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Abstract. Let X be a symplectic or odd orthogonal Grassmannian which

parametrizes isotropic subspaces in a vector space equipped with a nondegen-
erate (skew) symmetric form. We prove quantum Giambelli formulas which
express an arbitrary Schubert class in the small quantum cohomology ring of

X as a polynomial in certain special Schubert classes, extending the authors’
cohomological Giambelli formulas.

0. Introduction

Let E be an even (respectively, odd) dimensional complex vector space equipped
with a nondegenerate skew-symmetric (respectively, symmetric) bilinear form. Let
X denote the Grassmannian which parametrizes the isotropic subspaces of E of
some fixed dimension. The cohomology ring H∗(X, Z) is generated by certain special
Schubert classes, which for us are (up to a factor of two) the Chern classes of
the universal quotient vector bundle over X. These special classes also generate
the small quantum cohomology ring QH(X), a q-deformation of H∗(X, Z) whose
structure constants are the three point, genus zero Gromov-Witten invariants of X.
In [BKT3], we proved a Giambelli formula in H∗(X, Z), that is, a formula expressing
a general Schubert class as an explicit polynomial in the special classes. Our goal
in the present work is to extend this result to a formula that holds in QH(X).

The quantum Giambelli formula for the usual type A Grassmannian was obtained
by Bertram [Be], and is in fact identical to the classical Giambelli formula. In
the case of maximal isotropic Grassmannians, the corresponding questions were
answered in [KT1, KT2]. The main conclusions here are similar to those of loc.
cit., provided that one uses the raising operator Giambelli formulas of [BKT3] as
the classical starting point. For an odd orthogonal Grassmannian, we prove that
the quantum Giambelli formula is the same as the classical one. The result is
more interesting when X is the Grassmannian IG(n−k, 2n) parametrizing (n−k)-
dimensional isotropic subspaces of a symplectic vector space E of dimension 2n.
Our theorem in this case states that the quantum Giambelli formula for IG(n−k, 2n)
coincides with the classical Giambelli formula for IG(n + 1 − k, 2n + 2), provided
that the special Schubert class σn+k+1 is replaced with q/2.

Although the two theorems in this article are analogous to those of [KT1, KT2],
their proofs are quite different. We prove the quantum Giambelli formula by using
the quantum Pieri rule of [BKT2], in a manner similar to [Bu] and [BKT1, Remark
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3]. However, unlike the previously known examples, for non-maximal isotropic
Grassmannians no explicit recursion formula for the cohomological Giambelli poly-
nomials is available, other than that given by the Pieri rule itself. We circumvent
this difficulty by showing that a suitable recursion exists (Proposition 3). We also
make essential use of a ring homomorphism from the stable cohomology ring of
X to QH(X) that is the identity on Schubert classes coming from H∗(X, Z). The
existence of this map (Propositions 4 and 5) may be of independent interest.

In a sequel to this paper, we will discuss the classical and quantum Giambelli
formulas for even orthogonal Grassmannians.

1. Preliminary Results

1.1. Classical Giambelli for IG. Choose k ≥ 0 and consider the Grassmannian
IG = IG(n − k, 2n) of isotropic (n − k)-dimensional subspaces of C2n, equipped
with a symplectic form. A partition λ = (λ1 ≥ . . . ≥ λℓ) is k-strict if all of its parts
greater than k are distinct integers. Following [BKT2], the Schubert classes on IG
are parametrized by the k-strict partitions whose diagrams fit in an (n−k)×(n+k)
rectangle, i.e. λ1 ≤ n + k and ℓ(λ) ≤ n− k; we denote the set of all such partitions
by P(k, n). Given any partition λ ∈ P(k, n) and a complete flag of subspaces

F
•

: 0 = F0 ( F1 ( · · · ( F2n = C2n

such that Fn+i = F⊥
n−i for 0 ≤ i ≤ n, we have a Schubert variety

Xλ(F
•
) := {Σ ∈ IG | dim(Σ ∩ Fpj(λ)) ≥ j ∀ 1 ≤ j ≤ ℓ(λ)} ,

where ℓ(λ) denotes the number of (non-zero) parts of λ and

pj(λ) := n + k + j − λj − #{i < j : λi + λj > 2k + j − i}.

