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Abstract. The product of two Schubert classes in the quantum K-theory ring
of a homogeneous space X = G/P is a formal power series with coefficients in
the Grothendieck ring of algebraic vector bundles on X. We show that if X

is cominuscule, then this power series has only finitely many non-zero terms.
The proof is based on a geometric study of boundary Gromov-Witten varieties
in the Kontsevich moduli space, consisting of stable maps to X that take the
marked points to general Schubert varieties and whose domains are reducible

curves of genus zero. We show that all such varieties have rational singularities,
and that boundary Gromov-Witten varieties defined by two Schubert varieties
are either empty or unirational. We also prove a relative Kleiman-Bertini

theorem for rational singularities, which is of independent interest. A key
result is that when X is cominuscule, all boundary Gromov-Witten varieties
defined by three single points in X are rationally connected.

1. Introduction

The goal of this paper is to prove that any product of Schubert classes in the
quantum K-theory ring of a cominuscule homogeneous space contains only finitely
many non-zero terms.

Let X = G/P be a homogeneous space defined by a semisimple complex Lie
group G and a parabolic subgroup P , and let M0,n(X, d) denote the Kontsevich
moduli space of n-pointed stable maps to X of degree d, with total evaluation map
ev : M0,n(X, d) → Xn. Given Schubert varieties Ω1, . . . ,Ωn ⊂ X in general posi-

tion, there is a Gromov-Witten variety ev−1(Ω1×· · ·×Ωn) ⊂ M0,n(X, d), consisting
of all stable maps that send the i-th marked point into Ωi for each i. The Kontsevich
space and its Gromov-Witten varieties are the foundation of the quantum cohomol-
ogy ring of X, whose structure constants are the (cohomological) Gromov-Witten
invariants, defined as the number of points in finite Gromov-Witten varieties. More
generally, the K-theoretic Gromov-Witten invariant Id(OΩ1

, . . . ,OΩn
) is defined as

the sheaf Euler characteristic of ev−1(Ω1 × · · · ×Ωn), which makes sense when this
variety has positive dimension. The K-theoretic invariants are more challenging
to compute, both because they are not enumerative, and also because they do not
vanish for large degrees.

Assume for simplicity that P is a maximal parabolic subgroup of G, so that
H2(X;Z) = Z. The (small) quantum K-theory ring QK(X) is a formal deformation
of the Grothendieck ring K(X) of algebraic vector bundles on X, which as a group
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is defined by QK(X) = K(X) ⊗Z Z[[q]]. The product Ou ⋆ Ov of two Schubert
structure sheaves is defined in terms of structure constants Nw,d

u,v ∈ Z such that

Ou ⋆ Ov =
∑

w, d≥0

Nw,d
u,v qd Ow .

In contrast to the quantum cohomology ring QH(X), the constants Nw,d
u,v are not

single Gromov-Witten invariants, but are defined as polynomial expressions of the
K-theoretic Gromov-Witten invariants. A result of Givental asserts that QK(X)
is an associative ring [14]. Since the K-theoretic Gromov-Witten invariants do not
vanish for large degrees, the same might be true for the structure constants Nw,d

u,v ,
in which case the product Ou ⋆ Ov would be a power series in q with infinitely
many non-zero terms. When X is a Grassmannian of type A, a combinatorial
argument in [5] shows that this does not happen; all products in QK(X) are finite.
In this paper we give a different geometric proof that shows more generally that all
products in QK(X) are finite whenever X is a cominuscule homogeneous space. As
a consequence, the quantum K-theory ring QK(X) provides an honest deformation
of K(X). The class of cominuscule varieties consists of Grassmannians of type
A, Lagrangian Grassmannians, maximal orthogonal Grassmannians, and quadric
hypersurfaces. In addition there are two exceptional varieties of type E called the
Cayley plane and the Freudenthal variety.

Let dX(n) be the minimal degree of a rational curve passing through n general
points of X. The numbers dX(n) for n ≤ 3 have been computed explicitly in [7, 9],
see the table in §4 below. Our main result is the following.

Theorem 1. Let X be a cominuscule variety. Then Nw,d
u,v = 0 for d > dX(2).

Theorem 1 holds also for the structure constants of the equivariant quantum
K-theory ring QKT (X), see Remark 5.3. The bound on d is sharp in the sense that
qdX(2) occurs in the square of a point in QK(X). In addition, this bound is also
the best possible for the quantum cohomology ring QH(X) that does not depend
on u, v, and w (cf. [13]).

Our proof uses that the structure constants Nw,d
u,v can be rephrased as alter-

nating sums of certain boundary Gromov-Witten invariants. Given a sequence
d = (d0, d1, . . . , dr) of effective degrees di ∈ H2(X;Z) such that di > 0 for i > 0
and

∑
di = d, let Md ⊂ M0,3(X, d) be the closure of the locus of stable maps for

which the domain is a chain of r + 1 projective lines that map to X in the degrees
given by d, the first and second marked points belong to the first projective line,
and the third marked point is on the last projective line. Then any constant Nw,d

u,v

can be expressed as an alternating sum of sheaf Euler characteristics of varieties of
the form ev−1(Ω1 ×Ω2 ×Ω3)∩Md. We use geometric arguments to show that the
terms of this sum cancel pairwise whenever X is cominuscule and d > dX(2).

Set Zd = ev(Md) ⊂ X3. A key technical fact in our proof is that the general
fibers of the map ev : Md → Zd are rationally connected. Notice that these
fibers are boundary Gromov-Witten varieties ev−1(x×y×z)∩Md defined by three
single points in X, and the result generalizes the well known fact that there is a
unique rational curve of degree d through three general points in the Grassmannian
Gr(d, 2d) [4]. In the special case when d = (d) and Md = M0,3(X, d), it was shown
in [5, 9] that the general fibers of ev are rational; our proof uses this case as well
as Graber, Harris, and Starr’s criterion for rational connectivity [15].
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We also need to know that Md has rational singularities. For this we prove
a relative version of the Kleiman-Bertini theorem [18] for rational singularities.
This theorem implies that any boundary Gromov-Witten variety in M0,n(X, d) has
rational singularities, for any homogeneous space X. The Kleiman-Bertini theorem
generalizes a result of Brion asserting that rational singularities are preserved when
a subvariety of a homogeneous space is intersected with a general Schubert variety
[1].

