that
row h− 1 of D r C contains the single pair (h− 1, g). If µ̃h−1 > λh−1 we therefore
obtain ν̃h−1 ≥ µ̃h−1 − 1 ≥ λh−1. Otherwise we have µh = µ̃h−1 = λh−1, and since

µh−1 6= µh and ψ satisfies condition X, it follows that (h, f) /∈ S, so (h− 1, g) /∈ S̃
and ν̃h−1 = λh−1. Using Lemma 3.5 we also obtain ν̃h ≥ µ̃h − (g − b + 1) ≥ λh.
Notice that if h < f = g, then ν̃g = νg ≥ λg, so we may assume that f < g.
Lemma 4.3 then implies that ν̃g ≥ µ̃g = µg = λg−1 ≥ λg. Using that [h, e] /∈ R
and the definition of f , we obtain µf ≥ 2k + f + 1 − h − e ≥ λf . If f > h then
we also have ν̃f ≥ µ̃f ; when h < m = f this is true because (h, f) /∈ C implies
(f, f + 1) /∈ D. We conclude that ν̃f ≥ µ̃f = µf ≥ λf , as required. �

For t ∈ N we define the valid set of pairs Dt = C ∪ {(i, j) ∈ D | i < t}. Let
z ≥ 1 be the smallest positive integer for which (z, g) /∈ C and ψ(Dz, g) does not
meet (i), and choose z̃ ≥ 1 minimal such that (z̃, g) /∈ C and ιψ(Dz̃, g) does not
meet (i). We also write z1 = min(z, z̃) and z2 = max(z, z̃), and define the sets
F = {(i, j) ∈ D r C | j < g} and G = {(i, g) | z1 ≤ i < z2}. Let h0 be maximal
such that (h0, g) ∈ D. Notice that h ≤ h0, Dz2 = Dz1 ∪G, and G ⊂ ∂

1C.

Lemma 4.25. (a) Both ψ(Dz, g) and ψ(Dz ∪ F, h0) are predecessors of ψ.

(b) We have z2 ≤ h0 + 1.

Proof. All pairs (i, j) ∈ D r C with i < z were added to D in Phase 1 of the
algorithm, while all pairs (i, g) ∈ DrC with i ≥ z were added in Phase 2. Lemma 4.6
implies that the latter pairs were added to predecessors of ψ of level h0, and this
happened after all pairs of F were added. Part (a) follows from this.

For (b) we may assume that (h0+1, g) ∈ ∂1C. Since µ̃h0+1 = µh0+1 and µ̃g = µg,
it is enough to show that W(h0 + 1, g) fails for ψ. If h0 + 1 < m, then this follows
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because the most recent predecessor of ψ of level h0+1 does not meet (iii) or (iv).
Otherwise we have h0 + 1 = g = m, in which case the inequality µm ≤ k follows
because W(z,m) fails for ψ(Dz,m). �

Given two valid 4-tuples ψ′ and ψ′′, we write ψ′ ≤ ψ′′ if ψ′ is a predecessor of
ψ′′, with ψ′ = ψ′′ allowed. We will write ψ′ < ψ′′ if ψ′ ≤ ψ′′ and ψ′ 6= ψ′′. The
next proposition implies that ιψ appears in the substitution forest; in fact we have
ιψ(C, ℓ+ 1) ≤ ιψ(Dz̃, g) ≤ ιψ(Dz̃ ∪ F, h0) ≤ ιψ.

Proposition 4.26. Let ψ′ = ψ(D′, h′) be a predecessor of ψ.

(a) If ψ′ < ψ(Dz1 , g) then ιψ(D
′, h′) meets the same rule as ψ′.

(b) If z1 ≤ t < z̃, then ιψ(Dt, g) meets (i).

(c) If ψ(Dz, g) ≤ ψ′ < ψ(Dz ∪ F, h0), then ιψ(D′△G, h′) meets the same rule as

ψ′. Here D′△G = (D′ ∪G)r (D′ ∩G) is the symmetric difference.

(d) If z̃ ≤ t ≤ h0, then ιψ(Dt ∪ F, h0) meets (iii) or (iv).

(e) If ψ(D,h0) ≤ ψ
′, then ιψ(D′, h′) meets the same rule as ψ′.

Example 4.27. Let λ = (3, 1), p = 4, and k = 1. Then C = {11, 12}, and
the 4-tuple ψ = (D, 341, {22}, 2) ∈ Ψ1 meets (v), where D = {11, 12, 13, 22, 23}.
We compute f = 2, g = 3, and ιψ = (D, 431, {13}, 2). We also have z = 1,
z̃ = 2, h0 = 2, F = {22}, and G = {13}. The paths of the substitution forest
leading to ψ and ιψ are displayed below. Notice how the path from ψ(Dz, g) to
ψ(Dz ∪ F, h0) translates to a path from ιψ(Dz̃, g) to ιψ(Dz̃ ∪ F, h0), and the path
from ψ(Dz∪F, h0) to ψ(Dz̃∪F, h0) translates to a path from ιψ(Dz, g) to ιψ(Dz̃, g).

(iii)

(i)

(iv)

(iii)

(i)

(i)

({11,12,13},431,{13},3) = ιψ(Dz̃,g)

({11,12},332,∅,3) = ιψ(Dz,g)

({11,12,13},431,{13},2)

({11,12,13,22},431,{13},2) = ιψ(Dz̃∪F,h0)

({11,12,13,22,23},431,{13},2) = ιψ

ψ(Dz,g) = ({11,12},341,∅,3)

({11,12},341,∅,2)

ψ(Dz∪F,h0) = ({11,12,22},341,{22},2)

ψ(Dz̃∪F,h0) = ({11,12,13,22},341,{22},2)

ψ = ({11,12,13,22,23},341,{22},2)

The proof of Proposition 4.26 is based on the following lemmas.

