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Abstract. We prove that the Schubert structure constants of the quantum

K-theory ring of any minuscule flag variety or quadric hypersurface have signs
that alternate with codimension. We also prove that the powers of the de-

formation parameter q that occur in the product of two Schubert classes in

the quantum cohomology or quantum K-theory ring of a cominuscule flag va-
riety form an integer interval. Our proofs are based on several new results,

including an explicit description of the most general non-empty intersection

of two Schubert varieties in an arbitrary flag manifold, and a computation of
the cohomology groups of any negative line bundle restricted to a Richardson

variety in a cominuscule flag variety. We also give a type-uniform proof of
the quantum-to-classical theorem, which asserts that the (3-point, genus 0)

Gromov-Witten invariants of any cominuscule flag variety are classical triple-

intersection numbers on an associated flag variety. Finally, we prove several
new results about the geometry and combinatorics related to this theorem.
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1. Introduction

1.1. Positivity in quantum K-theory. Let X = G/PX be a flag variety defined
by a semi-simple complex linear algebraic group G and a parabolic subgroup PX .
The (small) quantum K-theory ring QK(X) of Givental and Lee [Giv00, Lee01]
is a deformation of the K-theory ring K(X) of algebraic vector bundles on X,
whose structure constants Nw,d

u,v encode the arithmetic genera of the (3 pointed,

genus zero) Gromov-Witten varieties of X. Here Nw,d
u,v denotes the coefficient of

qdOw in the product Ou ⋆Ov in QK(X), where Ow = [OXw ] denotes a K-theoretic
Schubert class ofX, and qd is a monomial in the deformation parameters of QK(X),
encoding a degree d ∈ H2(X,Z). The Schubert variety Xw corresponds to a Weyl
group element w such that codim(Xw, X) is equal to the length ℓ(w).

The constant Nw,d
u,v is non-zero only if

ℓ(w) +

∫
d

c1(TX) ≥ ℓ(u) + ℓ(v) ,

and when this inequality is satisfied with equality, Nw,d
u,v is the (cohomological)

Gromov-Witten invariant ⟨[Xu], [Xv], [Xw]⟩d, equal to the number of parameterized
curves f : P1 → X of degree d that map the points 0, 1,∞ to general translates
of the Schubert varieties Xu, Xv, and Xw; here Xw is the Schubert variety of
dimension ℓ(w) opposite to Xw. In particular, Nw,d

u,v is non-negative in this case.

More generally, it is conjectured [LM06, BM11, BCMP18a] that the constants Nw,d
u,v

have signs that alternate with codimension, in the sense that

(1) (−1)ℓ(uvw)+
∫
d
c1(TX)Nw,d

u,v ≥ 0 .

This generalizes the fact that the Schubert structure constants of the K-theory
ring K(X) have alternating signs [Buc02, Bri02]. Our main result is a proof of the
alternating signs conjecture for QK(X) when X is a minuscule flag variety or a
quadric hypersurface.

Theorem 1.1. Assume that X is a minuscule flag variety or a quadric hypersur-
face. Then, (−1)ℓ(uvw)+

∫
d
c1(TX)Nw,d

u,v ≥ 0.

The family of minuscule flag varieties includes Grassmannians of Lie type A,
maximal orthogonal Grassmannians, quadric hypersurfaces of even dimension, and
two exceptional spaces of type E called the Cayley plane and the Freudenthal
variety. The larger family of cominuscule flag varieties also includes Lagrangian
Grassmannians and odd dimensional quadrics (see Section 4). We will prove more
generally that the constant Nw,d

u,v has the expected sign (1) whenever X is comi-

nuscule and qd occurs in the product [Xu] ⋆ [Xv] in the quantum cohomology ring
QH(X).

Earlier examples where alternating signs of the structure constants in quantum
K-theory have been proved include the Pieri formula for products with special
Schubert classes on Grassmannians of type A [BM11], structure constants associ-
ated to ‘line’ degrees corresponding to certain fundamental weights on any G/P
[LM14], Chevalley formulas for products with Schubert divisors on some families
of flag varieties [BCMP18a, LNS21, KLNS], and all the structure constants of the
quantum K-theory of incidence varieties Fl(1, n− 1;n) of type A [Ros20, Xu21].
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1.2. Powers of q in quantum products. We also address the problem of finding
the powers qd that occur in the quantum product of two Schubert classes, either
in the quantum cohomology ring QH(X) or the quantum K-theory ring QK(X).
When X is a Grassmannian of type A, the smallest power dmin(u, v) of q in the
product [Xu]⋆ [Xv] ∈ QH(X) was determined by Fulton and Woodward [FW04], as
the number of diagonal units the (dual) Young diagram of Xu must be translated
in order to contain the Young diagram of Xv. Postnikov [Pos05] gave a similar rule
for the largest degree dmax(u, v), and also proved that the powers of q that occur
form an integer interval. This answers the question for the quantum cohomology
of Grassmannians of type A.

For an arbitrary flag variety X, it is not clear if a quantum product [Xu]⋆ [Xv] ∈
QH(X) contains a minimal or maximal power of q, since the group H2(X,Z) is
linearly ordered only when it has rank 1. It turns out that [Xu] ⋆ [Xv] always
contains a minimal power qd [Pos05, BCLM20], where d = dmin(u, v) is the (unique)
minimal degree of a rational curve connecting two general translates of the Schubert
varieties Xu and Xv. The corresponding product Ou ⋆Ov in QK(X) contains the
same minimal power qd. However, a quantum cohomology product [Xu] ⋆ [Xv]
may not contain a unique maximal power of q, and the powers that occur may not
form a convex subset in the natural partial order of H2(X,Z). For example, the
q-degrees in the square of [X164532] in QH(Fl(C6)) do not form a convex subset,
and no unique maximal degree exists.

Any cominuscule flag variety X has Picard rank one, so all quantum products
automatically contain a maximal power of q. We will show that the interval property
also holds when X is cominuscule. More precisely, let B = {qd[Xu]} denote the
natural Z-basis of QH(X). It was proved in [Bel04, CMP09] that any product
[point] ⋆ [Xv] belongs to B when X is cominuscule. Define a partial order on B by
qe[Xv] ≤ qd[Xu] if and only if the Schubert varieties Xu and Xv are connected by
a rational curve of degree d− e.

Theorem 1.2. Assume that X is cominuscule. Then the powers qd that occur
in [Xu] ⋆ [Xv] ∈ QH(X) form an integer interval. More precisely, qd occurs in
[Xu] ⋆ [Xv] if and only if [Xv] ≤ qd[Xu] ≤ [point] ⋆ [Xv].

Postnikov’s description of the extreme powers of q in a quantum product on the
Grassmannian Gr(m,n) involves order ideals in the cylinder Z2/(−m,n−m)Z that
extends the usualm×(n−m)-rectangle of boxes associated with the Grassmannian.
Theorem 1.2 can be interpreted as a type-uniform generalization of this construc-
tion. In fact, B turns out to be a distributive lattice, and the join-irreducible
elements in B can be identified with a set of boxes in the plane that specializes to
Postnikov’s cylinder in type A. Examples are provided in Section 7.2. Isomorphic
partially ordered sets have been constructed in [Hag04, Gre13], where they are used
to study to minuscule representations.

In quantum K-theory it is known that the powers of q in any product Ou ⋆Ov

are bounded above [BCMP13, BCMP16, Kat, ACT22]; this is not apparent from
Givental’s definition of the product in QK(X). Theorem 1.2 has the following
generalization.
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Theorem 1.3. (a) Assume that X is minuscule. Then qd occurs in Ou ⋆Ov if and
only if qd occurs in [Xu] ⋆ [Xv].

(b) Assume that X is cominuscule. Then the powers of q that occur in Ou⋆Ov form
an integer interval. The smallest power matches the smallest power in [Xu] ⋆ [Xv],
and the largest power is at most one larger than the largest power in [Xu] ⋆ [Xv].

In Definition 8.2 we give a combinatorial definition of an exceptional degree of a
product Ou ⋆Ov in the quantum K-theory ring of any cominuscule flag variety X.
Exceptional degrees occur only whenX is not minuscule, and even in this case, most
products have no exceptional degrees (see Table 4). If Ou ⋆Ov has an exceptional
degree, then this degree is dmax(u, v) + 1. We prove that if qd occurs in Ou ⋆ Ov,
then either dmin(u, v) ≤ d ≤ dmax(u, v), or d = dmax(u, v) + 1 is an exceptional
degree. In particular, this means that Nw,d

u,v has the expected sign whenever d is

not an exceptional degree. We conjecture that qd occurs in Ou ⋆Ov whenever d is
an exceptional degree.

1.3. Strategy of proof. To illustrate the main strategy in our proofs, fix a comi-
nuscule flag variety X and let Md = M0,3(X, d) denote the Kontsevich moduli
space of 3-pointed stable maps to X of degree d and genus zero [FP97]. Let
Md(Xu, X

v) = ev−1
1 (Xu) ∩ ev−1

2 (Xv) ⊂ Md denote the Gromov-Witten variety
of stable maps that send the first two marked points to the Schubert varieties
Xu and Xv, respectively. The image Γd(Xu, X

v) = ev3(Md(Xu, X
v)) ⊂ X is a

two-pointed curve neighborhood, equal to the closure of the union of all rational
curves of degree d in X that meet Xu and Xv. We also let Md−1,1 ⊂ Md denote
the divisor of stable maps f : C → X for which the domain has (at least) two
components, C = C1 ∪ C2, such that C1 contains the first two marked points, C2

contains the third marked point, and the restrictions of f to C1 and C2 have de-
grees d − 1 and 1, respectively. Set Md−1,1(Xu, X

v) = Md−1,1 ∩Md(Xu, X
v) and

Γd−1,1(Xu, X
v) = ev3(Md−1,1(Xu, X

v)). In other words, Γd−1,1(Xu, X
v) is the clo-

sure of the set of points in X that are connected by a line to a rational curve of
degree d− 1 from Xu to Xv.