Finally, if Ω1 and Ω2 are Schubert varieties in general position in a homogeneous
space X, we prove that ev−1

1 (Ω1)∩Md is unirational and ev−1
1 (Ω1)∩ev−1

2 (Ω2)∩Md is
either empty or unirational. In particular, we have Id(OΩ1

) = 1 and Id(OΩ1
,OΩ2

) ∈
{0, 1}. This is done by showing that any Borel-equivariant map to a Schubert
variety is locally trivial over the open cell. In particular, any single evaluation map
evi : Md → X is locally trivial.

Our paper is organized as follows. In section 2 we prove the Kleiman-Bertini
theorem for rational singularities and give a simple criterion for an equivariant
map to be locally trivial. These results are applied to (boundary) Gromov-Witten
varieties of general homogeneous spaces in section 3. Section 4 proves some useful
facts about images of Gromov-Witten varieties of cominuscule spaces, among them
that the general fibers of ev : Md → Zd are rationally connected. Finally, section 5
applies these results to show that K-theoretic quantum products on cominuscule
varieties are finite.

Parts of this work was carried out during visits to the Mathematical Sciences Re-
search Institute (Berkeley), the Centre International de Rencontres Mathématiques
(Luminy), and the Max-Planck-Institut für Mathematik (Bonn). We thank all of
these institutions for their hospitality and stimulating environments. We also bene-
fited from helpful discussions with P. Belkale, S. Kumar, and F. Sottile. Finally, we
thank the anonymous referee for a careful reading and several helpful suggestions.

2. A Kleiman-Bertini theorem for rational singularities

Definition 2.1. Let G be a connected algebraic group and X a G-variety. A
splitting of the action of G on X is a morphism s : U → G defined on a dense open
subset U ⊂ X, together with a point x0 ∈ U , such that s(x).x0 = x for all x ∈ U .
If a splitting exists, then we say that the action is split and that X is G-split.

Notice that any G-split variety contains a dense open orbit. Recall that if X =
G/P is a homogeneous space defined by a semisimple complex Lie group G and a
parabolic subgroup P , then a Schubert variety in X is an orbit closure for the action
of a Borel subgroup of G. Schubert varieties are our main examples of varieties with
a split action.

Proposition 2.2. Let G be a semisimple complex Lie group, P ⊂ G a parabolic

subgroup, and X = G/P the corresponding homogeneous space with its natural G-

action. Then X is G-split. Furthermore, if B ⊂ G is a Borel subgroup and Ω ⊂ X
is a B-stable Schubert variety, then Ω is B-split.

Proof. Let Ω ⊂ X be a B-stable Schubert variety, Ω◦ ⊂ Ω the B-stable open cell,
and x0 ∈ Ω◦ any point. According to e.g. [20, Lemma 8.3.6] we can choose a
unipotent subgroup U ⊂ B such that the map U → Ω◦ defined by g 7→ g.x0 is an
isomorphism. The inverse of this map is a splitting of the B-action on Ω. Since X
is a Schubert variety, it follows that X is B-split and consequently G-split. �
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Recall that a morphism f : M → X is a locally trivial fibration if each point
x ∈ X has an open neighborhood U ⊂ X such that f−1(U) ∼= U × f−1(x) and f is
the projection to the first factor.

Proposition 2.3. Let f : M → X be an equivariant map of irreducible G-varieties.

Assume that X is G-split. Then f is a locally trivial fibration over the dense open

G-orbit in X, and the fibers over this orbit are irreducible.

Proof. Let x0 ∈ U ⊂ X and s : U → G be a splitting of the G-action on X. Then
the map ϕ : U × f−1(x0) → f−1(U) defined by ϕ(x, y) = s(x).y is an isomorphism,
with inverse given by ϕ−1(m) = (f(m), s(f(m))−1.m). Since f−1(U) ∼= U×f−1(x0)
is irreducible, so is f−1(x0). �

In the rest of this section, a variety means a reduced scheme of finite type over an
algebraically closed field of characteristic zero. An irreducible variety X has rational

singularities if there exists a desingularization π : X̃ → X such that π∗O eX
= OX

and Riπ∗O eX
= 0 for all i > 0. An arbitrary variety has rational singularities if

its irreducible components have rational singularities, are disjoint, and have the
same dimension. Zariski’s main theorem implies that any variety with rational
singularities is normal. Notice also that if X and Y have rational singularities,
then so does X ×Y . The converse is a special case of the following lemma of Brion
[1, Lemma 3].

Lemma 2.4 (Brion). Let Z and S be varieties and let π : Z → S be a morphism.

If Z has rational singularities, then the same holds for the general fibers of π.

The following generalization of the Kleiman-Bertini theorem [18] was proved by
Brion in [1, Lemma 2] when p and q are inclusions and Y is a Schubert variety. We
adapt his proof to our case.

Theorem 2.5. Let G be a connected algebraic group and let X be a split and

transitive G-variety. Let p : Y → X and q : Z → X be morphisms of varieties,

and assume that Y and Z have rational singularities. Then g.Y ×X Z has rational

singularities for all points g in a dense open subset of G.

Proof. It follows from Proposition 2.3 that the map m : G × Y → X defined by
m(g, y) = g.p(y) is a locally trivial fibration. Set Q = (G × Y ) ×X Z and consider
the diagram:

Q //

��

G × Y pr1
//

m

��

G

Z // X

Since G× Y has rational singularities, it follows from Lemma 2.4 that m−1(x) has
rational singularities for x ∈ X. Since m is a locally trivial fibration, so is the map
Q → Z, hence the assumption that Z has rational singularities implies that Q has
rational singularities. Finally, Lemma 2.4 applied to the map Q → G implies that
g.Y ×X Z has rational singularities for all points g in a dense open subset of G. �

In the situation of Theorem 2.5, notice that if the map p : Y → X is G-
equivariant, then the isomorphism class of g.Y ×X Z is independent of g. It follows
that Y ×X Z has rational singularities.
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2.1. Rationality. Before we continue, we recall some rationality properties of al-
gebraic varieties that are required in later sections. An algebraic variety X is called
rational if it is birationally equivalent to a projective space Pn. It is called unira-

tional if there exists a dominant morphism U → X where U is an open subset of Pn;
here n is allowed to be greater than the dimension of X, but in such cases one can
replace Pn with a linear subspace to obtain a generically finite map from U to X.
Finally, X is said to be rationally connected if a general pair of points (x, y) ∈ X×X
can be joined by a rational curve, i.e. both x and y belong to the image of some
morphism P1 → X. Rational implies unirational, which in turn implies rational
connectivity when X is complete. Notice also that any rationally connected variety
is irreducible. The relevance of these notions to our study of quantum K-theory
originates in the fact that, if X is any rationally connected non-singular projective
variety, then Hi(X,OX) = 0 for all i > 0 [11, Cor. 4.18(a)], hence the sheaf Euler
characteristic of X is equal to one. In addition, rational connectivity is one of the
hypotheses needed in Proposition 5.2 below. The following result from [15] provides
an important tool for proving that a variety is rationally connected.