Lemma 4.28. If h0 < h′ ≤ m and gh′ = g, then µ̃h′ = µh′ < λh′−1.

Proof. Let ψ′ = (D′, µ′, S′, h′) be the most recent predecessor of ψ of level h′,
and notice that µ̃h′ = µh′ = µ′h′ . If (h′, h′) /∈ D′ then h′ = m, and since ψ′

does not meet (i) we obtain µ′m ≤ k < λm−1. We may therefore assume that
(h′, h′) ∈ D′. Since condition X fails for ψ′ by Lemma 4.4, we have µ′h′ ≤ λh′−1.
Suppose that µ′h′ = λh′−1. Then (h′, fh′(µ′)) ∈ S′, and since (h′, g) /∈ D we
must have fh′(µ′) < g = gh′ . Lemma 4.3 then implies that µ′g = λg−1, and since
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(h′ − 1, g − 1) ∈ C we deduce that W(h′, g) holds for ψ′. But then Lemma 4.5(a)
implies that ψ′ meets (iii) or (iv), contradicting the choice of ψ′. We conclude
that µ′h′ < λh′−1, as required. �

In the next three lemmas, we let ψ(D′, h′) = (D′, µ′, S′, h′) denote a predecessor
of ψ, let D be a valid set of pairs such that D′ r G ⊂ D ⊂ D′ ∪ G, and write
ιψ(D,h′) = (D,µ, S, h′).

Lemma 4.29. Choose (i, j) ∈ ∂CrD with j 6= g. Assume that (a) (i, j−1) ∈ C or

i ≥ h, and (i, j) is an outer corner of D, or (b) (i, j) = (h′, gh′) 6= (m,m). Then

ψ(D′, h′) satisfies W(i, j) if and only if ιψ(D,h′) satisfies W(i, j).

Proof. Notice first that i < g, since otherwise i = m = g < j and (i, j) /∈ ∂C.
We also have j ≥ z2, as otherwise z2 − 1 = m = j, (m, g) is an outer corner
of Dm, and g = m. Furthermore, if z1 ≤ i < z2, then we obtain (i, g) ∈ ∂1C,
j > g, i < h, and (i, j − 1) ∈ C, which is a contradiction. This shows that
i, j /∈ {z1, z1 + 1, . . . , z2 − 1, g}, so condition W(i, j) holds for ιψ(D,h′) if and only
if it holds for ιψ(D′, h′). Henceforth we will work with the latter 4-tuple, which we

denote ιψ(D′, h′) = (D′, µ̃′, S̃′, h′). We then have µ′t = µ̃′t for t /∈ {h− 1, h, f, g}.
Assume first that i = h. Then we have m ≤ j < g, and (h, j) is an outer corner

of D′. Since (h, j) ∈ D it follows that W(h, j) holds for ψ(D′, h′). We must prove
that also ιψ(D′, h′) satisfies W(h, j). If j = h, then we have i = j = h = m, and
since (h− 1, g − 1) ∈ C we obtain

µ̃′h ≥ µ̃h − g + h = µh−1 − g + h ≥ λh−1 − g + h > 2k − λg−1 ≥ k .

We can therefore assume that i = h < j. We have µ̃′j = ν̃j ≥ λj , and since ιψ
satisfies condition X we also have µ̃′h+g−j+1 ≥ µ̃h ≥ λh−1. Since (h−1, g−1) ∈ C
we obtain

µ̃′h + µ̃′j ≥ λh−1 + λj − g + j − 1 ≥ λh−1 + λg−1 − g + j − 1 ≥ 2k + j − h .

If W(h, j) fails for ιψ(D′, h′), then we must have equality µ̃′h+g−j+1 = µ̃h = λh−1,

hence (h, t) ∈ S̃ for j ≤ t ≤ g. Since λh−1 ≤ µ̃h−1 6= µ̃h we also obtain µ̃h < µ̃h−1.

Since ιψ satisfies condition X, we deduce that (h, f) /∈ S̃. But then f < g, and

Lemma 4.3 implies that (h, g) /∈ S and hence (h, g) /∈ S̃, a contradiction.
We next show that if i 6= h, then the identities µ′i = µ̃′i and µ′j = µ̃′j hold. If

i < h, then j > g and (i, j − 1) ∈ C. Since this implies that i < h− 1, the identities
are true in this case. Otherwise we have h < i ≤ j ≤ b ≤ f , and the identities are
clear unless j = f . In this case we have b = f < g. Notice also that (h, f) ∈ D′; in
case (a) this is true because (i, f) is an outer corner of D′, and in case (b) it follows
from Corollary 4.8 because h′ = i < j = f and (h, f) ∈ D ∩ ∂1C. The sets of pairs

SrD′ and S̃rD′ therefore agree in column f , and since µf = µ̃f by construction,
we deduce that µ′f = µ̃′f , as required. �

Lemma 4.30. The 4-tuple ιψ(D,h′) does not meet (ii).