Let Ou = [OXu ] and Ov = [OXv ] be two opposite Schubert classes. It follows
from [BCMP18a, Prop. 3.2] that the product Ou ⋆Ov ∈ QK(X) is given by1

Ou ⋆Ov =
∑

w,d≥0

Nw,d
u∨,v q

d Ow =
∑
d≥0

(Ou ⋆Ov)d q
d ,

where the classes (Ou ⋆Ov)d ∈ K(X) are determined by

(2) (Ou ⋆Ov)d = (ev3)∗[OMd(Xu,Xv)]− (ev3)∗[OMd−1,1(Xu,Xv)] .

It was proved in [BCMP18b, Thm. 4.1] that Γd(Xu, X
v) is a projected Richardson

variety inX, and the restricted map ev3 :Md(Xu, X
v) → Γd(Xu, X

v) is cohomolog-
ically trivial, that is, (ev3)∗OMd(Xu,Xv) = OΓd(Xu,Xv) and R

j(ev3)∗OMd(Xu,Xv) = 0
for j > 0. In particular, we have (ev3)∗[OMd(Xu,Xv)] = [OΓd(Xu,Xv)] inK(X). Since
projected Richardson varieties have rational singularities [BC12, KLS14], it follows
from a theorem of Brion [Bri02] that the expansion of [OΓd(Xu,Xv)] in the Schubert
basis of K(X) has alternating signs in the sense of Theorem 1.1.

1The dual Weyl group element u∨ satisfies Ou∨
= Ou.
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The further restriction ev3 : Md−1,1(Xu, X
v) → Γd−1,1(Xu, X

v) is not as well
understood; for example, we do not know if Γd−1,1(Xu, X

v) has rational singulari-
ties. Our strategy is to establish the following two properties.

(i) The general fibers of the map ev3 :Md−1,1(Xu, X
v) → Γd−1,1(Xu, X

v) are
cohomologically trivial.

(ii) The variety Γd−1,1(Xu, X
v) is either equal to Γd(Xu, X

v) or a divisor in
Γd(Xu, X

v).

The first property (i) implies, by using a result of Kollár [Kol86] (see Corol-
lary 8.13), that (ev3)∗[OMd−1,1(Xu,Xv)] is equal to the class of a resolution of sin-
gularities of Γd−1,1(Xu, X

v). In particular, if Γd−1,1(Xu, X
v) = Γd(Xu, X

v), then
(Ou ⋆Ov)d = 0. Otherwise, property (ii) predicts that Γd−1,1(Xu, X

v) is a divisor
in Γd(Xu, X

v). In this case Brion’s theorem [Bri02] implies that the expansion of
(ev3)∗[OMd−1,1(Xu,Xv)] has signs that are opposite to the signs of [OΓd(Xu,Xv)], so
that all signs are compatible in the difference (2). Theorem 1.1 is therefore a con-
sequence of properties (i) and (ii). In addition, qd occurs in the product Ou ⋆Ov if
and only if Γd−1,1(Xu, X

v) ⊊ Γd(Xu, X
v).

We show that property (ii) is always true. More precisely, Γd−1,1(Xu, X
v) is

empty for d ≤ dmin(u
∨, v), is a (non-empty) divisor in Γd(Xu, X

v) for dmin(u
∨, v) <

d ≤ dmax(u
∨, v), and is equal to Γd(Xu, X

v) for d > dmax(u
∨, v). We also show

that (i) is true, except when d is an exceptional degree of Ou ⋆Ov. In this case the
general fibers of the map ev3 :Md−1,1(Xu, X

v) → Γd−1,1(Xu, X
v) have arithmetic

genus one (see Theorem 8.26 and Corollary 10.5), which explains the exceptional
behavior of exceptional degrees.

1.4. The quantum-to-classical construction. Our proofs rely on the geometric
construction underlying the quantum equals classical theorem for cominuscule flag
varieties [Buc03, BKT03, CMP08, BM11, CP11], which we proceed to discuss when
X = Gr(m,n) is the Grassmannian of m-planes in Cn. Given any stable map
f : C → X, let Ker(f) ⊂ Cn be the intersection of the m-planes contained in the
image f(C), and let Span(f) ⊂ Cn be the linear span of these m-planes. For f
in a dense open subset of Md = M0,3(X, d), with d ≤ min(m,n − m), we have
dimKer(f) = m−d and dimSpan(f) = m+d, that is, (Ker(f),Span(f)) is a point
in the two-step flag variety Yd = Fl(m − d,m + d;n). Define the three-step flag
variety Zd = Fl(m− d,m,m+ d;n), and let pd : Zd → X and qd : Zd → Yd be the
projections. The quantum equals classical theorem states that any (3 point, genus
zero) Gromov-Witten invariant of X is given by

⟨Ω1,Ω2,Ω3⟩d =

∫
Yd

qd∗p
∗
d(Ω1) · qd∗p∗d(Ω2) · qd∗p∗d(Ω1) .

Define a rational map φ : Md 99K Zd by φ(f) = (Ker(f), ev3(f),Span(f)), and
define subvarieties of Zd by

Zd(Xu, X
v) = φ(Md(Xu, Xv)) and Zd−1,1(Xu, X

v) = φ(Md−1,1(Xu, Xv)) .

We will show that (completions of) the general fibers of the restricted maps φ :
Md(Xu, X

v) 99K Zd(Xu, X
v) and φ : Md−1,1(Xu, X

v) 99K Zd−1,1(Xu, X
v) are

cohomologically trivial. As a consequence, we can replace Md−1,1(Xu, X
v) with

Zd−1,1(Xu, X
v) in property (i). Furthermore, Zd(Xu, X

v) is a Richardson variety
in Zd, and Zd−1,1(Xu, X

v) is the inverse image of a projected Richardson variety
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in Yd. Geometric results about Schubert varieties can therefore be utilized for
studying the fibers of the map pd : Zd−1,1(Xu, X

v) → Γd−1,1(Xu, X
v).

The quantum-to-classical construction can be generalized to any cominuscule flag
variety X by replacing kernel-span pairs ω = (K,S) with certain well-behaved sub-
varieties Γω ⊂ X, which in type A are the sub-Grassmannians Γω = Gr(d, S/K) ⊂
Gr(m,n). These subvarieties correspond to points in a related flag variety Yd =
G/PYd

, which in turn defines the incidence variety Zd = G/(PX ∩PYd
) = {(ω, x) ∈

Yd × X | x ∈ Γω}. This provides a type-independent framework for studying
properties (i) and (ii).

1.5. Semi-transversal intersections. In order to establish the required geomet-
ric properties of (especially) fibers of maps related to the quantum-to-classical con-
struction, we prove a number of new results about intersections of Schubert varieties
in arbitrary flag varieties that are not in general position. In particular, given two
opposite Schubert varieties with empty intersection, we define and study a semi-
transversal intersection obtained when these varieties are moved towards each other
until they just meet, using the group action. In fact, semi-transversal intersections
can be defined for subvarieties of any variety with a group action, but in this gen-
erality it is not guaranteed that a semi-transversal intersection exists. We show
that the semi-transversal intersection of two Schubert varieties always exists, is a
Richardson variety, and we give explicit descriptions of the defining Weyl group
elements. For example, if X = G/PX is a cominuscule flag variety, then the semi-
transversal intersection of Xu with Xv is the Richardson variety Xu∩Xu∩v, where
u∩ v denotes the join operation on the set of minimal length Weyl group elements,
corresponding to the intersection of Young diagrams in type A. We also prove the
following result about the fibers of a projection of a Schubert or Richardson variety
to a smaller flag variety.

Theorem 1.4. Let π : Z → X be a projection of flag varieties. Each fiber π−1(x) ∼=
PX/PZ is again a flag variety.

(a) Let Zu ⊂ Z be a Schubert variety. Then Zu ∩ π−1(x) a (reduced) Schubert
variety in π−1(x) for all x ∈ π(Xu).

(b) Let Zv
u = Zu ∩ Zv ⊂ Z be a Richardson variety. Then Zv

u ∩ π−1(x) is a
Richardson variety in π−1(x) for all x in a dense open subset of π(Zv

u).

The general fibers are given by explicitly determined Weyl group elements (see
Theorem 2.8 and Theorem 2.10).

We apply these results to the projection pd : Zd → X of the quantum-to-
classical construction. For each x ∈ X, the fiber Fd = p−1

d (x) ∼= PX/PZd
is a

product of cominuscule flag varieties. If x is a general point of Γd(Xu, X
v), then

R = Fd ∩ Zd(Xu, X
v) is a Richardson variety in Fd given by explicitly determined

Weyl group elements. The most interesting case of property (i) happens in the
range of degrees dmax(u

∨, v) < d ≤ min(dmax(u
∨), dmax(v)), where dmax(v) denotes

the unique power of q in [point] ⋆ [Xv]. In this case, Γd−1,1(Xu, X
v) = Γd(Xu, X

v).
We show that D = Fd∩Zd−1,1(Xu, X

v) is a Cartier divisor in R, obtained as the in-
tersection of R with a divisor in Fd. We then prove that D is cohomologically trivial
if and only if d is not an exceptional degree. This is done by explicitly computing
the cohomology groups of any negative line bundle restricted to a Richardson vari-
ety in any cominuscule flag variety (Theorem 4.9). A special case is the following
statement.
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Theorem 1.5. Let X be a minuscule flag variety, let R ⊂ X be a Richardson
variety of positive dimension, and let OX(−1) ⊂ OX be the ideal sheaf of the
Schubert divisor in X. Then Hi(R,OX(−1)) = 0 for all i.