Theorem 2.6 (Graber, Harris, Starr). Let f : X → Y be any dominant mor-

phism of complete irreducible complex varieties. If Y and the general fiber of f are

rationally connected, then X is rationally connected.

3. Geometry of Gromov-Witten varieties

Let X = G/P be a homogeneous space, where G is any semisimple complex linear
algebraic group and P a parabolic subgroup. Given an effective class d ∈ H2(X;Z)
and an integer n ≥ 0, the Kontsevich moduli space M0,n(X, d) parametrizes the set
of all n-pointed stable genus-zero maps f : C → X with f∗[C] = d, and is equipped
with a total evaluation map ev = (ev1, . . . , evn) : M0,n(X, d) → Xn := X×· · ·×X.
A detailed construction of this space can be found in the survey [12]. The space
M0,n(X, d) is a projective variety with rational singularities, and it was proved by
Kim and Pandharipande that this variety is also rational [17].

Corollary 3.1. Let Ω1, . . . ,Ωn ⊂ X be Schubert varieties of X in general position.

Then the Gromov-Witten variety ev−1(Ω1 × · · · × Ωn) ⊂ M0,n(X, d) has rational

singularities.

Proof. Since the component-wise action of Gn on Xn is transitive and split, this
result follows by applying Theorem 2.5 to the inclusion Ω1 × · · · × Ωn ⊂ Xn and
the evaluation map ev : M0,n(X, d) → Xn. �

The following proposition will be used to show that one-point and two-point
Gromov-Witten varieties are unirational.

Proposition 3.2. Let M be a unirational G-variety and let f1 : M → X and

f2 : M → X be G-equivariant maps. Let Ω1,Ω2 ⊂ X be opposite Schubert varieties.

(a) The variety f−1
1 (Ω1) ⊂ M is unirational.

(b) The image Ω̃ = f2(f
−1
1 (Ω1)) ⊂ X is a Schubert variety in X, and the map

f2 : f−1
1 (Ω1) → Ω̃ is a locally trivial fibration over the open cell Ω̃◦ ⊂ Ω̃.

(c) The intersection f−1
1 (Ω1) ∩ f−1

2 (Ω2) ⊂ M is either empty or unirational.
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Proof. It follows from Proposition 2.3 that f1 is a locally trivial fibration, so the
assumption that M is unirational implies that the fibers of f1 are unirational. Part
(a) follows from this because f1 : f−1

1 (Ω1) → Ω1 is also locally trivial. Choose
opposite Borel subgroups B,Bop ⊂ G such that Ω1 is B-stable and Ω2 is Bop-

stable. Then f−1
1 (Ω1) and Ω̃ are B-stable, and since Ω̃ is also closed in X and

irreducible, it is a Schubert variety. Part (b) now follows from Proposition 2.3

because f2 : f−1
1 (Ω1) → Ω̃ is B-equivariant. Parts (a) and (b) imply that the

fibers of f2 : f−1
1 (Ω1) → Ω̃ over Ω̃◦ are unirational. Since Ω̃ is normal, it follows

using Stein factorization that all fibers of f2 : f−1
1 (Ω1) → Ω̃ are connected. If

f−1
1 (Ω1) ∩ f−1

2 (Ω2) 6= ∅, then the Kleiman-Bertini theorem [18, Rmk. 7] implies
that this intersection is locally irreducible. Part (c) follows from this, using that

the Richardson variety Ω̃ ∩ Ω2 is rational. �

Corollary 3.3. (a) Let Ω ⊂ X be a Schubert variety and n ≥ 1. Then ev−1
1 (Ω) ⊂

M0,n(X, d) is unirational.

(b) Let Ω1,Ω2 ⊂ X be opposite Schubert varieties and n ≥ 2. Then the two-

point Gromov-Witten variety ev−1
1 (Ω1) ∩ ev−1

2 (Ω2) ⊂ M0,n(X, d) is either empty

or unirational.

Proof. This follows from parts (a) and (c) of Proposition 3.2. �

Remark 3.4. Proposition 2.3 can also be used to prove unirationality of certain
3-point Gromov-Witten varieties. A result of Popov [19] shows that the diagonal
action of G on X3 has a dense open orbit if and only if X is a cominuscule variety,
and it is natural to ask if the action is also split. It turns out that a splitting can
be constructed when X is a Grassmann variety of type A or a maximal orthogonal
Grassmannian, but no splitting exists for a Lagrangian Grassmannian. When X3

is G-split, it follows from Proposition 2.3 that ev−1(x, y, z) ⊂ M0,3(X, d) is either
empty or unirational for all points (x, y, z) in the dense open G-orbit of X3. This
partially recovers results from [5, 9] asserting that 3-point Gromov-Witten varieties
are rational for all cominuscule varieties (see Theorem 4.8 below). It is interesting
to note that Lagrangian Grassmannians also required special treatment in [9].

Remark 3.5. Jason Starr reports that the results of [10] can be used to prove the
following statement. If P ⊂ G is a maximal parabolic subgroup and d is sufficiently
large, then ev−1(x, y, z) ⊂ M0,3(X, d) is rationally connected for all points (x, y, z)
in a dense open subset of X3.

Our applications require generalizations of Corollaries 3.1 and 3.3 to Gromov-
Witten varieties of stable maps with reducible domains. Let d = (d0, d1, . . . , dr)
be a sequence of effective classes di ∈ H2(X;Z), let e = (e0, . . . , er) ∈ Nr+1,
and set |d| =

∑
di and |e| =

∑
ei. We consider stable maps f : C → X in

M0,|e|(X, |d|) defined on a chain C of r + 1 projective lines, such that the i-th
projective line contains ei marked points (numbered from 1 +

∑
j<i ei to

∑
j≤i ei)

and the restriction of f to this component has degree di. To ensure that such a
map is indeed stable, we demand that ei ≥ 1 + δi,0 + δi,r whenever di = 0.