Proof. Suppose that ιψ(D,h′) meets (ii). Without loss of generality, we may also
assume that ψ(D′, h′) is the most recent predecessor of ψ of level h′. We have
h′ > m, and since D r D contains at most one pair in column h′, we obtain
λh′−1 ≤ µh′ − 1 ≤ µ̃h′ = µh′ ≤ µ′h′ . Lemma 4.2 therefore implies that µh′ − 1 =
µh′ = µ′h′ = λh′−1. In particular, we have h′ ∈ {f, g}.
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Assume that h′ = f and (h, f − 1) /∈ C. Then [h, λh−1] /∈ R(µ), since otherwise
f = r(h + λh−1) and µf ≤ 2k + f − h − λh−1 < λf−1. We also have e > k + 1,
since otherwise λh ≤ k, h = m, and f = r(m + k + 1) = m. Since [h, e] /∈ R(µ)
and (h, f − 1) /∈ C, we obtain e > 2k + f − h− µf = 2k + f − h− λf−1 ≥ λh + 1.
It follows that [h, e − 1] ∈ R(µ). Set f1 = r(h + e − 1). Then f1 ≤ f and
µf1 − f1 ≤ 2k − h− e+ 1 ≤ µf − f . Since Lemma 4.11 implies that µf ≤ µf1 , we
therefore obtain f1 = f and µf = 2k + f − h− e+ 1 < λf−1, a contradiction.

In view of the above, the absence of an outer corner in column h′ of D implies
that either h′ = f and (h, f) ∈ D, or h′ = g and (h− 1, g) ∈ D. It follows that the

sets of pairs SrD and S̃rD agree in column h′, so µh′ ≤ µ′h′ . This contradiction
finishes the proof. �

Lemma 4.31. If h′ > h0, or if h
′ > h and D = D′, then ιψ(D,h′) does not satisfy

condition X.

Proof. We first show that µ′h > λh and µh > λh. In fact, Lemma 3.5 implies that
µh = µ̃h−1 ≥ λh−1 ≥ λh + g − b+ 1. If λh ≥ µ′h, then we must have µ̃h−1 = λh−1
and (h, j) ∈ S for b ≤ j ≤ g. The equality shows that (h − 1, g) /∈ S̃, which in
turn implies that (h, f) /∈ S, a contradiction. The inequality µh > λh is proved by
interchanging ψ(D′, h′) and ιψ(D,h′).

For proving the lemma we may assume that (h′, h′) ∈ D and µh′ ≥ λh′−1. The
assumptions imply that D and D′ agree in all rows i with i ≥ h′. In particular

(h′, h′) ∈ D′. Since µ̃h′ = µh′ and S̃ agrees with S in row h′, we deduce that
µh′ = µ′h′ . Since ψ(D′, h′) does not satisfy condition X by Lemma 4.4, we obtain
µh′ = µ′h′ = λh′−1 < µ′h′−1 and (h′, fh′(µ′)) ∈ S′. We claim that µh′ < µh′−1. If
h′−1 = h, then this is true because µh′ = λh < µh. On the other hand, if h′−1 > h
and the claim fails, then D and D′ differ in row h′−1, and this implies that h′ > h0
and (h′ − 1, g) ∈ G, hence h′ − 1 = h0 > h. Since (h0, g) ∈ G ⊂ ∂1C we obtain
gh′ = bh0

= g, so Lemma 4.28 implies that µ′h′ ≤ µh′ < λh′−1, a contradiction.
We claim that µgh′

= µ′gh′
. Notice that gh′ ≤ f , and the claim is clearly true if

gh′ < f . If gh′ = f < g, then Corollary 4.8 implies that (h, f) was added to D′ by
rule (i), hence µf = µ′f . If gh′ = f = g, then Lemma 4.28 implies that h′ ≤ h0 and

D = D′, so the claim is clear unless (h−1, g) ∈ D′ and (h, g) /∈ D′. In this case the
inclusion (h′, fh′(µ′)) ∈ D′ implies that fh′(µ′) < g. Lemma 4.3 then implies that
µ′g = λg−1, and since (h, g − 1) ∈ C we obtain µ′h + µ′g > λh + λg−1 ≥ 2k + g − h.
Since the outer corner (h, g) of D′ was not added by (i), it follows that (h−1, g) was
added by (iv) when the substitution rule was applied to the parent of ψ(D′, h′).
By applying Lemma 4.6(c) to the parent of ψ(D′, h′) and using that h′ > h, we
obtain (h − 1, g) /∈ S and (h, g) /∈ S. This shows that µ′g = µg, proving the claim.

Finally, Lemma 3.7 implies that fh′(µ) = fh′(µ′), therefore (h′, fh′(µ)) ∈ S, and
we conclude that ιψ(D,h′) does not satisfy X. �

Proof of Proposition 4.26. Write ψ′ = ψ(D′, h′) = (D′, µ′, S′, h′).
(a). If ψ′ < ψ(Dz1 , g), then (h′, h′) /∈ D′. If h′ > g, then Lemmas 4.29 and 4.30

imply that ιψ(D′, h′) meets the same rule as ψ′, and if h′ = g, then both ψ′ and
ιψ(D′, h′) meet (i).

(b). This part follows from the definition of z̃.
(c). Set D = D′△G, which is a valid set of pairs. If ψ′ meets (i) or (iii),

then the pair (i, j) that is added to D′ belongs to F , so j < g, and it follows from
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Lemma 4.29 that ιψ(D,h′) meets the same rule as ψ′. Otherwise, the substitution
rule decreases the level of ψ′, so h′ ≥ h0 + 1 ≥ z̃. If h′ = g, then D′ = Dz, and
it follows from Lemma 4.30 that the level of ιψ(D,h′) = ιψ(Dz̃, g) is decreased.
We may therefore assume that h′ < g. If (h′, h′) /∈ D′, then Lemmas 4.29 and
4.30 imply that the level of ιψ(D,h′) is decreased, so assume that (h′, h′) ∈ D′.
Lemma 4.31 implies that ιψ(D,h′) does not satisfy condition X.