Our results can also be used to prove that the Seidel representation of the funda-
mental group π1(Aut(X)) on the localized quantum cohomology ring QH(X)q=1,
as studied in [Bel04, CMP09], has a natural generalization to the quantum K-
theory ring in the cominuscule case. We plan to discuss this elsewhere together
with applications to Pieri formulas in quantum K-theory.

1.6. Organization. This paper is organized as follows. In Section 2 we fix our no-
tation for flag varieties and related combinatorics and prove several results about
intersections of Schubert varieties in special position that are valid for arbitrary
flag varieties. In particular, we introduce the notion of semi-transversal intersec-
tions. In Section 3 we give short proofs of some related results about projections
of Richardson varieties, which were first obtained in [KLS14]. In Section 4 we in-
troduce our notation for cominuscule flag varieties. We also compute the (top)
cohomology group of any negative line bundle restricted to a Richardson variety in
a cominuscule flag variety, as a representation of the maximal torus T ⊂ G. This
allows us to determine when the intersection of a Richardson variety with an ef-
fective Cartier divisor is cohomologically trivial. Section 5 gives a detailed account
of the quantum equals classical theorem, focusing on Gromov-Witten invariants of
degrees no larger than the diameter of a cominuscule variety X, that is, the smallest
degree of a rational curve connecting two general points. We take this opportunity
to provide a type-uniform proof of this theorem, something that has so far not been
available in the literature. At the same time we further develop the geometry and
combinatorics of the quantum-to-classical construction. Section 6 provides explicit
descriptions of the general fibers of several maps of varieties related to this con-
struction. Section 7 proves that the q-degrees in the quantum cohomology product
of two cominuscule Schubert classes form an integer interval. We also construct
our generalization of Postnikov’s cylinder, which provides a combinatorial descrip-
tion of the minimal and maximal degrees in a quantum product. Section 8 proves
the results about alternating signs and q-degrees in the quantum K-theory ring of
a cominuscule flag variety. The proofs of some technical facts are postponed to
Section 9. Finally, Section 10 proves that the general fibers of the rational map
Md−1,1(Xu, X

v) 99K Zd−1,1(Xu, X
v) have cohomologically trivial completions.

1.7. Acknowledgments. Parts of this work was carried out while the authors vis-
ited the Hausdorff Research Institute for Mathematics in Bonn, the Department
of Mathematical Sciences at the University of Copenhagen, or participated in the
semester program in Combinatorial Algebraic Geometry at the Institute for Com-
putational and Experimental Research in Mathematics at Brown University. We
are grateful to these institutions for their hospitality and stimulating environments.
We also thank David Anderson, Jesper Thomsen, and Chenyang Xu for helpful dis-
cussions. We finally thank Prakash Belkale and Robert Proctor for making us aware
of the references [Bel04, Hag04, Gre13].

2. Intersections and fibers of Schubert and Richardson varieties

In this section we fix our notation for flag varieties. In addition, we prove some
results about intersections of Schubert and Richardson varieties in special position
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that are valid for arbitrary flag varieties over any algebraically closed field. In this
paper, a variety is always reduced but not necessarily irreducible. By a point we
will always mean a closed point. The fibers of a morphism are understood to be
fibers over closed points, and the general fibers mean the fibers over all closed points
in a dense open subset of the target.

2.1. Flag varieties. Let G be a connected linear algebraic group, and fix a max-
imal torus T and a Borel subgroup B such that T ⊂ B ⊂ G. The opposite Borel
subgroup B− ⊂ G is defined by B ∩B− = Ru(G)T , where Ru(G) is the unipotent
radical. Let Φ be the root system of (G,T ), with positive roots Φ+ and simple
roots ∆ ⊂ Φ+ given by B. This means that Φ is the set of roots of the reductive
quotient G/Ru(G), see [Spr98, §7.4.3]. Let W = NG(T )/ZG(T ) be the Weyl group
of G. The reflection along a root α ∈ Φ is denoted by sα.

A complete homogeneous G-variety will be called a flag variety of G. Any
such flag variety X contains a unique B-invariant point. We denote the parabolic
subgroup stabilizing this point by PX ⊂ G and the point itself by 1.PX . We identify
X with the quotient G/PX . Each element g ∈ G defines a point g.PX = g.(1.PX)
in X. Let ΦX be the root system of (the reductive quotient of) PX , and set
Φ+

X = Φ+ ∩ ΦX and ∆X = ∆ ∩ ΦX . Let WX = NPX
(T )/ZPX

(T ) be the Weyl
group of PX , and let WX ⊂ W be the subset of minimal representatives of the
cosets in W/WX . Each element u ∈ W defines a T -fixed point u.PX ∈ X and the

Schubert varieties Xu = Bu.PX and Xu = B−u.PX . We denote the corresponding

Schubert cells by
◦
Xu = Bu.PX and

◦
Xu = B−u.PX . These Schubert varieties

and cells depend only on the coset uWX in W/WX , and for u ∈ WX we have
dim(Xu) = codim(Xu, X) = ℓ(u).

Let ≤ denote the Bruhat order on W . For u, v ∈ WX we then have v ≤ u
⇔ Xv ⊂ Xu ⇔ Xu ∩ Xv ̸= ∅. In this case the intersection Xv

u = Xu ∩ Xv

is called a Richardson variety ; this variety is reduced, irreducible, rational, and

dim(Xv
u) = ℓ(u) − ℓ(v) [Ric92]. The Richardson cell

◦
Xv

u =
◦
Xu ∩

◦
Xv is a dense

open subset of Xv
u. Any translate of Xv

u will be called a Richardson variety. In
other words, a non-empty closed subvariety Ω ⊂ X is a Richardson variety if and
only if Ω = g.Xv

u for some u, v ∈ WX and g ∈ G. Similarly, arbitrary translates of
Schubert varieties will be called Schubert varieties.

Each element u ∈W has a unique factorization u = uXuX for which uX ∈WX

and uX ∈ WX , called the parabolic factorization of u with respect to PX . This
factorization is reduced in the sense that ℓ(u) = ℓ(uX) + ℓ(uX). The parabolic
factorization of the longest element w0 ∈W is w0 = wX

0 w0,X , where wX
0 and w0,X

are the longest elements in WX and WX , respectively. The Poincaré dual element
of u ∈WX is u∨ = w0uw0,X ∈WX , which satisfies Xu∨

= w0.Xu.
Suppose Y is an additional flag variety of G such that PX ⊂ PY , and let π :

X → Y be the projection. We then have (uY )
X = (uX)Y for any u ∈ W , so

this element of WY ∩WX may be written as uXY without ambiguity. The parabolic
factorizations of u with respect to both PY and PX can be simultaneously expressed
as u = uY uXY uX . Notice also that π−1(Y u) = Xu and π−1(Yu) = XuwX

0,Y
for any

u ∈WY .
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We need the Hecke product on W , which by definition is the unique associative
monoid product satisfying

u · sβ =

{
usβ if u < usβ ,

u if u > usβ

for all u ∈W and β ∈ ∆. Equivalently, the Hecke product u · v of u, v ∈W is given
by B(u · v)B = BuBvB [Spr98, §8.3]. In particular we have u.Xv ⊂ Xu·v. The
product of u and v is reduced (i.e. ℓ(uv) = ℓ(u) + ℓ(v)) if and only if uv = u · v.
Several other useful properties of the Hecke product can be found in e.g. [BM15,
§3].

The left weak Bruhat order on W is defined by u ≤L w if and only if ℓ(wu−1) =
ℓ(w) − ℓ(u). Equivalently, there exists x ∈ W such that w = xu is a reduced
factorization of w. We also need the PX -Bruhat order ≤X on W , which we define
by

v ≤X u if and only if v ≤ u and uX ≤L vX .

It follows from Corollary 2.12 below that this definition is equivalent to the defini-
tion given in [KLS14, §2] (see also [BS98]).

Lemma 2.1. For x, u ∈W we have u ≤L x · u and (x · u)u−1 ≤ x.

Proof. By definition of the Hecke product, there exists x′ ≤ x such that x ·u = x′u
and the product x′u is reduced. The lemma follows from this. □

Given a positive root α ∈ Φ+ ∖ ΦX there exists a unique T -stable curve C ⊂
X through 1.PX and sα.PX . For any simple root β ∈ ∆ ∖ ∆X we then have∫
C
[Xsβ ] = (α∨, ωβ), where α

∨ denotes the coroot of α and ωβ is the fundamental
weight corresponding to β (see [FW04, §3]).

An action of an algebraic group H on a variety Y is called split if there exists a
morphism s : U → H defined on a dense open subset U ⊂ Y , and a point y0 ∈ U ,
such that s(y).y0 = y for all y ∈ U . Many actions encountered in the study of
Schubert varieties are split, including the action of B on a Schubert variety Xu and
the action of B ×B on a double Bruhat cell BuB. If f : Z → Y is any equivariant
morphism of H-varieties such that the action of H on Y is split, then f is a locally
trivial fibration over the dense open orbit in Y [BCMP13, Prop. 2.3]. In fact, the
map φ : U × f−1(y0) → f−1(U) defined by φ(y, z) = s(y).z is an isomorphism. We
will make repeated use of this fact throughout this paper.