This variety has codimension |λ| =
∑

λi and defines, via Poincaré duality, a Schu-

bert class σλ = [Xλ(F
•
)] in H2|λ|(IG, Z). The Schubert classes σλ for λ ∈ P(k, n)

form a free Z-basis for the cohomology ring of IG. The special Schubert classes are
defined by σr = [Xr(F•

)] = cr(Q) for 1 ≤ r ≤ n+k, where Q denotes the universal
quotient bundle over IG.

The classical Giambelli formula for IG is expressed using Young’s raising op-

erators [Y, p. 199]. We first agree that σ0 = 1 and σr = 0 for r < 0. For
any integer sequence α = (α1, α2, . . .) with finite support and i < j, we set
Rij(α) = (α1, . . . , αi + 1, . . . , αj − 1, . . .); a raising operator R is any monomial
in these Rij ’s. Define mα =

∏
i σαi

and R mα = mRα for any raising operator R.
For any k-strict partition λ, we consider the operator

Rλ =
∏

(1 − Rij)
∏

λi+λj>2k+j−i

(1 + Rij)
−1

where the first product is over all pairs i < j and second product is over pairs i < j
such that λi +λj > 2k + j− i. The main result of [BKT3] states that the Giambelli

formula

(1) σλ = Rλ mλ

holds in the cohomology ring of IG(n − k, 2n).
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1.2. Classical Pieri for IG. As is customary, we will represent a partition by
its Young diagram of boxes; this is used to define the containment relation for
partitions. Given two diagrams µ and ν with µ ⊂ ν, the skew diagram ν/µ (i.e.,
the set-theoretic difference ν r µ) is called a horizontal (resp. vertical) strip if it
does not contain two boxes in the same column (resp. row).

We say that the box [r, c] in row r and column c of a k-strict partition λ is
k-related to the box [r′, c′] if |c − k − 1| + r = |c′ − k − 1| + r′. For instance, the
grey boxes in the following partition are k-related.

(r, c)
(r′, c′)

k

For any two k-strict partitions λ and µ, we write λ → µ if µ may be obtained by
removing a vertical strip from the first k columns of λ and adding a horizontal strip
to the result, so that

(1) if one of the first k columns of µ has the same number of boxes as the same
column of λ, then the bottom box of this column is k-related to at most one box
of µ r λ; and

(2) if a column of µ has fewer boxes than the same column of λ, then the removed
boxes and the bottom box of µ in this column must each be k-related to exactly
one box of µ r λ, and these boxes of µ r λ must all lie in the same row.

Let A denote the set of boxes of µ r λ in columns k + 1 through k + n which
are not mentioned in (1) or (2) above, and define N(λ, µ) to be the number of
connected components of A which do not have a box in column k + 1. Here two
boxes are connected if they share at least a vertex. In [BKT2, Thm. 1.1] we proved
that the Pieri rule

(2) σp · σλ =
∑

λ→µ
|µ|=|λ|+p

2N(λ,µ) σµ

holds in H∗(IG, Z), for any p ∈ [1, n + k].

1.3. A recursion formula for IG. In the following sections we will work in the
stable cohomology ring H(IGk), which is the inverse limit in the category of graded
rings of the system

· · · ← H∗(IG(n − k, 2n), Z) ← H∗(IG(n + 1 − k, 2n + 2), Z) ← · · ·

The ring H(IGk) has a free Z-basis of Schubert classes σλ, one for each k-strict
partition λ, and may be presented as a quotient of the polynomial ring Z[σ1, σ2, . . .]
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modulo the relations

(3) σ2
r + 2

r∑

i=1

(−1)iσr+iσr−i = 0 for r > k.