Write ιψ(D,h′) = (D,µ, S, h′). If the level of ιψ(D,h′) is not decreased, then
this 4-tuple meets (iii) or (iv), and Lemma 4.29 implies that a pair from column g
is added to D. It follows that D = Dz̃ ∪ F and ιψ(D,h′) satisfies W(h′, g). Notice
that (z̃, g) ∈ ∂1C, since otherwise we obtain z̃ = h′ = h0 + 1, D = D, and µ = µ̃,
hence ψ satisfies W(h′, g), and this contradicts that the most recent predecessor
of ψ of level h′ does not meet (iii) or (iv). The definition of z̃ therefore implies
that W(z̃, g) fails for ιψ(Dz̃, g), and the same is true for ιψ(D,h′). Since the latter
4-tuple satisfies W(h′, g), we deduce that µz̃ − µh′ < h′ − z̃. Now notice that
λz̃ ≤ µz̃; if z̃ = m then this follows because h′ = m < g and hence (m− 1,m) ∈ C.
Lemma 4.28 therefore implies that λz̃−λh′−1 < µz̃−µ̃h′ < h′− z̃, which contradicts
the fact that λ is k-strict.

(d). We first show that (h0, h0) ∈ Dt ∪ F . If this is false, then we must have
h0 = g = m, so the pair (m,m) was added to D by rule (i). This implies that
µm > k and therefore µ̃m > k. Since µ̃i ≥ λi ≥ k +m − i for all i < m, it follows
that ιψ satisfies W(i,m) for 1 ≤ i ≤ m, hence z̃ = m+ 1 > h0, a contradiction.

Write ιψ(Dt ∪ F, h0) = (Dt ∪ F, µ, S, h0) and assume that both W(h0, g) and X
fail for this 4-tuple. Then W(h0, g) also fails for ιψ. If h < h0, then W(h0, g) fails
for ψ as well, so the pair (h0, g) was added to D by rule (iv). It follows that the
predecessor (D,µ, S, h0) of ψ meets (v), which is a contradiction.

We therefore have h = h0 and (h, g) /∈ S ⊂ Dt ∪ F . Since ιψ satisfies X we
have µ̃h ≥ λh−1, and Lemma 3.6 applied to ιψ shows that f = g. It follows that

µh ≥ λh−1, since otherwise we must have µh < λh−1 = µ̃h and (h, f) = (h, g) ∈ S̃,
contradicting that ιψ satisfies X. Now Lemma 3.6 implies that fh(µ) = g, so
ιψ(Dt ∪ F, h0) satisfies X anyway and meets (iii) or (iv).

(e). If h′ > h, then the substitution rule decreases the level of ψ′, and Lemma 4.31
implies that the same thing happens to ιψ(D,h′). Finally, if h′ = h, then both
ψ′ = ψ and ιψ(D′, h′) = ιψ satisfy condition X and meet (v). �

This completes the proof of Claim 2, and of Theorem 1.

5. Theta Polynomials

5.1. In this section we develop the theory of theta polynomials systematically; the
exposition is influenced by that in Macdonald’s text [M, III.8]. We shall show that
these polynomials share many common features with the Schur Q-functions. One
exception is that when k > 0, we do not have a natural Hopf algebra structure.

Given any power series
∑
i≥0 cit

i in the variable t and an integer sequence α =

(α1, α2, . . . , αℓ), we write cα = cα1
cα2
· · · cαℓ

and set Rcα = cRα for any raising
operator R. We will always work with power series with constant term 1, so that
c0 = 1 and ci = 0 for i < 0. The formal identities (6) imply that the equations

(18)
∏

i<j

(1−Rij) cα = det(cαi+j−i)i,j
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and ∏

i<j

1−Rij
1 +Rij

cα = Pfaffian(Cαi,αj
)i<j

where

Cαi,αj
=

1−R12

1 +R12
cαi,αj

= cαi
cαj
− 2cαi+1cαj−1 + 2cαi+2cαj−2 − · · ·

are valid in the polynomial ring Z[c1, c2, . . .].
Let x = (x1, x2, . . .) be a list of commuting independent variables and let Λ =

Λ(x) be the ring of symmetric functions in x. Consider the generating functions

E(x ; t) =

∞∏

i=1

(1 + xit) =

∞∑

r=0

er(x)t
r and H(x ; t) =

∞∏

i=1

1

1− xit
=

∞∑

r=0

hr(x)t
r

for the elementary and complete symmetric functions er and hr, respectively. Fix
an integer k ≥ 0, let y = (y1, . . . , yk), and for each r define ϑr = ϑr(x ; y) by

ϑr =
∑

i≥0

qr−i(x)ei(y).

We let Γ(k) be the subring of Λ⊗ Z[y1, . . . , yk]
Sk generated by the ϑr:

Γ(k) = Z[ϑ1, ϑ2, ϑ3, . . .].

Set Θ(t) =
∑
r≥0 ϑrt

r; we then have

Θ(t) =
∞∏

i=1

1 + txi
1− txi

k∏

j=1

(1 + yjt) = E(x ; t)H(x ; t)E(y ; t)

and hence

Θ(t)Θ(−t) = E(y ; t)E(y ;−t) =
2k∑

m=0

(−1)mem(y2)t2m ,

where y2 denotes (y21 , . . . , y
2
k). It follows that

(19)
∑

i+j=r

(−1)iϑiϑj =

{
0 if r is odd

(−1)r/2er/2(y
2) if r is even.