2.2. Semi-transversal intersections. Let Ω1 and Ω2 be closed subsets of a flag
variety X of the group G. It is customary to study the intersection of general
translates of these varieties, that is, any intersection of the form Ω1 ∩ g.Ω2, where
g is a general element of G. In particular, the product of (Chow) cohomology
classes is given by [Ω1] · [Ω2] = [Ω1∩ g.Ω2]. In this section we consider the situation
where the intersection of general translates of Ω1 and Ω2 is empty. We then seek
to understand non-empty intersections of the form Ω1 ∩ g.Ω2 that are as general
as possible. Such intersections will be called semi-transversal intersections of Ω1

and Ω2 (when they exist). Intuitively, a semi-transversal intersection is obtained
by moving general translates of Ω1 and Ω2 towards each other until they just meet.
Semi-transversal intersections make sense for actions of arbitrary algebraic groups,
so we will formulate our definition in this setting.
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Let X be an algebraic variety and let G be an algebraic group acting on X. For
any subset Ω ⊂ X we let GΩ = {g ∈ G | g.Ω = Ω} denote the stabilizer. Given two
closed subsets Ω1,Ω2 ⊂ X, we define a subset of G by

G(Ω1,Ω2) = {g ∈ G | Ω1 ∩ g.Ω2 ̸= ∅} .

This set is stable under the action of GΩ1
× GΩ2

defined by (a1, a2).g = a1ga
−1
2 ,

so we have GΩ1
GΩ2

⊂ G(Ω1,Ω2) if and only if Ω1 ∩ Ω2 ̸= ∅. Notice also that
G(Ω2,Ω1) = G(Ω1,Ω2)

−1, and G(g1.Ω1, g2.Ω2) = g1G(Ω1,Ω2)g
−1
2 for g1, g2 ∈ G.

If X is a complete variety, then G(Ω1,Ω2) is closed in G; this follows because
G(Ω1,Ω2) = p(µ−1(Ω1)), where p : G×Ω2 → G is the projection and µ : G×Ω2 →
X is defined by the action.

Definition 2.2. We will say that Ω1 and Ω2 meet semi-transversally if GΩ1
GΩ2

is a dense subset of G(Ω1,Ω2). A semi-transversal intersection of Ω1 and Ω2 is
any subscheme of the form g1.Ω1 ∩ g2.Ω2 for which g1.Ω1 and g2.Ω2 meet semi-
transversally (with g1, g2 ∈ G).

If Ω1 and Ω2 meet semi-transversally, then for all g in a dense open subset of
G(Ω1,Ω2), the intersection Ω1 ∩ g.Ω2 is a translate of Ω1 ∩ Ω2, so Ω1 ∩ Ω2 is as
general as possible among non-empty intersections. A semi-transversal intersection
of Ω1 and Ω2 exists if and only if G(Ω1,Ω2) contains a dense orbit for the action
of GΩ1

×GΩ2
, in which case Ω1 ∩ g.Ω2 is a semi-transversal intersection whenever

g belongs to this orbit. Any semi-transversal intersection of Ω1 and Ω2 is a G-
translate of any other. Notice that Ω1 ∩Ω2 may be a semi-transversal intersection
even though Ω1 and Ω2 fail to meet semi-transversally. The condition that Ω1 and
Ω2 meet semi-transversally is stronger because it concerns the relative position of
the two varieties and not just their intersection. When the group G is not clear
from the context, we will write “G-semi-transversal” to clarify the action.

Example 2.3. (a) Let G act trivially on X. Then Ω1 meets Ω2 semi-transversally
if and only if Ω1 ∩ Ω2 ̸= ∅, in which case Ω1 ∩ Ω2 is the only semi-transversal
intersection.

(b) Let GL(3) act on P2. Then a line and a conic meet semi-transversally if and
only if they have two points in common.

(c) Let GL(4) act on P3. Now a line and an irreducible curve of degree two meet
semi-transversally if and only if their intersection is a single reduced point.

(d) Let G = PGL(2) × PGL(2)⋊ S2 be the automorphism group of X = P1 × P1,
and set L = P1 × {0}. Then GL is connected while G(L,L) is disconnected, so
no semi-transversal intersection exists of L with itself. However, if we restrict the
action to the identity component G0 = PGL(2) × PGL(2), then L meets itself
semi-transversally.

(e) Let PGL(n+ 1) act on Pn, let H ⊂ Pn be a hyperplane, and let S ⊂ Pn be any
hypersurface with finite automorphism group. Then the dimension of GH ×GS is
smaller than the dimension of G(H,S) = G, so no semi-transversal intersection ofH
and S exists. In particular, transversal intersections may fail to be semi-transversal.

(f) The maximal orthogonal Grassmannian X = OG(4, 8) is one component of the
variety of maximal isotropic subspaces in an orthogonal vector space V of dimension
8. This space X is a flag variety of both SO(8) and its subgroup SO(7). A Schubert
line in X corresponds to a 2-dimensional isotropic subspace E ⊂ V . Two Schubert
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lines given by E1 and E2 meet SO(8)-semi-transversally if and only if E1 + E2 is
a point of X, whereas they meet SO(7)-semi-transversally only if E1 + E2 is an
isotropic subspace of dimension 3. It is therefore impossible for two Schubert lines
to meet semi-transversally for both groups at the same time.

(g) The projective space P2n−1 is a flag variety of both SL(2n) and its subgroup
Sp(2n) of elements preserving a symplectic form on a vector space V of dimension
2n. A Schubert line for the action of Sp(2n) is given by a 2-dimensional isotropic
subspace E ⊂ V . Two Schubert lines given by isotropic subspaces E1 and E2

meet SL(2n)-semi-transversally if and only if dim(E1 + E2) = 3, whereas they
meet Sp(2n)-semi-transversally if and only if dim(E1 +E2) = 3 and E1 +E2 is not
isotropic. Two Schubert lines can therefore meet SL(2n)-semi-transversally without
meeting Sp(2n)-semi-transversally.

2.3. Semi-transversal intersections of Schubert varieties. We are mostly
interested in semi-transversal intersections of Schubert varieties in a flag variety,
so assume again that X is a flag variety of a connected linear algebraic group G.
Our first result shows that a semi-transversal intersection of two Schubert varieties
exists and is a Richardson variety. Notice that Xu ∩ w0.Xv is a semi-transversal
intersection of Xu and Xv whenever this intersection is not empty; this happens
exactly when κ = w0 in the following result.

Theorem 2.4. Let u, v ∈ WX , and set κ = u · w0,X · v−1. Then G(Xu, Xv) =

BκB, w0κv ∈ WX , and Xu ∩ κ.Xv = Xu ∩ w0.Xw0κv as (reduced and irreducible)
subschemes of X. In particular, the Richardson variety Xu ∩ w0.Xw0κv is a semi-
transversal intersection of Xu and Xv.

Proof. Let µ : G×Xv → X be the map defined by µ(h, x) = h.x. If we let G act on
the left factor of G×Xv, then µ is G-equivariant, so µ is a locally trivial fibration
by [BCMP13, Prop. 2.3]. It follows that µ−1(Xu) ⊂ G×Xv is a closed irreducible
subvariety. Let p : G × Xv → G be the first projection and let B × B act on
G×Xv by (b1, b2).(h, x) = (b1hb

−1
2 , b2.x). Then p is proper and B×B-equivariant,

and since p−1(g) ∩ µ−1(Xu) = {g} × (g−1.Xu ∩ Xv) ∼= Xu ∩ g.Xv, it follows that
G(Xu, Xv) = p(µ−1(Xu)) ⊂ G is closed, irreducible, and B ×B-stable. Since κv ≤
uw0,X by Lemma 2.1, we obtain κv.PX ∈ Xu ∩ κ.Xv ̸= ∅, so BκB ⊂ G(Xu, Xv).
On the other hand, if w ∈ W is any element such that Xu ∩ w.Xv ̸= ∅, then let
v′.PX ∈ w−1.Xu ∩ Xv be any T -fixed point, with v′ ∈ WX . Then v′ ≤ v and
wv′ ≤ uw0,X , which implies w = (wv′)(v′)−1 ≤ (wv′) · (v′)−1 ≤ uw0,X · v−1 = κ.

This shows that G(Xu, Xv) = BκB.
Since p : µ−1(Xu) → G(Xu, Xv) is B ×B-equivariant, this map is locally trivial

over the open orbit BκB. In particular, the intersection Xu ∩ κ.Xv is reduced.
Since ℓ(κv) = ℓ(κ) − ℓ(v) by Lemma 2.1, we have ℓ(w0κv) = ℓ(w0κ) + ℓ(v). It
follows that w0κ.Xv ⊂ Xw0κv, so we have Xu ∩ κ.Xv ⊂ Xu ∩ w0.Xw0κv. Using
that µ : G×Xv → X is locally trivial, we get dim(µ−1(Xu)) = dim(PX) + ℓ(u) +
ℓ(v), and since p : µ−1(Xu) → G(Xu, Xv) is locally trivial over BκB, we obtain
dim(Xu ∩ κ.Xv) = ℓ(u) + ℓ(w0,X) + ℓ(v)− ℓ(κ). On the other hand, the dimension
of the Richardson variety Xu ∩ w0.Xw0κv is bounded by dim(Xu ∩ w0.Xw0κv) ≤
ℓ(u)+ℓ(w0κv)−dim(X) = ℓ(u)+ℓ(w0,X)+ℓ(v)−ℓ(κ). We deduce that Xu∩κ.Xv =
Xu ∩ w0.Xw0κv and that dim(Xw0κv) = ℓ(w0κv), so that w0κv ∈WX . □

The following corollary gives a geometric characterization of the weak left Bruhat
order that we have not seen before.
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Corollary 2.5. Let u, v ∈ WX . The following are equivalent. (1) There exists
g ∈ G such that Xu ∩ g.Xv is a single point. (2) The product u · w0,X · v−1 is
reduced. (3) We have u ≤L v

∨.