There is a natural surjective ring homomorphism H(IGk) → H(IG(n−k, 2n), Z) that
maps σλ to σλ, when λ ∈ P(k, n), and to zero, otherwise. The Giambelli formula
(1) and Pieri rule (2) are both valid in H(IGk). We begin with some elementary
consequences of these theorems.

For any k-strict partition λ of length ℓ, we define the sets of pairs

A(λ) = {(i, j) | λi + λj ≤ 2k + j − i and 1 ≤ i < j ≤ ℓ}

C(λ) = {(i, j) | λi + λj > 2k + j − i and 1 ≤ i < j ≤ ℓ}

and two integer vectors a = (a1, . . . , aℓ) and c = (c1, . . . , cℓ) by setting

ai = #{j | (i, j) ∈ A(λ)}, ci = #{j | (i, j) ∈ C(λ)}

for each i.

Proposition 1. We have λi − ci ≥ λj − cj for each i < j ≤ ℓ.

Proof. Observe that the desired inequality is equivalent to

(4) λi − λj ≥ #{r ≤ ℓ | (i, r) ∈ C(λ)} − #{r ≤ ℓ | (j, r) ∈ C(λ)}.

Let j = i + r and let s (respectively t) be maximal such that (i, s) ∈ C(λ) (respec-
tively, (j, t) ∈ C(λ)). Assume first that t exists, hence s exists and s ≥ t. The
inequality (4) then becomes λi − λi+r ≥ s − t + r. If t = s, this is true because
(j, j + 1) ∈ C(λ) and λ is k-strict, hence λi > λi+1 > · · · > λi+r. Otherwise we
have t < s ≤ ℓ, λi + λs ≥ 2k + 1 + s − i, and λi+r + λt+1 ≤ 2k + t + 1 − i − r. It
follows that λi − λi+r ≥ s − t + r + (λt+1 − λs) ≥ s − t + r.

Next we assume that t does not exist, so that either j = ℓ or the pair (j, j + 1)
lies in A(λ) and

(5) λj + λj+1 ≤ 2k + 1.

If s does not exist, the inequality is obvious. Otherwise, we must show that λi−λj ≥
s − i, knowing that (i, s) ∈ C(λ), that is,

(6) λi + λs ≥ 2k + 1 + s − i.

Suppose first that λs ≥ λj . If λs > k then we have λi > λi+1 > · · · > λs and hence
λi − λj ≥ λi − λs ≥ s − i. Otherwise λs ≤ k and (6) gives

λi − λj ≥ λi − λs ≥ λi − k ≥ s − i + 1 + (k − λs) ≥ s − i.

Finally, suppose that λs < λj , so in particular j + 1 ≤ s. Then (5) and (6) give

λi − λj ≥ λi + (λj+1 − 2k − 1) ≥ (2k + 1 + s − i − λs) + λj+1 − 2k − 1

= (λj+1 − λs) + (s − i) ≥ s − i. ¤

Proposition 1 implies that for any λ, the composition λ − c is a partition, while
λ + a is a strict partition.

Proposition 2. For any k-strict partition λ, the Giambelli polynomial Rλ mλ for

σλ involves only generators σp with p ≤ λ1 + a1 + λ2 + a2.
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Proof. We have

Rλ mλ =
∏

1≤i<j≤ℓ

1 − Rij

1 + Rij

∏

(i,j)∈A(λ)

(1 + Rij)mλ =
∑

ν∈N

∏

1≤i<j≤ℓ

1 − Rij

1 + Rij

mν

where N is the multiset of integer vectors defined by

N =





∏

(i,j)∈S

Rij λ | S ⊂ A(λ)



 .