In particular, when r = 2m > 2k, equation (19) gives

(20) ϑ2m = 2

m∑

i=1

(−1)i+1ϑm+iϑm−i.

Definition 5.1. Given any k-strict partition λ, we let λ1 be the strict partition
obtained by removing the first k columns of λ, and let λ2 be the partition of boxes
contained in the first k columns of λ.

k

λ2 λ1
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We say that a partition λ is k-odd if all its parts which are greater than 2k are odd.

Proposition 5.2. (a) The ϑλ for λ k-strict form a Z-basis of Γ(k).

(b) The ϑλ for λ k-odd form a Q-basis of Γ
(k)
Q := Γ(k) ⊗Z Q.

Proof. It follows from (20) that for any partition λ, either λ is k-strict, or ϑλ is a
Z-linear combination of the ϑµ such that µ is k-strict and µ ≻ λ (dominance order).
Furthermore, we have

ϑλ(x ; y) =
∑

α

qλ−α(x)eα(y),

the sum over all compositions α with 0 ≤ αi ≤ k for all i. If λ is k-strict, we deduce
that the homogeneous summand of ϑλ of lowest x-degree is equal to qλ1(x)eλ2(y).
Part (a) follows because the set of all products qλ1(x)eλ2(y), given by k-strict
partitions λ, is linearly independent over Z.

Equation (19) implies that ϑ2m ∈ Q[ϑ1, . . . , ϑ2m−1] for m > k. By induction
on m it follows that ϑ2m ∈ Q[ϑ1, . . . , ϑ2k, ϑ2k+1, ϑ2k+3, . . . , ϑ2m−1] for all m > k,

hence the monomials ϑλ indexed by k-odd partitions λ span Γ
(k)
Q as a vector space

over Q. Finally, for each d ∈ N, the number of k-odd partitions of d is equal to the
number of k-strict partitions of d, as verified by the equality of generating functions

∑

λ k-odd

t|λ| =
2k∏

r=1

1

1− tr

∏

r>k

1

1− t2r−1
=

∏

r

1

1− tr

∏

r>k

(1− t2r)

=
k∏

r=1

1

1− tr

∏

r>k

(1 + tr) =
∑

λ k-strict

t|λ| .

This completes the proof of the proposition. �

5.2. Recall the raising operator Rλ from Definition 1.

Definition 5.3. For any k-strict partition λ and formal power series c =
∑
i≥0 cit

i,

the theta polynomial Θλ(c) is defined by Θλ(c) = Rλcλ. The theta polynomial
Θλ(x ; y) in Γ(k) is defined by Θλ = Rλϑλ.

The Θλ(c) are Giambelli polynomials for both the classical and quantum coho-
mology of isotropic Grassmannians (Theorem 1 and [BKT2]). Definition 5.3 and
equation (20) imply that the polynomial Θλ = Θλ(x ; y) can be written in the form

Θλ = ϑλ +
∑

µ≻λ

aλµϑµ

where the sum is over k-strict partitions µ ≻ λ and aλµ ∈ Z. We deduce from
Proposition 5.2(a) that the polynomials Θλ indexed by k-strict partitions λ form a
Z-basis of Γ(k).

Let

H(IGk) = lim
←−

H∗(IG(n− k, 2n),Z)

be the stable cohomology ring of IG; that is, the inverse limit in the category of
graded rings of the system

· · · ← H∗(IG(n− k, 2n),Z)← H∗(IG(n+ 1− k, 2n+ 2),Z)← · · ·
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From the presentation of H∗(IG(n−k, 2n),Z) given in [BKT1, Thm. 1.2], we deduce
that H(IGk) is isomorphic to the polynomial ring Z[σ1, σ2, . . .] modulo the relations

σ2
m + 2

m∑

i=1

(−1)iσm+iσm−i = 0

for all m > k. Since the generators ϑr of Γ
(k) satisfy (20), we have a surjective ring

homomorphism φ : H(IGk)→ Γ(k) sending σr to ϑr for each r. Theorem 1 implies
that φ(σλ) = Θλ for any k-strict partition λ. Since the Θλ form a basis of Γ(k), we
conclude that φ is an isomorphism. This completes the proof of Theorem 2.

5.3. Consider the analogues of the polynomials ϑr when the er(y) are replaced by

complete symmetric functions hr(y). Define for each r a function ϑ̂r = ϑ̂r(x ; y) by

ϑ̂r =
∑

i

qr−i(x)hi(y)

and set Θ̂(t) =
∑
r≥0 ϑ̂rt

r. We then have Θ(t)Θ̂(−t) = 1, or equivalently,

(21)

n∑

r=0

(−1)rϑrϑ̂n−r = 0, n ≥ 1.

As in [M, I.2, (2.9′)], the equations (21) imply that for any partition λ,

(22) det (ϑλi+j−i) = det
(
ϑ̂λ′

i
+j−i

)
.

Here λ′ is the partition conjugate to λ, i.e., λ′i = #{h | λh ≥ i} for all i.

If k = 0, then ϑ̂r = ϑr = qr for every r ≥ 0. Let (1r) denote the partition
(1, 1, . . . , 1) of length r.

Proposition 5.4. Assume that k ≥ 1 and r ∈ N. Then ϑ̂r(x ; y) = Θ(1r)(x ; y).