Proof. Set κ = u · w0,X · v−1. It follows from Theorem 2.4 that Xu ∩ κ.Xv is a
point if and only if w0κv = u∨ = w0uw0,X , or κ = uw0,Xv

−1, so (1) and (2) are
equivalent. Conditions (2) and (3) are equivalent because we have ℓ(vw0,Xu

−1) =
ℓ(vw0,X) + ℓ(u) if and only if ℓ(v∨u−1) = ℓ(v∨)− ℓ(u). □

Remark 2.6. Using the Stein factorization of the map p : µ−1(Xu) → G(Xu, Xv),
it follows that Xu ∩ g.Xv is connected for all g ∈ G(Xu, Xv). However, the inter-
section Xu ∩ g.Xv is not always irreducible, and Jesper Thomsen has shown us an
example where Xu ∩ g.Xv fails to be reduced [Tho]. For example, the intersection
of two Schubert divisors in the Grassmannian Gr(2, 4) may be a union of two pro-
jective planes, and two Schubert divisors in the quadric hypersurface Q3 ⊂ P4 can
meet in a double line.

Remark 2.7. If X is a flag variety of two different groups G and H, and Ω1,Ω2 ⊂
X are Schubert varieties with respect to both groups, then one can show that
any semi-transversal intersection of Ω1 and Ω2 for the action of H is also a semi-
transversal intersection for the action of G, up to translation by an automorphism
of X. In fact, there are only three families of flag varieties of groups of distinct
Lie types, namely odd-dimensional projective spaces P2n−1 = A2n−1/P1 = Cn/P1,
maximal orthogonal Grassmannians OG(n, 2n) = Dn/Pn = Bn−1/Pn−1, and the
5-dimensional quadric Q5 = B3/P1 = G2/P2. The first two families consist of
(co)minuscule flag varieties, in which case the claim follows from Proposition 4.5.
The last case B3/P1 = G2/P2 has been checked from Theorem 2.4 with help from
a computer. We will not need this fact in the following.

2.4. Fibers of Schubert varieties. Let Y = G/PY be an additional flag variety
of G such that PX ⊂ PY , and let π : X → Y be the projection. Then F =
π−1(1.PY ) = PY /PX is a flag variety of PY . The Schubert varieties in F are the
B-orbit closures Fw = Xw for w ∈ WY , as well as their PY -translates. Similarly,
any fiber π−1(g.PY ) = g.F for g ∈ G is a flag variety of gPY g

−1. Given a subvariety
Ω ⊂ X, the fibers of the restricted map π : Ω → π(Ω) will be called fibers of Ω. Our
next result shows that, if Ω is a Schubert variety in X, then any fiber Ω ∩ π−1(y)
with y ∈ π(Ω) is a Schubert variety in π−1(y).

Theorem 2.8. Any intersection Xu∩π−1(y) defined by u ∈WX and y ∈ π(Xu) is
a (reduced) Schubert variety in π−1(y). Let u = uY uY be the parabolic factorization

with respect to PY . Any fiber Xu ∩ π−1(y) given by y ∈
◦
Yu is a translate of Xu ∩

u.F = uY .FuY
.

Proof. We may assume that G is reductive. Let L ⊂ PY be the Levi subgroup
containing T and set BL = B ∩L. We then have Fw = BLw.PX for each w ∈WY .
Since π is B-equivariant, we may assume that y = v.PY ∈ π(Xu) is a T -fixed
point, given by an element v ∈ WY . Then v ≤ u. Since v ∈ WY we have
v.α > 0 for each positive root α of L, and this implies that vBLv

−1 ⊂ B and
therefore BL ⊂ v−1Bv ∩ L. Since v−1Bv ∩ L is a Borel subgroup of L, we obtain
BL = v−1Bv ∩ L. It follows that v−1.Xu ∩ F is a closed BL-stable subset of
F , so this set is a union of BL-stable Schubert varieties in F . The set of T -
fixed points in v−1.Xu ∩ F is {z.PX | z ∈ WY and vz ≤ uw0,X}. It follows from
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[KLS14, Prop. 2.1] that the set {z ∈ WY | vz ≤ uw0,X} has a unique maximal
element, say z′ ∈ WY . This implies that v−1.Xu ∩ F = Fz′ (as sets), hence
Xu ∩ π−1(v.PY ) = v.Fz′ is a translate of this Schubert variety. Notice also that, if

y ∈
◦
Yu, then v = uY , z′ = uY w0,X , and Fz′ = FuY

. To see that Xu ∩ π−1(v.PY )
is reduced, set Z = Xu ∩ π−1(Yv). Since Z is an intersection of B-stable Schubert
varieties, it follows that Z is a reduced union of Schubert varieties in X, see [BK05,
§2]. Since the map π : Z → Yv has irreducible fibers by the above argument, it
follows that Yv is dominated by a unique irreducible component Z ′ of Z, and Z ′ ⊂ X
is a B-stable Schubert variety. Since π : Z ′ → Yv is B-equivariant, it is locally trivial

over the open cell
◦
Yv ⊂ Yv. We conclude that Xu ∩ π−1(v.PY ) = Z ′ ∩ π−1(v.PY ) is

reduced. □

Remark 2.9. The parabolic factorization of u ∈ WX commutes with dualization
in the sense that w0uw0,X = (w0u

Y w0,Y )(w0,Y uY w0,X). It follows that the general
fibers of the projection π : Xu → π(Xu) are translates of the Schubert variety FuY .

2.5. Fibers of Richardson varieties. We finally consider the fibers R ∩ π−1(y)
of a Richardson variety R ⊂ X under the projection of flag varieties π : X → Y .
While the fibers of a Richardson variety may fail to be irreducible [BR12, Ex. 3.1],
we will show that R∩ π−1(y) is a Richardson variety in π−1(y) for all points y in a
dense open subset of π(R). Some very special cases of this were proved in [BR12].
The projection π : R→ π(R) was also studied in [BC12, KLS14], were it was proved
that this map is cohomologically trivial and that the projected Richardson variety
π(R) is Cohen-Macaulay with rational singularities.

Theorem 2.10. Let R = Xu ∩ w0.Xv be a Richardson variety in X, with u, v ∈
WX . Let u = uY uY and v = vY vY be the parabolic factorizations with respect to
PY . Then for all points y in a dense open subset of π(R), the fiber R∩ π−1(y) is a
G-translate of a semi-transversal intersection of FuY

and FvY in F = π−1(1.PY ).

Proof. Using [Spr98, Lemma 8.3.6] we may choose two morphisms ϕ1 :
◦
Yu → B

and ϕ2 :
◦
Yv → B such that ϕ1(y)u.PY = y for all y ∈

◦
Yu and ϕ2(y)v.PY = y for all

y ∈
◦
Yv. For each element w ∈W we choose a fixed representative ẇ ∈ NG(T ). Set

π(R)0 = π(R) ∩
◦
Yu ∩ w0.

◦
Yv and define ψ : π(R)0 → G by

ψ(y) = (u̇Y )−1 ϕ1(y)
−1 ẇ0 ϕ2(ẇ

−1
0 .y) v̇Y .

Since ẇ0ϕ2(ẇ
−1
0 .y)v̇Y .PY = y = ϕ1(y)u̇

Y .PY , we have ψ(y) ∈ PY for all y ∈ π(R)0.
Theorem 2.8 implies that Xu ∩ π−1(y) = ϕ1(y)u

Y .FuY
and w0.Xv ∩ π−1(y) =

ẇ0ϕ2(ẇ
−1
0 .y)vY .FvY . It follows that translation by ϕ1(y)u̇

Y maps the triple of
varieties (FuY

, ψ(y).FvY , F ) to (Xu ∩ π−1(y), w0.Xv ∩ π−1(y), π−1(y)). We deduce
that FuY

∩ ψ(y).FvY ̸= ∅ for all y ∈ π(R)0, hence ψ(y) ∈ PY (FuY
, FvY ). Since

Theorem 2.4 shows that FuY
∩ g.FvY is a semi-transversal intersection in F for

all elements g in a dense open subset of PY (FuY
, FvY

), it is enough to show that
Xu ∩ π−1(y) meets w0.Xv ∩ π−1(y) semi-transversally in π−1(y) for at least one
point y ∈ π(R)0.

Fix any point y′ = g.PY ∈ π(R)0. Then π−1(y′) = g.F is a flag variety of the
group gPY g

−1, and the set H = (gPY g
−1)(Xu ∩ g.F,w0.Xv ∩ g.F ) of §2.2 is an

irreducible closed subvariety of gPY g
−1 by Theorem 2.4. This theorem also implies

that Xu ∩ g.F meets hw0.Xv ∩ g.F semi-transversally in g.F for all elements h
in a dense open subset H0 ⊂ H. Since BB− is a dense open subset of G and
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1 ∈ BB− ∩ H, it follows that BB− ∩ H is another dense open subset of H. Let
U− ⊂ B− be the unipotent radical, let ρ : BB− = B × U− → B be the first
projection, and define f : BB− → Y by f(h) = ρ(h)−1.y′. For h ∈ BB− we
have ρ(h)−1h ∈ U−, which implies that Xu ∩ w0.Xv ∩ π−1(f(h)) = ρ(h)−1.(Xu ∩
hw0.Xv ∩π−1(y′)). It follows that f restricts to a morphism f : BB− ∩H → π(R).
Since f(1) = y′ ∈ π(R)0, it follows that f−1(π(R)0) is a dense open subset of H.
Finally, let h ∈ f−1(π(R)0) ∩H0 be any element and set y = f(h). Then we have
y ∈ π(R)0, and Xu ∩π−1(y) meets w0.Xv ∩π−1(y) semi-transversally in π−1(y), as
required. □

Corollary 2.11. The general fibers of a projection π : R→ π(R) from a Richardson
variety are Richardson varieties.

The following result was proved in [KLS14, Cor. 3.4] with a different but equiv-
alent definition of the PX -Bruhat order ≤X .

Corollary 2.12. Let u, v ∈ WX . The projection π : Xv
u → π(Xv

u) is a birational
map of non-empty varieties if and only if v ≤Y u.

Proof. This follows from Theorem 2.10, Corollary 2.5, and Remark 2.9. □

For later use we state the following result, which was proved in [BC12, KLS14].