If m > 0 is the least integer such that 2m ≥ ℓ, then we have

(7)
∏

1≤i<j≤2m

1 − Rij

1 + Rij

= Pfaffian

(
1 − Rij

1 + Rij

)

1≤i<j≤2m

.

Equation (7) follows from Schur’s classical identity [S, Sect. IX]

∏

1≤i<j≤2m

xi − xj

xi + xj

= Pfaffian

(
xi − xj

xi + xj

)

1≤i,j≤2m

.

Note that each single entry in the Pfaffian (7) expands according to the formula

1 − R12

1 + R12
mc,d = σc σd − 2σc+1 σd−1 + 2σc+2 σd−2 − · · · + (−1)d 2σc+d.

By Proposition 1, we know that λ + a = (λ1 + a1, λ2 + a2, . . . , λℓ + aℓ) is a strict
partition, hence λi +ai +λj +aj ≤ λ1 +a1 +λ2 +a2 for any distinct i and j. Since
we furthermore have νi ≤ λi + ai, for any ν ∈ N , the result follows. ¤

Corollary 1. For any λ ∈ P(k, n) the stable Giambelli polynomial for σλ involves

only special classes σp with p ≤ 2n + 2k − 1.

Given any partition λ, we set λ∗ = (λ2, λ3, . . . , λℓ).

Lemma 1. Let λ and ν be k-strict partitions such that ν1 > max(λ1, ℓ(λ) + 2k)
and let p,m ≥ 0. Then the coefficient of σν in the Pieri product σp · σλ is equal to

the coefficient of σ(ν1+m,ν∗) in the product σp+m · σλ.

Proof. Since the box [ℓ(λ), 1] is k-related to [1, ℓ(λ) + 2k] and ν1 > ℓ(λ) + 2k, it
follows that λ → ν if and only if λ → (ν1 +m, ν∗). In this case all of the boxes [1, c]
for max(λ1, ℓ(λ) + 2k) < c ≤ ν1 are contained in the rightmost component of the
subset A of ν r λ defined in §1.2. Since replacing ν with (ν1 + m, ν∗) simply adds
m boxes to this component, we deduce that N(λ, ν) = N(λ, (ν1 + m, ν∗)). ¤

Proposition 3. Let λ be a k-strict partition. Then there exist unique coefficients

ap,µ ∈ Z for p ≥ λ1 and (p, µ) a k-strict partition, such that the recursive identity

(8) σλ =
∑

p≥λ1

∑

µ : (p,µ) k-strict

ap,µ σp σµ

holds in H(IGk). Furthermore, ap,µ = 0 whenever µ 6⊂ λ∗, or when λ ∈ P(k, n)
and p ≥ 2n + 2k.

Proof. The Pieri rule (2) implies that

σλ = σλ1
σλ∗ −

∑

λ∗→ν 6=λ
|ν|=|λ|

2N(λ∗,ν) σν .
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Since all partitions ν in the sum satisfy ν1 > λ1 and ν∗ ⊂ λ∗, the existence of the
coefficients ap,µ follows by descending induction on λ1, and they satisfy a(p,µ) = 0
for µ 6⊂ λ∗. The uniqueness is true because the set of all products σp · σµ for
which (p, µ) is a k-strict partition is linearly independent in H(IGk). In fact, if the
Schubert classes of H(IGk) are ordered by the dominance order of partitions, then
the lowest term of the product σp · σµ is the class σ(p,µ).

On the other hand, Proposition 2 implies that there are coefficients bp,µ, indexed
by integers p ∈ [λ1, λ1 + a1 + λ2 + a2] and k-strict partitions µ, such that

σλ =

λ1+a1+λ2+a2∑

p=λ1

∑

|µ|=|λ|−p

bp,µ σp σµ .

In fact, if mν is any monomial appearing in the stable Giambelli formula σλ =
Rλmλ, then λ1 ≤ maxi(νi) ≤ λ1 + a1 + λ2 + a2. If λ1 > |λ∗|, then the uniqueness
of the coefficients ap,µ implies that bp,µ = ap,µ. In particular, we have ap,µ = 0 for
p > λ1 + a1 + λ2 + a2 in this case.