Proof. Observe that C(1r) = ∅. It follows from this, the identity (18), and equation
(22) that

Θ(1r) =
∏

i<j

(1−Rij)ϑ(1r) = det(ϑ1+j−i)1≤i,j≤r = ϑ̂r. �

Equation (21) and the Whitney sum formula prove that the polynomials ϑ̂r =
Θ(1r) map to the Chern classes of the dual of the tautological subbundle S → IG

under the isomorphism φ of §5.2. A Pieri rule for the products ϑ̂r ·Θλ was obtained
by Pragacz and Ratajski [PR].

Proposition 5.5. The ϑ̂λ for λ k-strict form a Q-basis of Γ
(k)
Q .

Proof. It is clear from the equations (22) that Γ(k) = Z[ϑ̂1, ϑ̂2, ϑ̂3, . . .]. Since

ϑ̂λ(x ; y) =
∑
α≥0 qλ−α(x)hα(y), we deduce that if λ is k-strict, the homogeneous

summand of ϑ̂λ of lowest x-degree is equal to qλ1(x)hλ2(y). Moreover, the set of
products qλ1(x)hλ2(y) for all k-strict partitions λ is linearly independent over Q.
The result now follows by a dimension count. �

Example 5.6. When k = 1, we have

3Θ31 = 2 ϑ̂4 − 5 ϑ̂31 + 4 ϑ̂211 − ϑ̂1111.
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We deduce that the ϑ̂λ for λ k-strict do not form a Z-basis of Γ(k). Furthermore,

the transition matrix between the Q-bases {ϑ̂λ} and {Θλ} of Γ
(k)
Q is not triangular

with respect to the dominance order.

5.4. We next introduce an analogue of the Schur S-functions in the ring Γ(k).

Definition 5.7. For any two finite integer sequences λ, µ, define the function

S
(k)
λ/µ ∈ Γ(k) by setting

S
(k)
λ/µ(x ; y) = det(ϑλi−µj+j−i(x ; y))i,j .

Assume that λ and µ are two partitions. Then, arguing as in [M, I.5], the skew

function S
(k)
λ/µ(x ; y) is zero unless λi ≥ µi for each i. The functions Sλ/µ(x) :=

S
(0)
λ/µ(x ; y) are well known (see [M, III.8, Ex. 7] and [W, Sec. 2.7]). We also let

sλ′/µ′(y) = det(eλi−µj+j−i(y))i,j

denote the (ordinary) skew Schur polynomial in the variables y. We have that
sλ′/µ′(y) = 0 unless 0 ≤ λi − µi ≤ k for each i. The functions Sλ/µ(x) (respec-
tively, sλ′/µ′(y)) are known to be linear combinations of Schur Q-functions Qν(x)
(respectively, Schur S-polynomials sν′(y)) with positive integer coefficients.

Proposition 5.8. For any partitions λ, µ with µ ⊂ λ, we have

(23) S
(k)
λ/µ(x ; y) =

∑

ν

Sλ/ν(x)sν′/µ′(y) =
∑

ν

Sν/µ(x)sλ′/ν′(y)

summed over all partitions ν such that µ ⊂ ν ⊂ λ.

Proof. Let x̃ = (x̃1, x̃2, . . .) be another infinite list of variables and define the ring

Λ̃ = Z[e1(x̃), e2(x̃), . . .]⊗ Z[e1(y), . . . , ek(y)]. According to [M, I.(5.10)], we have

sλ′/µ′(x̃, y) =
∑

ν

sλ′/ν′(x̃)sν′/µ′(y) =
∑

ν

sν′/µ′(x̃)sλ′/ν′(y)

in Λ̃. This is mapped to (23) under the ring homomorphism Λ̃ → Γ(k) defined by
sending ei(x̃) to qi(x) and ej(y) to ej(y). �

The definition of S
(k)
λ implies that S

(k)
λ = ϑλ +

∑
µ≻λ dλµϑµ for some integers

dλµ, and therefore that the set of S
(k)
λ for λ k-strict forms another Z-basis of Γ(k).

For any integer sequence α and raising operator R, set RS
(k)
α = S

(k)
Rα. The next

result follows from the identity S
(k)
λ =

∏
i<j(1−Rij)ϑλ, which is derived from (18).

Proposition 5.9. For any k-strict partition λ, we have

Θλ(x ; y) =
∏

(i,j)∈C(λ)

(1−Rij +R2
ij − · · · )S

(k)
λ (x ; y).

5.5. In this section, we give the proof of Theorem 3. Let λ be a k-strict partition
of length ℓ. Note that if λi + λj ≤ 2k + j − i for all i < j, then C(λ) = ∅, and we

deduce from (18) that Θλ = S
(k)
λ . Part (a) of the theorem then follows by setting

µ = 0 in (23).
Suppose now that λi + λj > 2k + j − i for all i < j ≤ ℓ. Then λ is a strict

partition. For any strict partition µ ⊂ λ with ℓ(µ) ≥ ℓ − 1, we define the shifted
skew shape

S(λ/µ) = (λ+ ǫℓ)/(µ+ ǫℓ) ,
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where ǫℓ = (0, 1, . . . , ℓ− 1).
Following [HH, Chp. 9] and [M, III.8, (8.8) and Ex. 8(c)], for any integer sequence

γ of length ℓ, the (generalized) Schur Q-function Qγ is defined by

Qγ =
∏

1≤i<j≤ℓ

1−Rij
1 +Rij

qγ = Rλqγ .

Given any raising operator R, we have

Rϑλ(x ; y) = ϑRλ(x ; y) =
∑

α

eα(y) qRλ−α(x) =
∑

α

eα(y)Rqλ−α(x).