Theorem 2.13. Let π : X → Y be a projection of flag varieties and let R ⊂ X be
a Richardson variety.

(a) The image π(R) is Cohen-Macaulay and has rational singularities.

(b) The map π : R→ π(R) is cohomologically trivial, that is, π∗(OR) = Oπ(R) and

Rjπ∗OR = 0 for j > 0.

3. Projected Richardson varieties

We need some additional results about projections of Richardson varieties that
were proved in [KLS14]. In this expository section we give short proofs of these
results. The statements of some results deviate slightly from the original versions,
for example the bounds on u′ and v′ in Theorem 3.5 are important for our appli-
cations but not immediately clear from [KLS14, Prop. 3.3 and Prop. 3.6]. Another
difference is our simpler but equivalent definition of the PX -Bruhat order from
Section 2.1: for u, v ∈W we have v ≤X u if and only if v ≤ u and uX ≤L vX .

We work over any algebraically closed field. Let E = G/B be the variety of
complete flags, let X = G/PX be any flag variety of G, and let π : E → X be
the projection. Given v, u ∈ W with v ≤ u, the images in X of the corresponding
Richardson variety and Richardson cell in E are denoted by Πv

u(X) = π(Ev
u) and

◦
Πv

u(X) = π(
◦
Ev

u).

Lemma 3.1. Let u, v ∈ W satisfy v ≤ u, and let s ∈ WX be a simple reflection
such that u < us and v < vs. Then the following hold.
(a) Πv

u(X) = Πvs
us(X) = Πv

us(X).

(b)
◦
Πv

u(X) =
◦
Πvs

us(X).

(c)
◦
Πv

us(X) =
◦
Πv

u(X) ∪
◦
Πvs

u (X).

(d) π :
◦
Ev

u →
◦
Πv

u(X) is an isomorphism of varieties if and only if π :
◦
Evs

us →
◦
Πvs

us(X)
is an isomorphism of varieties.
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Proof. We may assume that PX is the minimal parabolic subgroup defined by
WX = {1, s}. We then have u, v ∈ WX . Part (a) follows from π(Ev

u) = π(Eu ∩
π−1(Xv)) = π(Eu) ∩Xv = Xv

u and symmetric identities. We also have π(
◦
Ev

us) ⊂
◦
Xv

u = π(
◦
Eu) ∩

◦
Xv = π(

◦
Eu ∩ π−1(

◦
Xv)) = π(

◦
Eu ∩ (

◦
Ev ∪

◦
Evs)) = π(

◦
Ev

u) ∪ π(
◦
Evs

u ).

Given x ∈
◦
Xv

u, the fiber π−1(x) ∼= P1 is contained in π−1(
◦
Xv

u) =
◦
Ev

us ∪
◦
Ev

u ∪
◦
Evs

us ∪
◦
Evs

u . Since π is injective on
◦
Eu and on

◦
Evs, π−1(x) ∩ (

◦
Ev

u ∪
◦
Evs

us ∪
◦
Evs

u )

is finite, so π−1(x) ∩
◦
Ev

us ̸= ∅. This proves (c). A symmetric argument gives
◦
Xv

u = π(
◦
Evs

us)∪ π(
◦
Evs

u ). Again using that π is injective on
◦
Eu and on

◦
Evs, part (b)

follows because π(
◦
Ev

u) =
◦
Xv

u − π(
◦
Evs

u ) = π(
◦
Evs

us). Finally, both maps in part (d)

are isomorphisms because π :
◦
Eu →

◦
Xu and π :

◦
Evs →

◦
Xvs are isomorphisms by

[Spr98, Lemma 8.3.6]. □

Proposition 3.2. Let u, v ∈W satisfy v ≤ u. The following are equivalent.

(a) We have v ≤X u.

(b) The dimension of Πv
u(X) is ℓ(u)− ℓ(v).

(c) The map π :
◦
Ev

u →
◦
Πv

u(X) is an isomorphism of varieties.

Proof. If u ∈WX , then (a) holds by definition of ≤X , and (b) and (c) hold because

π :
◦
Eu →

◦
Xu is an isomorphism. Otherwise let s ∈ WX be a simple reflection

such that us < u. If v < vs, then v ̸≤X u, and Lemma 3.1(a) implies that
dimΠv

u(X) < dimEv
u. On the other hand, if vs < v, then vs ≤X us holds if

and only if v ≤X u, so the result follows from Lemma 3.1(b,d) by induction on
ℓ(uX). □

If part (c) of Proposition 3.2 is replaced with the requirement that π : Ev
u →

π(Ev
u) is birational, then this theorem holds when E is an arbitrary flag variety and

u, v ∈ WE . However, the following example shows that π :
◦
Ev

u → π(
◦
Ev

u) may fail
to be injective when E ̸= G/B and v ≤X u in WE .

Example 3.3. Let G = GL(5), let B ⊂ G be the subgroup of upper triangular
matrices, and let B ⊂ PX ⊂ PY ⊂ G be the parabolic subgroups such that WX is
generated by s4 and WY is generated by s1, s3, s4. Then X = G/PX = Fl(1, 2, 3; 5)
and Y = G/PY = Gr(2, 5). Let π : X → Y be the projection and set v = s3 and
u = s3s2s1s4s3s2s3 = 45213. Since uY = vY = s3, it follows from Proposition 3.2
or Corollary 2.12 that π : Xv

u → π(Xv
u) is birational. Let E = G/B = Fl(5) and

v′ = s3s4, and consider the composition of projections
◦
Ev′

u −→
◦
Xv

u
π−−→ π(

◦
Xv

u) .

Since u ∈ WX , the map
◦
Eu →

◦
Xu is an isomorphism of affine spaces, so the first

projection is injective. However, since uY ̸≤L v′Y , it follows from Proposition 3.2

that the composed projection is not injective. We conclude that π :
◦
Xv

u → π(
◦
Xv

u)
is not injective.

Let ∼X denote the equivalence relation on the set {(v, u) ∈ W ×W | v ≤ u}
generated by (v, u) ∼X (v, us) ∼X (vs, us) whenever s ∈ WX is a simple reflection
such that u < us and v < vs.

Theorem 3.4. Let u, v, u′, v′ ∈W satisfy v ≤ u and v′ ≤ u′.

(a) If Πv
u(X) = Πv′

u′(X) and u, u′ ∈WX , then u = u′ and v = v′.
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(b) We have Πv
u(X) = Πv′

u′(X) if and only if (v, u) ∼X (v′, u′).

(c) If v ≤X u and v′ ≤X u′, then either
◦
Πv

u(X) =
◦
Πv′

u′(X) or
◦
Πv

u(X)∩
◦
Πv′

u′(X) = ∅.

Proof. It follows from Lemma 3.1(a) that (v, u) ∼X (v′, u′) implies Πv
u(X) =

Πv′

u′(X). Assume that u, u′ ∈ WX and
◦
Πv

u(X) ∩
◦
Πv′

u′(X) ̸= ∅. Then
◦
Xu ∩

◦
Xu′ ̸= ∅,

which implies u = u′. Since π is injective on
◦
Eu, we deduce that v = v′ as well.

This proves (a), and also establishes (b) and (c) when u, u′ ∈ WX . Assume next
that u /∈ WX . Choose a simple reflection s ∈ WX such that ũ = us < u, and set
ṽ = (v · s)s. Then we have (v, u) ∼X (ṽ, ũ), Πv

u(X) = Πṽ
ũ(X), and ũX < uX , so

part (b) follows by induction on ℓ(uX) + ℓ(u′X). If v ≤X u, then we must have

ṽ = vs < v and ṽ ≤X ũ. Since Lemma 3.1(b) shows that
◦
Πv

u(X) =
◦
Πṽ

ũ(X), part (c)
also follows by induction on ℓ(uX) + ℓ(u′X). □

Theorem 3.5. Let u, v ∈W satisfy v ≤ u.

(a) The set
◦
Πv

u(X) is the disjoint union of some of the sets
◦
Πv′

u′(X) for which
v ≤ v′ ≤X u′ ≤ u.

(b) We have Πv
u(X) =

⋃
v≤v′≤Xu′≤u

◦
Πv′

u′(X).

(c) There exists u′, v′ ∈W such that v ≤ v′ ≤X u′ ≤ u and Πv
u(X) = Πv′

u′(X).

Proof. We first prove part (a). If u ∈ WX , then v ≤X u and the result is clear.
Otherwise let s ∈ WX be a simple reflection such that us < u. If v < vs, then

Lemma 3.1(c) shows that
◦
Πv

u(X) =
◦
Πv

us(X) ∪
◦
Πvs

us(X), so the result follows by in-
duction on ℓ(uX). The obtained union is automatically disjoint by Theorem 3.4(c).

Assume that vs < v. Then Lemma 3.1(b) gives
◦
Πv

u(X) =
◦
Πvs

us(X), and by in-

duction on ℓ(uX) we can express
◦
Πv

u(X) as a union of sets
◦
Πv′

u′(X) for which

vs ≤ v′ ≤X u′ ≤ us. Any such set
◦
Πv′

u′(X) for which v ≤ v′ satisfies the re-
quirements of part (a), so assume that vs ≤ v′ ≤X u′ ≤ us and v ̸≤ v′. Then we
must have v′ < v′s. Since v′ ≤X u′, we also obtain u′ < u′s, so Lemma 3.1(b)

shows that
◦
Πv′

u′(X) =
◦
Πv′s

u′s(X). Since v ≤ v′s ≤X u′s ≤ u, this set has the required
form. This completes the proof of (a). Part (b) follows from (a) because Ev

u is the

union of all sets
◦
Ev′

u′ for which v ≤ v′ ≤ u′ ≤ u, and (c) follows because
◦
Πv′

u′(X)

must be dense in
◦
Πv

u(X) for some u′, v′ ∈W with v ≤ v′ ≤X u′ ≤ u. □

Corollary 3.6. If v ≤ u in WX , then Xv
u = Πv

u(X) and
◦
Xv

u =
◦
Πv

uw0,X
(X).