Let Md,e ⊂ M0,|e|(X, |d|) be the closure of the locus of all such stable maps.
In the cases we are interested in, this variety can also be defined inductively as
follows. If r = 0, then Md0,e0

= M0,e0
(X, d0). Otherwise set d′ = (d0, . . . , dr−1)

and e′ = (e0, . . . , er−2, er−1 + 1), and consider the product over X of the maps
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ev|e′| : Md′,e′ → X and ev1 : Mdr,er+1 → X. We thank the referee for pointing out
that the condition e0er 6= 0 is necessary in the following proposition, which follows
from [12, Lemma 12] by induction on r.

Proposition 3.6. Assume that e0 > 0 and er > 0. Then, with the above notation,

we have an isomorphism

Md′,e′ ×X Mdr,er+1

∼=
−→ Md,e .

Given subvarieties Ω1, . . . ,Ωm of X with m ≤ |e|, define a boundary Gromov-
Witten variety by Md,e(Ω1, . . . ,Ωm) =

⋂m
i=1 ev−1

i (Ωi) ⊂ Md,e. The varieties Ωi

will often, but not always, be chosen in general position.
We also define the varieties Zd,e(Ω1, . . . ,Ωm) = ev(Md,e(Ω1, . . . ,Ωm)) ⊂ X |e|

and Γd,e(Ω1, . . . ,Ωm) = ev|e|(Md,e(Ω1, . . . ,Ωm)) ⊂ X. If no sequence e is specified,
we will use e = (3) when r = 0 and e = (2, 0, . . . , 0, 1) when r > 0; this convention
will only be used when di 6= 0 for i > 0. For example, if x, y ∈ X and d ∈ H2(X;Z),
then Γd(x) ⊂ X is the union of all rational curves of degree d passing through x,
and Γd(x, y) is the union of all rational curves of degree d passing through x and
y. The variety Zd,2 ⊂ X × X contains all pairs of points that are connected by a
rational curve of degree d, and Zd = Zd,3 ⊂ X × X × X consists of the triples of
points connected by such a curve.

If Ω ⊂ X is a B-stable Schubert variety, then so is Γd(Ω) by Proposition 3.2(b)
and the following result. This fact was also used in [8].

Proposition 3.7. The variety Md,e is unirational and has rational singularities.

Proof. By induction on r we may assume that Md′,e′ is unirational and has rational
singularities. Since all maps in the Cartesian square

Md,e
p //

q

��

Mdr,er+1

ev1

��
Md′,e′

ev|e′| // X

are equivariant, it follows from Theorem 2.5 that Md,e has rational singularities.
Proposition 2.3 implies that ev1 is locally trivial, and since Mdr,er+1 is rational,
we deduce that the fibers of ev1 are unirational. This in turn implies that q is a
locally trivial map with unirational fibers. Finally, since Md′,e′ is unirational, we
conclude that Md,e is unirational as well. �

Corollary 3.8. Let Ω1,Ω2, . . . ,Ωm ⊂ X be Schubert varieties in general position,

with m ≤ |e|. Then Md,e(Ω1, . . . ,Ωm) has rational singularities. Furthermore,

the one-point Gromov-Witten variety Md,e(Ω1) is unirational, and the two-point

Gromov-Witten variety Md,e(Ω1,Ω2) is either empty or unirational.

Let d ∈ H2(X;Z) be an effective class and let π1, π2 : Zd,2 → X denote the
projections. Define the variety

Z∗
d,2 = Zd,2 \

⋃

d′

Zd′,2

where the union is over all degrees d′ ∈ H2(X;Z) for which Zd′,2  Zd,2. This is
a G-stable dense open subset of Zd,2 because Zd,2 = ev(Md,2) is irreducible. For

x ∈ X we also set Γ∗
d(x) = π2(π

−1
1 (x) ∩ Z∗

d,2), a dense open subset of Γd(x).
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Lemma 3.9. Let d ∈ H2(X;Z) be an effective class and Ω ⊂ X a Schubert variety.

(a) The variety Zd,2 is rational and has rational singularities.

(b) The intersection Ω ∩ Γd(z) is unirational and has rational singularities for all

points z in the open cell Γd(Ω)◦ ⊂ Γd(Ω).
(c) Let Ω∗ ⊂ Ω be any dense open subset. Then Ω∗ ∩ Γ∗

d(z) 6= ∅ for all points z in

a dense open subset of Γd(Ω).

Proof. It follows from Proposition 2.3 that the projection π1 : Zd,2 → X is a locally

trivial fibration. Since each fiber π−1
1 (x) ∼= Γd(x) is a Schubert variety in X, we

deduce that π−1
1 (Ω) is rational and has rational singularities. Part (a) follows as a

special case of this. Since Proposition 3.2(b) implies that π2 : π−1
1 (Ω) → Γd(Ω) is a

locally trivial fibration over Γd(Ω)◦, it follows that π−1
1 (Ω)∩ π−1

2 (z) ∼= Ω∩ Γd(z) is
unirational for all z ∈ Γd(Ω)◦, and Lemma 2.4 implies that Ω ∩ Γd(z) has rational
singularities. This proves (b). Since π1(Z

∗
d,2) = X and π−1

1 (Ω) is irreducible, we

deduce that U = π−1
1 (Ω∗)∩Z∗

d,2 is a dense open subset of π−1
1 (Ω). Part (c) follows

from this because π2(U) contains a dense open subset of Γd(Ω), and Ω∗ ∩ Γ∗
d(z) ∼=

U ∩ π−1
2 (z) 6= ∅ for all z ∈ π2(U). �

4. Gromov-Witten varieties of cominuscule spaces

Let X = G/P be a homogeneous space, where G is a simple complex linear
algebraic group and P is a maximal parabolic subgroup. In the remainder of this
paper we require more precise notation for the Schubert varieties in X, which
we now introduce. Fix a maximal torus T and a Borel subgroup B such that
T ⊂ B ⊂ P ⊂ G, and let R be the associated root system, with positive roots
R+ ⊂ R and simple roots ∆ ⊂ R+. Let W = NG(T )/T be the Weyl group of G
and WP = NP (T )/T ⊂ W the Weyl group of P . The subgroup P corresponds to
a simple root α ∈ ∆, such that WP is generated by all simple reflections except
sα. The variety X is called cominuscule if α is a cominuscule simple root, i.e.
when the highest root of R is expressed as a linear combination of simple roots,
the coefficient of α is one. The collection of cominuscule varieties include the
type A Grassmannians Gr(m,n), Lagrangian Grassmannians LG(n, 2n), maximal
orthogonal Grassmannians OG(n, 2n), quadric hypersurfaces Qn ⊂ Pn+1, as well
as two exceptional varieties called the Cayley Plane (E6/P6) and the Freudenthal
variety (E7/P7). We will assume that X is cominuscule in the following.