It follows that

(24) Θλ =
∑

α

eα(y)R
λqλ−α(x) =

∑

α

Qλ−α(x)eα(y).

where the sums run over all compositions α with 0 ≤ αi ≤ k for each i.
Since λ is strict and λℓ−1 +λℓ > 2k+1, we see that λi > αi for all compositions

α indexing the sum (24) and every i except possibly i = ℓ. We deduce from [M,
III.8, Ex. 8(c)] or Lemma 1.3 that Qγ is skew symmetric in γ for all integer vectors
γ = λ− α which appear. It follows that we may rewrite (24) as

Θλ =
∑

µ

∑

w∈Sℓ

(−1)wQµ(x)eλ−w(µ)(y)

summed over strict partitions µ with ℓ(µ) ∈ {ℓ − 1, ℓ}. Part (b) follows from this
because

∑

w∈Sℓ

(−1)weλ−w(µ)(y) = det(eλi−µj
(y))1≤i,j≤ℓ = sS(λ/µ)′(y) .

6. Schubert Polynomials for Isotropic Grassmannians

6.1. The polynomials Θλ(x ; y) fall within the Billey-Haiman theory of type C
Schubert polynomials Cw(x, z). We will prove and discuss this in detail in this
section. Let Wn be the hyperoctahedral group of signed permutations on the set
{1, . . . , n}, and define W∞ =

⋃
nWn. The group W∞ is generated by the simple

transpositions si = (i, i+ 1) for i ≥ 1, and the sign change s0 defined by s0(1) = 1
and s0(p) = p for p > 1. Let w ∈ W∞. A reduced factorization of w is a product
w = uv in Wn such that ℓ(w) = ℓ(u) + ℓ(v). We say that w has a descent at
position i if ℓ(wsi) < ℓ(w); this is equivalent to the inequality w(i) > w(i+1) if we
set w(0) = 0. The signed permutation w is called k-Grassmannian if w = 1 or k is
the only descent position for w.

The elements of Wn index the Schubert classes in the cohomology ring of the
flag variety Sp2n /B, which contains H∗(IG(n − k, 2n),Z) as the subring spanned
by Schubert classes given by k-Grassmannian elements. In particular, each k-strict
partition λ in P(k, n) corresponds to a k-Grassmannian element wλ ∈ Wn which
we proceed to describe; more details and relations to other indexing conventions
can be found in [T1, §4].

Notice that a k-strict partition λ belongs to P(k, n) if and only if its Young
diagram fits inside the shape Π obtained by attaching an (n − k) × k rectangle to
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the left side of a staircase partition with n rows. When n = 7 and k = 3, this shape
looks as follows.

Π =

The boxes of the staircase partition that are outside λ are organized into south-west
to north-east diagonals. Such a diagonal is called related if it is k-related to one
of the bottom boxes in the first k columns of λ, or to any box [1, i + 1] for which
λ1 < i ≤ k; the remaining diagonals are non-related. The k-Grassmannian element
for λ is defined by

wλ = (r1, . . . , rk, (λ1)1, . . . , (λ1)p, u1, . . . , un−k−p),

where r1 < · · · < rk are the lengths of the related diagonals, p = ℓ(λ1) = ℓk(λ), and
u1 < · · · < un−k−p are the lengths of the non-related diagonals. For example, the
partition λ = (7, 4, 2) ∈ P(3, 7) corresponds to the element wλ = (2, 5, 6, 4, 1, 3, 7).

λ =

The signed permutation wλ ∈ W∞ depends on λ and k, but is independent of n.
Furthermore, if λ1 ≤ k, then wλ ∈ S∞ is the type A Grassmannian permutation
for the conjugate partition λ′ with descent at position k.

6.2. A sequence a = (a1, . . . , am) is called unimodal if for some index r we have

a1 > a2 > · · · > ar−1 > ar < ar+1 < · · · < am.

A subsequence of a is any sequence (ai1 , . . . , aip) with 1 ≤ i1 < · · · < ip ≤ m.
Let w ∈W∞ and let λ be a strict partition such that |λ| = ℓ(w). A Kraśkiewicz

tableau [Kr] for w of shape λ is a filling T of the boxes of λ with nonnegative integers
such that, if Ti is the sequence of integers in row i from left to right, then (a) the
row word Tℓ(λ) . . . T1 is a reduced word for w; and (b) for each i, Ti is a unimodal
subsequence of maximum length in the word Tℓ(λ) . . . Ti+1Ti.

For each w ∈W∞ one has a type C Stanley symmetric function Fw(x), which is
a positive linear combination of Schur Q-functions [BH, FK, L]. There exist several
combinatorial interpretations for the coefficients in this expression. We will use a
result of Lam [L] stating that

(25) Fw(x) =
∑

λ

eλwQλ(x)

where eλw equals the number of Kraśkiewicz tableaux for w of shape λ.

Example 6.1. Assume that k = 0 and let wλ be the 0-Grassmannian element
defined by a strict partition λ. In this case there exists a unique Kraśkiewicz
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tableau Tλ for wλ. This tableau has shape λ and its ith row contains the integers
between 0 and λi − 1 in decreasing order. For example, we have

T(6,5,2) =
5 4 3 2 1 0
4 3 2 1 0
1 0

.

To see this, one checks that every reduced word for wλ can be obtained from the row
word of Tλ by using the commuting relations sisj = sjsi for |i − j| > 2; condition
(b) above then implies that any Kraśkiewicz tableau for wλ has the same top row
as Tλ, and the remaining rows are determined by induction on ℓ(λ). We deduce
that Fwλ

(x) = Qλ(x).