Now let λ ∈ P(k, n). Choose m > |λ∗| and set λ′ = (λ1 + m,λ∗). By the above
discussion, there are coefficients cp,µ ∈ Z such that

(9) σλ′ =

2n+2k−1+m∑

p=λ1+m

∑

µ⊂λ∗

cp,µ σp σµ .

We claim that the difference

(10) σλ −

2n+2k−1∑

p=λ1

∑

µ⊂λ∗

cp+m,µ σp σµ

is a linear combination of classes σν for partitions ν ∈ P(k, n) with ν1 > λ1.
To see this, notice that we must have cλ1+m,λ∗ = 1, and hence the coefficient of
σλ in the sum is equal to one. It follows that the difference (10) is equal to a
linear combination of classes σν for which ν1 > λ1. Furthermore, if ν1 > n + k,
then Lemma 1 implies that the coefficient of σν in the sum in (10) is equal to the
coefficient of σ(ν1+m,ν∗) on the right hand side of (9), which is zero. This proves
the claim. Finally, the proposition follows from the claim by descending induction
on λ1. ¤

Remark. One can be more precise about the recursion formula (8) in the case
when the k-strict partition λ satisfies λ1 > ℓ(λ) + 2k. If the Pieri rule reads

σλ1
· σλ∗ =

∑

p≥λ1

∑

µ⊂λ∗

2n(p,µ) σp,µ

then we have

σλ =
∑

p≥λ1

∑

µ⊂λ∗

(−1)p−λ1 2n(p,µ) σp σµ.

This result is proved in [T].

2. Quantum Giambelli for IG(n − k, 2n)

The quantum cohomology ring QH(IG) is a Z[q]-algebra which is isomorphic to
H∗(IG, Z) ⊗Z Z[q] as a module over Z[q]. The degree of the formal variable q here
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is n + k + 1. We begin by recalling the quantum Pieri rule of [BKT2]. This states
that for any k-strict partition λ ∈ P(k, n) and integer p ∈ [1, n + k], we have

(11) σp · σλ =
∑

λ→µ

2N(λ,µ) σµ +
∑

λ→ν

2N(λ,ν)−1 σν∗ q

in the quantum cohomology ring of IG(n − k, 2n). The first sum in (11) is over
partitions µ ∈ P(k, n) such that |µ| = |λ|+p, and the second sum is over partitions
ν ∈ P(k, n + 1) with |ν| = |λ| + p and ν1 = n + k + 1.

Proposition 4. There exists a unique ring homomorphism

π : H(IGk) → QH(IG(n − k, 2n)) ⊗ Q

such that the following relations are satisfied:

π(σi) =





σi if 1 ≤ i ≤ n + k,

q/2 if i = n + k + 1,

0 if n + k + 1 < i ≤ 2n + 2k,

0 if i is odd and i > 2n + 2k.

Furthermore, we have π(σλ) = σλ for each λ ∈ P(k, n).

Proof. Recall that H(IGk) is the polynomial ring generated by all classes σi for
i ≥ 1, modulo the relations (3). These relations for r > n + k uniquely specify the
values π(σi) for even integers i > 2n+2k. The quantum Pieri rule implies that the
remaining relations (3) for k < r ≤ n + k are preserved by π.