Each element u ∈ W defines a T -fixed point u.P ∈ X and a Schubert variety

X(u) = Bu.P ⊂ X. Both u.P and X(u) depend only on the coset of u in W/WP .
Let WP ⊂ W be the set of minimal length representatives for the cosets in W/WP .
Then WP is in one-to-one correspondence with the set of T -fixed points in X
as well as the set of B-stable Schubert varieties in X, and for u ∈ WP we have
dimX(u) = ℓ(u). We will identify H2(X;Z) = Z [X(sα)] with the group of integers.
The degree of a curve C ⊂ X is the integer d ∈ N for which [C] = d [X(sα)].

Given two points x, y ∈ X, we let d(x, y) denote the smallest degree of a rational
curve containing x and y [22]. Equivalently, d(x, y) is minimal with the property
that (x, y) ∈ Zd(x,y),2. For any n ∈ N we also let dX(n) be the smallest degree
for which any collection of n points in X is contained in a connected rational
curve of degree dX(n), i.e. dX(n) is minimal such that ZdX(n),n = Xn. Notice
that dX(2) = max{d(x, y) | x, y ∈ X}, and it follows from [13] that dX(2) is the
smallest degree of the quantum parameter q that occurs in the square of a point



FINITENESS OF COMINUSCULE QUANTUM K-THEORY 9

in the small quantum ring QH(X). Furthermore, for any degree d ∈ N we have
Z∗

d,2 = {(x, y) ∈ X2 | d(x, y) = d′} and Γ∗
d(x) = {y ∈ X | d(x, y) = d′}, where

d′ = min(d, dX(2)). The numbers dX(2) and dX(3) were computed in [7, Prop. 18]
and [9, Prop. 3.4]. We reproduce these numbers in the following table, correcting
some typos from [9]. The proof of Proposition 4.5 will also provide an argument
for the values of most of these numbers.

X dim(X) dX(2) dX(3)

Gr(m,m + k) mk min(m, k) min(2m, 2k,max(m, k))

LG(n, 2n) n(n+1)
2 n n

OG(n, 2n) n(n−1)
2 ⌊n

2 ⌋ ⌈n
2 ⌉

Qn n 2 2

E6/P6 18 2 4

E7/P7 27 3 3

We require the following proposition, which combines parts of Prop. 18 and
Lemma 21 from [7]. Notice that part (c) implies that dX(2) is equal to the number
of occurrences of sα in a reduced word for the element u ∈ WP for which X(u) = X.

Proposition 4.1 ([7]). Let X = G/P be a cominuscule variety.

(a) The diagonal action of G on Z∗
d,2 is transitive for each d ∈ [0, dX(2)].

(b) Let x, y ∈ X and set d = d(x, y). Then the stabilizer in G of the subvariety

Γd(x, y) ⊂ X is a parabolic subgroup of G that acts transitively on Γd(x, y).

(c) Let u ∈ WP . Then d(1.P, u.P ) is the number of occurrences of sα in any reduced

expression for u.

Proposition 4.1 is the foundation of the following construction from [7]. Fix a
degree d ∈ [0, dX(2)] and let Yd be the set of all subvarieties Γd(x, y) of X for
which d(x, y) = d. The group G acts on Yd by translation, and by parts (a) and
(b) of Proposition 4.1 we can identify Yd with a projective homogeneous space for
G. The points of the variety Yd provide a generalization to cominuscule varieties
of the kernel-span pairs of curves in classical Grassmannians [3, 4]. For example,
when X = Gr(m,n) is a Grassmannian of type A, the space Yd is the two-step
flag variety Fl(m − d,m + d;n) of kernel-span pairs of expected dimension. Notice
that the homogeneous space Yd contains a unique B-fixed point, which implies that
there is a unique B-stable Schubert variety in X of the form Γd(x, y). We denote
this non-singular Schubert variety by Xd.

Lemma 4.2. Let x, y ∈ X. Then there exists a chain of d(x, y) rational curves of

degree 1 through x and y.

Proof. We may assume that x = 1.P and y = u.P are T -fixed points, with u ∈ WP .
Let u = sβ1

sβ2
· · · sβℓ

be a reduced expression for u, and let j1 < j2 < · · · < jd(x,y)

be the indices for which βji
= α. Set u0 = 1 and ui = sβ1

sβ2
· · · sβji

for each

i ∈ [1, d(x, y)]. Then u0.P = x, and since u ∈ WP , we must have u = ud(x,y),

so ud(x,y).P = y. Finally notice that d(ui−1.P, ui.P ) = d(1.P, u−1
i−1ui.P ) = 1, so

ui−1.P and ui.P can be joined by a line in X. �
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Remark 4.3. The assumption that X is cominuscule is necessary in Lemma 4.2.
For example, if X = OG(2, 7) is the orthogonal Grassmannian of 2-dimensional
isotropic subspaces in C7 equipped with a non-degenerate symmetric bilinear form,
then two general points in X are joined by an irreducible curve of degree 2, but not
by a union of two lines. The same is true if X is any adjoint variety [8].

It follows from Lemma 4.2 that if d = (d0, . . . , dr) ∈ N
r+1 is any sequence with

di > 0 for i > 0, and Ω ⊂ X is any closed subvariety, then Γd(Ω) = Γ|d|(Ω). The
following result shows how to find the degree 1 neighborhood of a Schubert variety
in X. Let wP denote the unique longest element in WP .

Lemma 4.4. Let u ∈ WP be such that X(u) 6= X. Then Γ1(X(u)) = X(uwP sα).

Proof. Notice that Γ1(X(u)) is a B-stable Schubert variety in X. The inclusion
X(uwP sα) ⊂ Γ1(X(u)) follows because d(u.P, uwP sα.P ) = d(1.P, sα.P ) = 1. To
prove the opposite inclusion it is enough to show that any T -fixed point w.P ∈
Γ1(X(u)) is contained in X(uwP sα). Since T acts on the projective variety of all
degree one curves from w.P to X(u), there exists a T -stable curve of this kind, hence
we have d(w.P, v.P ) = 1 for some fixed point v.P ∈ X(u). We may assume that
v, w ∈ WP , so that v ≤ u. Proposition 4.1(c) implies that we can write v−1w =
xsαy where x, y ∈ WP . Since the assumption X(u) 6= X implies that uwP ≤
uwP sα, we obtain wy−1 = vxsα ≤ uwP sα, so w.P ∈ X(uwP sα) as required. �

Proposition 4.5. Let d ∈ [0, dX(2)]. Then we have ΓdX(3)−d(Xd) = X.