6.3. Following Billey and Haiman, each w ∈ W∞ defines a type C Schubert poly-
nomial Cw(x, z). Here z = (z1, z2, . . .) is another infinite set of variables and each
Cw is a polynomial in the ring A = Z[q1(x), q2(x), . . . ; z1, z2, . . .]. The polynomials
Cw for w ∈ W∞ form a Z-basis of A, and their algebra agrees with the Schubert
calculus on symplectic flag varieties Sp2n /B, when n is sufficiently large. According
to [BH, Thm. 3], for any w ∈Wn we have

(26) Cw(x, z) =
∑

uv=w

Fu(x)Sv(z) ,

summed over all reduced factorizations w = uv inWn for which v ∈ Sn. Here Sv(z)
denotes the type A Schubert polynomial of Lascoux and Schützenberger [LS].

We next show that each theta polynomial ϑr agrees with the Billey-Haiman
Schubert polynomial indexed by the k-Grassmannian element w(r) ∈ W∞ cor-
responding to λ = (r). It is easy to see that w(r) has a unique reduced ex-
pression, given by w(r) = sk−r+1sk−r+2 · · · sk when 1 ≤ r ≤ k, and by w(r) =
sr−k−1sr−k−2 · · · s1s0s1 · · · sk when r ≥ k + 1. It follows that if w(r) = uv is
any reduced factorization of w(r) with v ∈ S∞, then v = w(i) for some inte-
ger i with 0 ≤ i ≤ k. The type A Schubert polynomial for w(i) is given by
Sw(i)

(z) = ei(z1, . . . , zk), and (25) implies that the type C Stanley symmetric

function for u = w(r)w
−1
(i) is Fu(x) = qr−i(x). We conclude from (26) that

(27) Cw(r)
(x, z) =

k∑

i=0

qr−i(x1, x2, . . .)ei(z1, . . . , zk) = ϑr(x ; z) ,

as required. Since the Schubert polynomials Cw multiply like the Schubert classes
on symplectic flag varieties, Theorem 1 and (27) imply the following result.

Proposition 6.2. The ring Γ(k) of theta polynomials is, by the identification of yi
with zi for i = 1, . . . , k, a subring of the ring of Billey-Haiman Schubert polynomials

of type C. For every k-strict partition λ we have Θλ(x ; z1, . . . , zk) = Cwλ
(x, z).

Remark 6.3. It is important to note that the equality in Proposition 6.2 is taking
place in the ring A, where there are relations among the qr, and these relations are
used crucially in its proof. Observe furthermore that Proposition 6.2 may be used
to get a different proof of Theorem 2.

Proposition 6.2 and (26) imply that for every k-strict partition λ we have

(28) Θλ(x ; y) =
∑

uv=wλ

Fu(x)Sv(y) ,
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where the sum is over all reduced factorizations wλ = uv in W∞ with v ∈ S∞. The
right factor v in every such factorization must be the identity or a Grassmannian
permutation with descent at position k. In fact, it is not hard to check that the
right reduced factors of wλ that belong to S∞ are exactly the permutations wν
given by partitions ν ⊂ λ2. Since the Schubert polynomial Swν

(y) is equal to the
Schur polynomial sν′(y), we deduce from (25) that

(29) Θλ(x; y) =
∑

µ,ν

eλµνQµ(x)sν′(y) ,

where the sum is over partitions µ and ν such that µ is strict and ν ⊂ λ2, and eλµν
is the number of Kraśkiewicz tableaux for wλw

−1
ν of shape µ. This completes the

proof of Theorem 4.

Corollary 6.4. Let λ be a k-strict partition.

(a) The homogeneous summand of Θλ(x ; y) of highest x-degree is the type C Stanley

symmetric function Fwλ
(x), and satisfies Fwλ

(x) = Rλqλ(x).

(b) The homogeneous summand of Θλ(x ; y) of lowest x-degree is Qλ1(x) s(λ2)′(y).

Proof. Part (a) is deduced by setting y = 0 in (28) and also in the raising operator
expression Θλ(x ; y) = Rλϑλ(x ; y). Part (b) follows from (29), Example 6.1, and the
observation that wλw

−1
λ2 is the 0-Grassmannian Weyl group element corresponding

to the strict partition λ1. �

Example 6.5. Let k = 1 and λ = (3, 2, 1), with corresponding Weyl group element
wλ = (4, 2, 1, 3) ∈W4. Then we have

Θ321 = (Q42 +Q321) + (Q41 + 2Q32) s1′ + 2Q31 s11′ +Q21 s111′

(with the variables x and y omitted). The terms in this expansion are accounted
for by the Kraśkiewicz tableaux in the following table.

ν wλw
−1
ν Kraśkiewicz tableaux for wλw

−1
ν

∅ (4, 2, 1, 3) 3 2 0 1
0 1

3 2 1
1 0
0

(1) (2, 4, 1, 3) 3 1 0 2
0

3 2 0
0 1

3 0 2
0 1

(1, 1) (2, 1, 4, 3) 3 1 0
0

1 0 3
0

(1, 1, 1) (2, 1, 3, 4) 1 0
0

Remark 6.6. The polynomials 2−ℓk(λ)Θλ given by k-strict partitions λ multiply
like the Schubert classes on odd orthogonal Grassmannians OG(n − k, 2n + 1)
and agree with the Billey-Haiman Schubert polynomials of type B indexed by k-
Grassmannian elements wλ. For the even orthogonal Grassmannians OG(n−k, 2n),
both the Giambelli formula and the corresponding family of polynomials are more
involved; this theory is developed in [BKT3].
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et de signes contraires par suite des transpositions opérés entre les variables qu’elles
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