Proof. The first equality is true because Xv
u = π(Eu) ∩Xv = π(Eu ∩ π−1(Xv)) =

Πv
u(X). For the second, notice first that

◦
Πv

uw0,X
(X) ⊂ π(

◦
Euw0,X

) ∩ π(
◦
Ev) =

◦
Xv

u.

We also have
◦
Xv

u =
◦
Xu ∩ π(

◦
Ev) = π(π−1(

◦
Xu) ∩

◦
Ev) =

⋃
x∈WX

◦
Πv

ux(X). Since

Lemma 3.1(c) implies that
◦
Πv

ux(X) ⊂
◦
Πv

uw0,X
(X), we deduce that

◦
Xv

u ⊂
◦
Πv

uw0,X
(X).

□

4. Cominuscule flag varieties

4.1. Schubert varieties. In the remainder of this paper we let X = G/PX be a
cominuscule flag variety defined over C. This means that PX is a maximal parabolic
subgroup of G, and the unique simple root γ in ∆ ∖ ∆X is cominuscule, that is,
when the highest root of Φ is expressed as a linear combination of simple roots,
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the coefficient of γ is one. If in addition the root system Φ is simply laced, then
X is also called minuscule. It was proved by Proctor that the Bruhat order on
WX is a distributive lattice that agrees with the left weak Bruhat order [Pro84].
Stembridge has proved that all elements ofWX are fully commutative, which means
that any reduced expression of an element of WX can be obtained from any other
by interchanging commuting simple reflections [Ste96]. We proceed to summarize
the facts we need in more detail, following the notation from [BCMP18a]. Proofs
of our claims can be found in [Pro84, Ste96, Per07, BS16].

The root lattice SpanZ(∆) has a partial order defined by α′ ≤ α if and only if
α − α′ is a sum of positive roots. Set PX = {α ∈ Φ | α ≥ γ}, with the induced
partial order. For any element u ∈W we let I(u) = {α ∈ Φ+ | u.α < 0} denote the
inversion set. We then have ℓ(u) = |I(u)|, and u ∈ WX if and only if I(u) ⊂ PX .
Moreover, the assignment u 7→ I(u) restricts to a bijection between the elements of
WX and the (lower) order ideals of PX . This bijection is an order isomorphism in
the sense that v ≤ u if and only if I(v) ⊂ I(u). The order ideals in PX generalize
the Young diagrams known from the Schubert calculus of classical Grassmannians.
For this reason the roots in PX will sometimes be called boxes. An order ideal in
PX will be called a straight shape, and a difference between order ideals is called a
skew shape.

Given a straight shape λ ⊂ PX , let λ = {α1, α2, . . . , α|λ|} be any increasing

ordering of its elements, i.e. αi < αj implies i < j. Then the element of WX

corresponding to λ is the product of reflections wλ = sα1
sα2

. . . sα|λ| (see e.g. [BS16,

Thm. 2.4]). Given v, u ∈WX with v ≤ u, we will use the notation u/v = uv−1 ∈W .
Since the Bruhat order on WX agrees with the left weak Bruhat order [Pro84] (see
also [Ste96, Thm. 7.1]), we have ℓ(u/v) = ℓ(u)− ℓ(v).

For any root α ∈ PX , consider the shape λ(α) = {α′ ∈ PX | α′ < α}, and set
δ(α) = wλ(α).α. Then sδ(α) = wλ(α)sαw

−1
λ(α) = wλ(α)∪{α}/wλ(α) has length one. It

follows that δ : PX → ∆ is a labeling of the boxes in PX by simple roots. Examples
of this labeling are provided in Table 1.

The element u/v depends only on the skew shape I(u)∖ I(v). If I(u)∖ I(v) =
{α1, α2, . . . , αℓ} is any increasing ordering, then u/v = sδ(αℓ) · · · sδ(α2)sδ(α1) is a
reduced expression for u/v. In the special case v = 1, every reduced expression
for u can be obtained in this way. We will say that u/v is a rook strip if this
element of W is a product of commuting simple reflections. Equivalently, no pair
of roots in I(u)∖ I(v) are comparable by the partial order ≤ on PX . We call u/v a
short rook strip if it is a product of commuting reflections defined by short simple
roots. Notice that if the root system Φ is simply laced, then all roots are long by
convention, so u/v is a short rook strip if and only if u = v.

The following result holds for any (reduced and crystallographic) root system Φ.

Lemma 4.1. Let Φ be a root system with associated Weyl group W , let w ∈ W ,
and let α′ ⋖ α be a covering relation in I(w). Then α− α′ ∈ Φ+.

Proof. We can write α = α′ + β1 + · · ·+ βk, with βi ∈ Φ+ and βi + βj /∈ Φ for all i
and j. By [GP20, Thm. 2.4] we may assume α′+β1+ · · ·+βk−1 ∈ Φ+, and [GP20,
Thm. 2.5] implies that α′ + βk ∈ Φ+. Using that w.α′ and w.α are negative roots,
it follows that α′ + β1 + · · ·+ βk−1 or α′ + βk belongs to I(w). In both cases, since
α′ ⋖ α is a covering relation, we deduce that k = 1. □
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Table 1. Partially ordered sets PX of cominuscule varieties with
I(z1) highlighted (see Definition 5.2). In each case the partial order
is given by α′ ≤ α if and only if α′ is weakly north-west of α.

Grassmannian Gr(3, 7) of type A Max. orthog. Grassmannian OG(6, 12)

1 2 3 4 5 6

3 4 5 6
2 3 4 5
1 2 3 4

1 2 3 4 5

6

6 4 3 2 1
5 4 3 2

6 4 3
5 4

6

Lagrangian Grassmannian LG(6, 12) Cayley Plane E6/P6

1 2 3 4 5 6

6 5 4 3 2 1
6 5 4 3 2

6 5 4 3
6 5 4

6 5
6

1

2

3 4 5 6

6 5 4 2
3 4 5 6
1 3 4 5

2 4 3 1

Even quadric Q10 ⊂ P11 Freudenthal variety E7/P7

1 2 3 4 5

6

1 2 3 4 5
6 4 3 2 1

Odd quadric Q11 ⊂ P12

1 2 3 4 5 6

1 2 3 4 5 6 5 4 3 2 1

1

2

3 4 5 6 7

7 6 5 4 3 1
2 4 3

5 4 2
6 5 4 3 1
7 6 5 4 3

2 4
5
6
7

Lemma 4.2. Let u, v ∈WX satisfy v ≤ u.

(a) The action of v defines an order isomorphism v : I(u)∖ I(v) → I(u/v).

(b) Let α ∈ Φ. Then α is a minimal box of PX ∖ I(v) if and only if α ≥ γ and
v.α ∈ ∆. In this case we have v.α = δ(α).

Proof. We have v.(I(u) ∖ I(v)) ⊂ I(u/v) by definition of the inversion sets, and
both sets have the same cardinality. The map α 7→ v.α is order-preserving on
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all of PX since v.β > 0 for all β ∈ ∆ ∖ {γ}. To prove that v−1 : I(u/v) →
I(u) ∖ I(v) also preserves the order, let α′ ⋖ α be a covering relation in I(u/v).
Then v−1.α−v−1.α′ = v−1(α−α′) ∈ Φ is a root by Lemma 4.1, so v−1.α′ and v−1.α
are comparable elements in PX . Since v is order-preserving and α′ < α, we deduce
that v−1.α′ < v−1.α. This proves (a). If α is a minimal box of PX ∖ I(v), then
λ(α) ⊂ I(v), and any box α′ ∈ I(v)∖ λ(α) is incomparable to α, hence sα′ .α = α
by [BS16, Lemma 2.2]. This implies that v.α = wλ(α).α = δ(α) ∈ ∆. On the
other hand, the conditions α ≥ γ and v.α ∈ ∆ imply that α ∈ PX ∖ I(v). Let
α′ ∈ PX ∖ I(v) be any minimal box such that α′ ≤ α. Since 0 < v.α′ ≤ v.α ∈ ∆,
we must have α′ = α, which proves (b). □

Remark 4.3. (a) If α1 ̸= α2 ∈ PX are incomparable boxes, then Lemma 4.2(b)
implies that δ(α1) = wλ.α1 ̸= wλ.α2 = δ(α2) where λ = λ(α1)∪λ(α2). In addition,
we have (δ(α1), δ(α2)) = (α1, α2) = 0 by [BS16, Lemma 2.2].

(b) If α1 ⋖ α2 is a covering relation in PX , then (α1, α2) > 0. In fact, since
α1 is a maximal box of λ(α2), we obtain (α1, α2) = (wλ(α2).α1, wλ(α2).α2) =
(−δ(α1), δ(α2)) ≥ 0. If (α1, α2) = 0, then sδ(α1) and sδ(α2) are commuting simple

reflections. Set λ = λ(α2) ∖ {α1}. Since sδ(α1)sδ(α2)wλ ∈ WX is a reduced prod-

uct, it follows that sδ(α2)wλ ∈ WX and λ ⊊ I(sδ(α2)wλ) ⊊ λ ∪ {α1, α2}. But then
I(sδ(α2)wλ) = λ ∪ {α1}, a contradiction.

Lemma 4.4. (a) The action w0,X : PX → PX is an order-reversing involution,
and δ(w0,X .α) = −w0.δ(α) is the Cartan involution of δ(α) for each α ∈ PX .
(b) The Poincaré dual element of u ∈WX is determined by I(u∨) = I(w0uw0,X) =
PX ∖ w0,X .I(u).