We next prove that π(σλ) = σλ for each λ ∈ P(k, n). This is clear when λ has
only one part. When λ has more than one part, we apply the ring homomorphism
π to both sides of (8) and use induction on ℓ(λ) to show that

(12) π(σλ) =

n+k∑

p=λ1

∑

µ⊂λ∗

ap,µ σp σµ +
q

2

∑

µ⊂λ∗

an+k+1,µ σµ

holds in QH(IG(n − k, 2n)) ⊗ Q. We also deduce from Proposition 3 that

(13) σλ =

n+k∑

p=λ1

∑

µ⊂λ∗

ap,µ σp σµ +
∑

µ⊂λ∗

an+k+1,µ σ(n+k+1,µ)

holds in the cohomology ring of IG(n + 1− k, 2n + 2). The quantum Pieri rule and
(13) imply that the right hand side of (12) evaluates to σλ, as desired. ¤

Theorem 1 (Quantum Giambelli for IG). For every λ ∈ P(k, n), the quantum

Giambelli formula for σλ in QH(IG(n − k, 2n)) is obtained from the classical Gi-

ambelli formula σλ = Rλ mλ in H∗(IG(n+1−k, 2n+2), Z) by replacing the special

Schubert class σn+k+1 with q/2.

Proof. This follows from Proposition 4 and Corollary 1. ¤

3. Quantum Giambelli for OG(n − k, 2n + 1)

3.1. Classical Giambelli for OG. For each k ≥ 0, let OG = OG(n−k, 2n+1) de-
note the odd orthogonal Grassmannian which parametrizes the (n−k)-dimensional
isotropic subspaces in C2n+1, equipped with a non-degenerate symmetric bilinear
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form. The Schubert varieties in OG are indexed by the same set of k-strict parti-
tions P(k, n) as for IG(n − k, 2n). Given any λ ∈ P(k, n) and a complete flag of
subspaces

F
•

: 0 = F0 ( F1 ( · · · ( F2n+1 = C2n+1

such that Fn+i = F⊥
n+1−i for 1 ≤ i ≤ n + 1, we define the codimension |λ| Schubert

variety

Xλ(F
•
) = {Σ ∈ OG | dim(Σ ∩ Fpj(λ)) ≥ j ∀ 1 ≤ j ≤ ℓ(λ)} ,

where

pj(λ) = n + k + 1 + j − λj − #{i ≤ j : λi + λj > 2k + j − i}.

Let τλ ∈ H2|λ|(OG, Z) denote the cohomology class dual to the cycle given by
Xλ(F

•
).

Let ℓk(λ) be the number of parts λi which are strictly greater than k, and let
QIG and QOG denote the universal quotient vector bundles over IG(n− k, 2n) and
OG(n − k, 2n + 1), respectively. It is known (see e.g. [BS, §3.1]) that the map
which sends σp = cp(QIG) to cp(QOG) for all p extends to a ring isomorphism

ϕ : H∗(IG, Q) → H∗(OG, Q) such that ϕ(σλ) = 2ℓk(λ)τλ for all λ ∈ P(k, n).
We let cp = cp(QOG). The special Schubert classes on OG are related to the

Chern classes cp by the equations

cp =

{
τp if p ≤ k,

2τp if p > k.

For any integer sequence α, set mα =
∏

i cαi
. Then for every λ ∈ P(k, n), the

classical Giambelli formula

τλ = 2−ℓk(λ)Rλ mλ

holds in H∗(OG, Z).

3.2. From classical to quantum Giambelli. Suppose k ≥ 1. The quantum
cohomology ring QH(OG(n− k, 2n + 1)) is defined similarly to that of IG, but the
degree of q here is n + k. More notation is required to state the quantum Pieri
rule for OG. For each λ and µ with λ → µ, we define N ′(λ, µ) to be equal to the
number (respectively, one less than the number) of connected components of A, if
p ≤ k (respectively, if p > k). Let P ′(k, n + 1) be the set of ν ∈ P(k, n + 1) for
which ℓ(ν) = n + 1 − k, 2k ≤ ν1 ≤ n + k, and the number of boxes in the second
column of ν is at most ν1 − 2k + 1. For any ν ∈ P ′(k, n + 1), we let ν̃ ∈ P(k, n) be
the partition obtained by removing the first row of ν as well as n + k − ν1 boxes
from the first column. That is,

ν̃ = (ν2, ν3, . . . , νr), where r = ν1 − 2k + 1.