Proof. We check the truth of this statement case by case. Assume first that X =
Gr(m,n) is the type A Grassmannian of all m-dimensional subspaces in Cn. Set
k = n−m. Since Gr(m,n) ∼= Gr(k, n), we may assume that m ≤ k. It follows from
[3, Lemma 1] and [4, Prop. 1] that for x, y ∈ X we have d(x, y) = dim(x + y) − m,
where x + y = Span(x, y) ⊂ Cn. It follows that dX(2) = m. We furthermore have
Xd = Gr(d,B/A) = {x ∈ X | A ⊂ x ⊂ B} for some (A,B) ∈ Fl(m − d,m + d;n).
We claim that Γk−d(Xd) = X. Let y ∈ X be any point and notice that dim(B∩y) ≥
2m + d − n = m + d − k. Since m + d − k ≤ d, there exists a point x ∈ Xd such
that dim(x ∩ y) ≥ m + d − k, or equivalently d(x, y) ≤ k − d, as required. We
finally prove that dX(3) = min(k, 2m). The inequality dX(3) ≥ min(k, 2m) follows
from [3, Lemma 1], and the opposite inequality follows from the claim and the
observation that Γ2m−d(Xd) ⊃ Γm(point) = X. The identity ΓdX(3)−d(Xd) = X
follows.

Next assume that X = LG(n, 2n) is the Lagrangian Grassmannian of maximal
isotropic subspaces of a symplectic vector space C2n. For x, y ∈ X we have d(x, y) =
dim(x + y)−n, which implies that dX(2) = n, and Xd = LG(A⊥/A) ⊂ X for some
isotropic A ⊂ C2n with dim(A) = n−d. In particular, we have Xn = X, so dX(3) =
n. Let y ∈ X be any point and set x = (y ∩ A⊥) + A. Then x ⊂ C2n is isotropic.
Write dim(y+x) = dim(y+A) = n+ t. Then dim(y∩A⊥) = dim((y+A)⊥) = n− t
and dim(y∩A) = n−t−d. It follows that dim(x) = (n−t)+(n−d)−(n−t−d) = n,
so x ∈ Xd and d(x, y) = t ≤ n − d, as required.

Let X = OG(n, 2n) be an orthogonal Grassmannian. Given an orthogonal form
on C2n and a fixed maximal isotropic subspace x0 ⊂ C2n, this space consists of
all maximal isotropic subspaces x ⊂ C2n such that dim(x + x0) − n is even. We
have d(x, y) = 1

2 (dim(x + y) − n) for x, y ∈ X, hence dX(2) = ⌊n
2 ⌋, and Xd =

OG(2d,A⊥/A) ⊂ X for some isotropic subspace A ⊂ C2n of dimension n − 2d.
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We claim that dX(3) = ⌈n
2 ⌉ and ΓdX(3)−d(Xd) = X. Given any point y ∈ X, set

x = (y ∩A⊥) + A and write dim(x + y) = n + t. Then dim(x) = n and t ≤ n− 2d.
If t is even, then x ∈ Xd and d(x, y) = t

2 ≤ ⌊n
2 ⌋ − d. Otherwise we can find a point

z ∈ Xd such that dim(x+z) = n+1, and this implies that d(z, y) = t+1
2 ≤ ⌈n

2 ⌉−d,
proving the claim.

Let X = Qn ⊂ P(Cn+2) be a quadric hypersurface consisting of all isotropic
lines through the origin in the vector space Cn+2 equipped with an orthogonal
form. Then [7, Prop. 18] shows that dX(2) = 2 and X2 = X. It follows that
dX(3) = 2. We must show that Γ1(X1) = X. We have X1 = P(V ) for some
2-dimensional isotropic subspace V ⊂ Cn+2. Given any point y ∈ X, choose a
1-dimensional subspace x ⊂ V ∩ y⊥. Then x ∈ X1, and since x and y are joined by
the line P(x + y) ⊂ Qn we have d(x, y) = 1, as required.

Let X = E7/P7 be the Freudenthal variety. In other words, G has type E7 and
α is the 7-th simple root of the Dynkin diagram:

1 3 4 5 6 7

2

According to [7, Prop. 18] we have dX(2) = 3 and X3 = X, which implies that
dX(3) = 3. The description of the varieties Xd in terms of quivers given in [7] also
reveals that X2 = X(s7s6s5s4s2s3s4s5s6s7). (Alternatively, the variety X2

∼= Q10

can be identified as the unique non-singular Schubert variety in X of dimension
10.) By Lemma 4.4 we now obtain Γ1(X2) = X. We also have X1 = X(s7),
Γ1(X1) = X(s1s3s4s2s5s4s3s1s7s6s5s4s2s3s4s5s6s7), and Γ1(Γ1(X1)) = X.

Finally, let X = E6/P6 be the Cayley plane, i.e. G has type E6 and α is the
6-th simple root of the Dynkin diagram obtained by discarding node 7 in the above
diagram. By [7, Prop. 18] we have dX(2) = 2 and [9, Lemma 2.14] shows that
dX(3) = 4. We obtain dX(3) − d ≥ 2, so ΓdX(3)−d(Xd) ⊃ Γ2(point) = X. �

Corollary 4.6. Let x, y ∈ X and let d ≥ d(x, y). Then we have Γd(x, y) =
Γd−d(x,y)(Γd(x,y)(x, y)). In particular, Γd(x, y) is a Schubert variety in X.

Proof. Let z ∈ Γd(x, y). We must show that z ∈ Γd−d0
(Γd0

(x, y)), where d0 =
d(x, y). If d ≥ dX(3), then this follows from Proposition 4.5. On the other hand, if
d ≤ dX(2), then [7, Prop. 19] implies that that x, y, z are contained in a translate
of Xd. It follows from [7, Prop. 18] that Xd is a cominuscule variety, and using
[7, Fact 20] we obtain dXd

(3) = d. It now follows from Proposition 4.5 applied
to Xd that z ∈ Γd−d0

(Γd0
(x, y)). Finally, if dX(2) < d < dX(3), then X is a

Grassmannian of type A or the Cayley plane E6/P6. We consider these cases in
turn.

If X = Gr(m,n) is a Grassmannian of type A, then [3, Lemma 1] implies x, y, z ∈
X ′ := Gr(m − a,B/A) for some subspaces A ⊂ B ⊂ Cn such that a := dim(A) ≥
m− d and dim(B) ≤ m + d. Since dX′(3) ≤ d we deduce that z ∈ Γd−d0

(Γd0
(x, y))

by applying Proposition 4.5 to X ′.
Finally, assume that X = E6/P6 is the Cayley plane, in which case we have d = 3.

Since Γ2(X1) = X, we may also assume that d0 = 2 and Γ2(x, y) = X2. With the
notation from the proof of Proposition 4.5 we have X2 = X(s6s5s4s2s3s4s5s6),
the only non-singular Schubert variety of dimension 8, and Lemma 4.4 implies that
Γ1(X2) is the unique Schubert divisor in X. Since dX(3) = 4, we also have Γ1(X2) ⊂
Γ3(x, y) ( X. We conclude that Γ1(X2) = Γ3(x, y) as Γ3(x, y) is irreducible. �
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Corollary 4.7. Let d = (d0, d1, . . . , dr) be a sequence with di > 0 for i > 0. Then

Zd = {(x, y, z) ∈ Zd0,2 × X | z ∈ Γ|d|(x, y)}.

Proof. By definition we have Zd = {(x, y, z) ∈ X3 | z ∈ Γd(x, y)}. The corollary
is true because Γd(x, y) 6= ∅ if and only if (x, y) ∈ Zd0,2, in which case we have
Γd(x, y) = Γ|d|(x, y) by Corollary 4.6 and Lemma 4.2. �

We need the following rationality property of Gromov-Witten varieties defined
by triples of points, which in some cases are in special position [9, Thm. 0.2]. Notice
that when X is a Grassmannian of type A, this follows from [5, Thm. 2.1].

Theorem 4.8 ([9]). Let X = G/P be a cominuscule variety and let d ∈ N. Then

the variety Md,3(x, y, z) ⊂ M0,3(X, d) is rational for all points (x, y, z) in a dense

open subset of Zd,3 ⊂ X3.

Theorem 4.9. Let X = G/P be cominuscule and d = (d0, . . . , dr) any sequence

with di > 0 for i > 0. Then Md(x, y, z) is rationally connected for all points (x, y, z)
in a dense open subset of Zd ⊂ X3.

Proof. The result follows from Theorem 4.8 when r = 0, so assume that r > 0. By
induction on r we may assume that Md′(x, y, t) is rationally connected for all points
(x, y, t) in a dense open subset of Zd′ , where d′ = (d0, . . . , dr−1). Let (x, y) ∈ Z∗

d0,2

and set Ω = Γd′(x, y). Since G acts transitively on Z∗
d0,2 by Proposition 4.1(a), there

exists a dense open subset Ω∗ ⊂ Ω such that Md′(x, y, t) is rationally connected for
all t ∈ Ω∗. By Lemma 3.9 there exists a dense open subset Γ∗ ⊂ Γd(x, y) = Γdr

(Ω)
such that Ω∗ ∩ Γ∗

dr
(z) 6= ∅ and Ω ∩ Γdr

(z) is unirational and normal for all z ∈ Γ∗.
By replacing Γ∗ with a smaller set, we may also assume that Md(x, y, z) is locally

irreducible for all z ∈ Γ∗. Indeed, since Md(x) is unirational by Corollary 3.8, and
Proposition 3.2(b) implies that ev2 : Md(x) → Γd0

(x) is locally trivial over Γ∗
d0

(x),
it follows that Md(x, y) is unirational. Since Γd(x, y) is a Schubert variety by
Corollary 4.6 and ev3 : Md(x, y) → Γd(x, y) is surjective, the Kleiman-Bertini
theorem [18, Rmk. 7] applied to the Borel-action on the open cell Γd(x, y)◦ shows
that Md(x, y, z) is locally irreducible for all points z in a dense open subset of
Γd(x, y).

We claim that Md(x, y, z) is rationally connected for all z ∈ Γ∗. The space
Md is the product of the maps ev3 : Md′ → X and ev1 : Mdr,2 → X. Let
f : Md → X be the morphism defined by the product. This map restricts
to a surjective morphism Md(x, y, z) → Ω ∩ Γdr

(z), whose fibers are given by
f−1(t) ∩ Md(x, y, z) = Md′(x, y, t) × Mdr,2(t, z). Since Mdr,2(z) is unirational and
Proposition 3.2(b) implies that the map ev2 : Mdr,2(z) → Γdr

(z) is locally trivial
over Γ∗

dr
(z), it follows that Mdr,2(t, z) is unirational for all t ∈ Γ∗

dr
(z). We deduce

that f−1(t)∩Md(x, y, z) is rationally connected for all t ∈ Ω∗∩Γ∗
dr

(z). By using the
Stein factorization of the map Md(x, y, z) → Ω∩Γdr

(z) and the fact that Ω∩Γdr
(z)

is normal, it follows from Zariski’s main theorem [16, III.11.4] that Md(x, y, z) is
connected and therefore irreducible. The claim now follows from Theorem 2.6.

Define a morphism ρ : G × Γd(x, y) → Zd by ρ(g, z) = (g.x, g.y, g.z). It follows
from Proposition 4.1(a) that the image of ρ contains Zd ∩ (Z∗

d0,2 × X), which is a

dense open subset of Zd. This implies that ρ(G×Γ∗) contains a dense open subset
of Zd, which completes the proof of the theorem. �
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5. Quantum K-theory of cominuscule varieties

Let X = G/P be a cominuscule variety and let K(X) denote its Grothendieck
ring. A short summary of the properties of this ring can be found in [6, §3], while
many more details can be found in [2]. Each element w ∈ WP defines a Schubert
class Ow = [OX(w0w)] ∈ K(X), where w0 ∈ W is the longest element, and these
classes form a Z-basis for K(X). The dual Schubert classes O∨

w ∈ K(X) are defined
by χ

X
(Ou · O∨

v ) = δu,v for u, v ∈ WP , where χ
X

: K(X) → Z is the sheaf Euler
characteristic map.

Given classes α1, . . . , αn ∈ K(X), we set α1 ⊗ · · ·⊗αn =
∏n

i=1 π∗
i (αi) ∈ K(Xn),

where πi : Xn → X is the i-th projection. Together with a degree d ∈ N, these
classes define the K-theoretic Gromov-Witten invariant

Id(α1, . . . , αn) = χ
Md,n

(ev∗(α1 ⊗ · · · ⊗ αn)) .