According to [BKT2, Thm. 2.4], for any k-strict partition λ ∈ P(k, n) and integer
p ∈ [1, n + k], the following quantum Pieri rule holds in QH(OG(n − k, 2n + 1)).

(14) τp · τλ =
∑

λ→µ

2N ′(λ,µ) τµ +
∑

λ→ν

2N ′(λ,ν) τeν q +
∑

λ∗→ρ

2N ′(λ∗,ρ) τρ∗ q2 .

Here the first sum is classical, the second sum is over ν ∈ P ′(k, n + 1) with λ → ν
and |ν| = |λ|+p, and the third sum is empty unless λ1 = n+k, and over ρ ∈ P(k, n)
such that ρ1 = n + k, λ∗ → ρ, and |ρ| = |λ| − n − k + p.
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Let δp = 1, if p ≤ k, and δp = 2, otherwise. The stable cohomology ring H(OGk)
has a free Z-basis of Schubert classes τλ for k-strict partitions λ, and is presented
as a quotient of the polynomial ring Z[τ1, τ2, . . .] modulo the relations

(15) τ2
r + 2

r∑

i=1

(−1)iδr−iτr+iτr−i = 0 for r > k.

Proposition 5. There exists a unique ring homomorphism

π̃ : H(OGk) → QH(OG(n − k, 2n + 1))

such that the following relations are satisfied:

π̃(τi) =





τi if 1 ≤ i ≤ n + k,

0 if n + k < i < 2n + 2k,

0 if i is odd and i > 2n + 2k.

Furthermore, we have π̃(τλ) = τλ for each λ ∈ P(k, n).

Proof. The relations (15) for r ≥ n + k uniquely specify the values π̃(τi) for even
integers i ≥ 2n + 2k. We must show that the remaining relations for k < r < n + k
are mapped to zero by π̃. Observe that when k < n − 1 the individual terms in
these relations carry no q correction. Indeed, we are applying the quantum Pieri
rule (14) to partitions of length one, hence the q term vanishes (since 1 < n−k) and
the q2 term vanishes (since deg(q2) = 2n+2k). It remains only to consider the case
k = n − 1, which uses the quantum Pieri rule for the quadric OG(1, 2n + 1). The
computation is then done as in [BKT2, Thm. 2.5] (which treats the case r = n), and
involves computing the coefficient c of q τ2(r−n)+1 in the corresponding expression.
As in loc. cit., the result is c = 1 − 2 + 2 − · · · ± 2 ∓ 1 when r ≤ (3n − 2)/2, and
otherwise c = 2 − 4 + 4 − · · · ± 4 ∓ 2; hence c = 0 in both cases.

To prove that π̃(τλ) = τλ for every λ ∈ P(k, n), we use an orthogonal analogue
of Proposition 3, which follows from the isomorphism H(OGk)⊗ Q ∼= H(IGk)⊗ Q.
Arguing by induction on ℓ(λ) as in Proposition 4, we obtain that

(16) π̃(τλ) =

n+k∑

p=λ1

∑

µ⊂λ∗

a′
p,µ τp τµ

holds in QH(OG(n− k, 2n + 1))⊗Q, where a′
p,µ ∈ Q. The quantum Pieri rule (14)

implies that any product τp τµ in (16) carries no q correction terms. It follows that
the right hand side of (16) evaluates to τλ. ¤

Theorem 2 (Quantum Giambelli for OG). For every λ ∈ P(k, n), we have

τλ = 2−ℓk(λ)Rλ mλ

in the quantum cohomology ring QH(OG(n−k, 2n+1)). In other words, the quan-

tum Giambelli formula for OG is the same as the classical Giambelli formula.

Proof. This follows from Proposition 5 and the orthogonal version of Corollary 1.
¤
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