The quantum K-theory ring of X is an algebra over Z[[q]], which as a Z[[q]]-module
is given by QK(X) = K(X) ⊗Z Z[[q]]. The multiplicative structure is defined by

Ou ⋆ Ov =
∑

w,d

Nw,d
u,v qd Ow ,

where the sum is over all w ∈ WP and d ∈ N. The structure constants Nw,d
u,v are

defined by

Nw,d
u,v =

∑

d=(d0,...,dr),κ1,...,κr

(−1)r Id0
(Ou,Ov,O∨

κ1
)

r∏

i=1

Idi
(Oκi

,O∨
κi+1

) ,

the sum over all sequences d = (d0, . . . , dr) with |d| = d and di > 0 for i > 0,
and all elements κ1, . . . , κr ∈ WP . Notice that the sign (−1)r and the number of
elements κi depend on the length of d, and we write κr+1 = w. A theorem of
Givental [14] states that QK(X) is an associative ring.

In this section we prove that any product of Schubert classes in QK(X) has only
finitely many non-zero terms. We start by observing that each structure constant
Nw,d

u,v can also be expressed as an alternating sum of Euler characteristics computed
on the spaces Md. The following lemma generalizes to any homogeneous space with
the same proof.

Lemma 5.1. Let u, v, w ∈ WP and let d = (d0, d1, . . . , dr) be any sequence such

that di > 0 for i > 0. Then

χ
Md

(ev∗(Ou ⊗Ov ⊗O∨
w)) =

∑

κ1,...,κr

Id0
(Ou,Ov,O∨

κ1
)

r∏

i=1

Idi
(Oκi

,O∨
κi+1

)

where the sum is over all κ1, . . . , κr ∈ WP and we set κr+1 = w.

Proof. We may assume that r > 0. Set d′ = (d0, . . . , dr−1). It is enough to show
that

(1) χ
Md

(ev∗(Ou ⊗Ov ⊗O∨
w)) =

∑

κ∈W P

χ
M

d′
(ev∗(Ou ⊗Ov ⊗O∨

κ )) · Idr
(Oκ,O∨

w) .

Let ∆ : X → X2 be the diagonal embedding. The projection formula implies that
χ

X2
(∆∗[OX ] · Oσ ⊗ O∨

τ ) = χ
X

(Oσ · O∨
τ ) = δσ,τ for all σ, τ ∈ WP , and the class
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∆∗[OX ] ∈ K(X2) is uniquely determined by this property. We deduce that (cf. [2,
Thm. 3.4.1(i)])

∆∗([OX ]) =
∑

κ∈W P

O∨
κ ⊗Oκ ∈ K(X2) .

Since the horizontal maps are flat in the fiber square

Md′ × Mdr

ev3 × ev1 // X2

Md
//

∆′

OO

X

∆

OO

we obtain ∆′
∗[OMd

] = (ev3 × ev1)
∗∆∗[OX ] =

∑
κ ev∗

3(O
∨
κ )⊗ ev∗

1(Oκ). Equation (1)
follows from this by another application of the projection formula. �

We need the Gysin formula from [5, Thm. 3.1] stated as Proposition 5.2 below.
Notice that the statement in [5] requires that the general fibers of f are rational.
However, this was used only to conclude that the structure sheaf of any general
smooth fiber has vanishing higher cohomology, and rational connectivity suffices
for this, see e.g. [11, Cor. 4.18(a)].

Proposition 5.2 ([5]). Let f : X → Y be a surjective morphism of projective vari-

eties with rational singularities. If the general fibers of f are rationally connected,

then f∗[OX ] = [OY ] ∈ K(Y ).

Proof of Theorem 1. For each sequence d = (d0, . . . , dr) with di > 0 for i > 0

we choose a resolution of singularities π : Z̃d → Zd. By Corollary 4.7 we may
assume that this resolution depends only on |d| and min(d0, dX(2)). Then form

the following commutative diagram, where M ′
d

⊂ Z̃d ×Zd
Md is the irreducible

component mapping birationally to Md, and M̃d is a resolution of singularities of
this component.

M̃d

ϕ // M ′
d

⊂ // Z̃d ×Zd
Md

π′
//

ev′

��

Md

ev

��
Z̃d

π // Zd

⊂ // X3

It follows from Zariski’s main theorem that the fibers of π′ϕ are connected. Using
Theorem 4.9 we deduce that the general fibers of ev′ ϕ are connected. Since the map

ev′ ϕ is smooth over a dense open subset of Z̃d by [16, III.10.7], it follows that the
general fibers of ev′ ϕ are in fact irreducible. Theorem 4.9 therefore shows that the
general fibers of ev′ ϕ are rationally connected, so we obtain (ev′ ϕ)∗[OfMd

] = [O eZd

]

by Proposition 5.2. Since Md has rational singularities, we also have (π′ϕ)∗[OfMd

] =

[OMd
]. We deduce from the projection formula that

χ
Md

(ev∗(Ou ⊗Ov ⊗O∨
w)) = χ

eZd

(π∗(Ou ⊗Ov ⊗O∨
w)) .

Now Lemma 5.1 implies that

Nw,d
u,v =

∑

d

(−1)r χ
Md

(ev∗(Ou ⊗Ov ⊗O∨
w))

=
∑

d

(−1)r χ
eZd

(π∗(Ou ⊗Ov ⊗O∨
w))
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where both sums are over all sequences d = (d0, . . . , dr) with di > 0 for i > 0
and |d| = d, and the sign (−1)r depends on the length of d. Notice that the
terms of the second sum depend only on min(d0, dX(2)) and r. In particular, the
contributions of the sequences d = (d) and d = (d − 1, 1) cancel each other out.

Now let 0 ≤ d′ ≤ d − 2. For each r with 1 ≤ r ≤ d − d′, there are exactly
(
d−d′−1

r−1

)

sequences d in the sum for which d0 = d′ and the length of d is r + 1. Since∑d−d′

r=1 (−1)r
(
d−d′−1

r−1

)
= 0, it follows that the corresponding terms cancel each other

out. This completes the proof. �

Remark 5.3. Theorem 1 is true also for the structure constants of the equivariant

quantum K-theory ring QKT (X), with the same proof. In fact, if Z̃d and M̃d are
chosen to be T -equivariant resolutions [21, Thm. 7.6.1], then all maps used in the
proofs of Lemma 5.1 and Theorem 1 are equivariant, and the arguments go through
without change. More details about the ring QKT (X) can be found in [5].
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