Proof. The action of w0,X is an order-reversing involution on PX since it does not
change the coefficient of γ, and w0,X .β < 0 for each β ∈ ∆∖ {γ}. For u ∈WX and
α ∈ Φ+ we deduce that w0uw0,X .α < 0 holds if and only if w0,X .α ∈ PX ∖ I(u),
which proves (b). Since w0,X .α is a maximal box of PX ∖ w0,X .λ(α), it follows
from Lemma 4.2(b) that δ(w0,X .α) = −w∨

λ(α).(w0,X .α) = −w0wλ(α).α = −w0.δ(α),

which completes the proof of (a). □

The Bruhat order on WX is a distributive lattice, with join and meet operations
defined by I(u∪v) = I(u)∪I(v) and I(u∩v) = I(u)∩I(v). Notice that (u∪v)/v =
u/(u ∩ v). It follows that u/(u ∩ v) and v/(u ∩ v) are commuting elements of W ,
as their product in either order is (u∪ v)/(u∩ v). We also have (u∩ v)∨ = u∨ ∪ v∨
and (u ∪ v)∨ = u∨ ∩ v∨.

Proposition 4.5. Let u, v ∈ WX . The Richardson variety Xu∩v
u is a semi-

transversal intersection of Xu and Xv in X.

Proof. Set z = v∨ = w0vw0,X and κ = u · w0,X · z−1. It follows from Theorem 2.4
that Xu ∩ w0.Xw0κz = X

κzw0,X
u is a semi-transversal intersection of Xu and Xv.

We must therefore show that, for all u, z ∈WX we have

(u · w0,X · z−1)zw0,X = u ∩ z∨ .

Set u′ = u ∩ z∨. Since z∨w0,Xz
−1 = w0 is a reduced product and u′ ≤L z∨, it

follows that u′ · w0,X · z−1 = u′w0,Xz
−1 is also a reduced product, so we obtain

(u′·w0,X ·z−1)zw0,X = u′ = u∩z∨. Let α ∈ I(u)∖I(z∨) and set β = δ(α). It suffices
to show that sβ · (u′w0,Xz

−1) = u′w0,Xz
−1. We may assume that sβu

′w0,X >
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u′w0,X , in which case sβu
′ ∈ WX . We then have I(sβu

′) = I(u′) ∪ {α′} for some
root α′ with δ(α′) = u′.α′ = β. Since sβu

′ ̸≤ z∨ we have α′ /∈ I(z∨). It follows
that (u′w0,Xz

−1)−1.β = zw0,X .α
′ = w0z

∨.α′ < 0, and hence sβ · (u′w0,Xz
−1) =

u′w0,Xz
−1, as required. □

4.2. Cohomology of negative line bundles on Richardson varieties. Let
KT (X) denote the T -equivariant K-theory ring of X, see e.g. [BCMP18a, §2.1]
and the references therein. Pullback along the structure morphism X → {point}
makes KT (X) an algebra over the ring KT (point) of virtual representations of T .
Let χ

X
: KT (X) → KT (point) be the pushforward along the structure morphism.

The Schubert classes in KT (X) are denoted by Ov = [OXv ] and Ou = [OXu
]. Let

J ⊂ OX be the ideal sheaf of the Schubert divisor Xsγ . Then J−1 is the ample
generator of Pic(X). In addition, J inherits a structure of T -equivariant line bundle
from OX . An equivalent definition is J = (G×P Cωγ )⊗C−ωγ , see [BCMP18a, §4.1].
Let Jv denote the restriction of J to the T -fixed point v.PX .

Given any integer p ∈ Z, we set p′ = p− 1
2 . The half-integers 1

2Z is then the set
of primed and unprimed integers.

Definition 4.6. Let S ⊂ PX be a skew shape. A decreasing primed tableau of
shape S is a labeling T : S → 1

2Z such that (i) α′ < α in S implies T (α′) > T (α),
and (ii) T (α) ∈ Z for all long boxes α ∈ S.

Given any labeling T̂ : PX → 1
2Z of PX , such that T̂ (α) ∈ Z for each long box

α ∈ PX , define the weight

λ(T̂ ) =
∑

α∈PX

T (α) (ωγ , α
∨) δ(α) .

Here ωγ denotes the fundamental weight corresponding to the cominuscule sim-

ple root γ. Notice that, if T̂ (α) is not an integer, then α is a short root, hence
(ωγ , α

∨) = 2.
Let u, v ∈ WX satisfy v ≤ u, let m ∈ Z, and let a ∈ 1

2Z. Given a decreasing

primed tableau T of shape I(u)∖ I(v), let T [m] : PX → 1
2Z denote the extension

of T that maps all boxes of I(v) to m and maps all boxes of PX ∖ I(u) to 0, see
Example 4.11. Using this notation, we define a representation of T by

Cu
v,[a,m) =

⊕
T

C−λ(T [m]) ,

where the sum is over all decreasing primed tableaux T of shape I(u)∖ I(v) with
labels in [a,m), i.e. a ≤ T (α) < m for all α ∈ I(u)∖ I(v).

Lemma 4.7. Let u, v ∈WX , m, p ∈ Z and a ∈ 1
2Z, and assume that v ≤ u, a ≤ m,

and p ≥ 0. Then

Cu
v,[a,m+p)

∼=
⊕

w∈WX : v≤w≤u

Cw
v,[0,p) ⊗C C

u
w,[a,m) .

Proof. Given a decreasing primed tableau T of shape I(u) ∖ I(v) with labels in
[a,m + p), let T ′′ be the tableau consisting of the boxes with labels smaller than
m, and let T ′ be the tableau obtained by subtracting m from all boxes with labels
greater than or equal to m. Then T ′ has shape I(w) ∖ I(v) and T ′′ has shape
I(u)∖ I(w) for a unique element w ∈ WX with v ≤ w ≤ u, T ′ has labels in [0, p),
T ′′ has labels in [a,m), and we have T [m + p] = T ′[p] + T ′′[m] with pointwise
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addition. The assumption a ≤ m ensures that the assignment T 7→ (T ′, T ′′) has a
well defined inverse map. The lemma follows from this. □

The following identities generalize Theorems 3.6 and 3.7 from [BCMP18a]. A
more general Chevalley formula that holds in theK-theory of arbitrary flag varieties
was proved in [LP07, Thm. 13.1].

Proposition 4.8. (a) For v ∈WX and m ≥ 0 we have in KT (X) that

[J ]m · Ov =
∑

u∈WX : v≤u

(−1)ℓ(u/v) [Cu
v,[0,m)]O

u .

(b) For v ≤ u in WX and m ≥ 1 we have in KT (point) that

χ(Xv
u, J

m) = (−1)ℓ(u/v) [Cu
v,[ 12 ,m)] .

Proof. Part (a) is clear for m = 0 and is equivalent to [BCMP18a, Thm. 3.6] for
m = 1. For m ≥ 2 it follows by induction using Lemma 4.7. Let Iw ∈ KT (X)
be dual to Ow, i.e. χX

(Ou · Iw) = δu,w for u ∈ WX . By [BCMP18a, Lemma 3.5]

we have Iw =
∑

u(−1)ℓ(u/w)Ou, the sum over all u ≥ w for which u/w is a rook
strip. Using that Cu

v,[0,m) =
⊕

w C
w
v,[ 12 ,m)

, with the sum over all w ∈WX for which

v ≤ w ≤ u and u/w is a rook strip, it follows that part (a) for m ≥ 1 is equivalent
to the identity

[J ]m · Ov =
∑

w∈WX :v≤w

(−1)ℓ(w/v) [Cw
v,[ 12 ,m)] I

w .

Part (b) follows by multiplying both sides by Ou and applying χ
X
. □

Theorem 4.9. Let u, v ∈WX satisfy v ≤ u and let m ≥ 1. Then Hi(Xv
u, J

m) = 0
for all 0 ≤ i < dim(Xv

u) = ℓ(u/v). Moreover, we have Hℓ(u/v)(Xv
u, J

m) ∼= Cu
v,[ 12 ,m)

as representations of T .

Proof. To prove the vanishing of cohomology groups, we may assume that X =
G/PX is defined over an algebraically closed field of positive characteristic [BK05,
§1.6]. Then [BK05, Thm. 2.3.1] together with [BK05, Lemma 1.1.8] applied to the
projection G/B → X shows that Xv

u is Frobenius split. Since J−1 is ample and
Xv

u is Cohen-Macaulay and irreducible, the Kodaira vanishing theorem for split
varieties [BK05, Thm. 1.2.9] implies that Hi(Xv

u, J
m) = 0 for i < dim(Xv

u). We
therefore have χ(Xv

u, J
m) = (−1)ℓ(u/v)[Hℓ(u/v)(Xv

u, J
m)], so the result follows from

Proposition 4.8. □

Remark 4.10. Using standard monomial theory, it is possible to compute the co-
homology groups of the restriction of any ample line bundle on G/P to a Richardson
variety; see [BL03, Thm. 3] or [LL03, Thm. 20]. However, we have not seen the
computation of the (top) cohomology of negative line bundles in the literature, and
this cannot be deduced using Serre duality since the canonical sheaf of a Richardson
variety is not a line bundle in general.

Example 4.11. Let X = LG(3, 6) = C3/P3 be the Lagrangian Grassmannian of
maximal isotropic subspaces in a complex symplectic vector space of dimension 6.
Let ∆ = {β1, β2, β3} be the set of simple roots, where γ = β3 is the long root. The
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labeling δ : PX → ∆ is given by the following diagram, where the upper-left box
represents γ and the bottom-right box represents the highest root of Φ.

β3 β2 β1
β3 β2

β3

Set v = s2s3 and u = s2s3s1s2s3. Then we have

H3(Xv
u, J

⊗2) ∼= Cu
v,[ 12 ,2)

= C−2β1−5β2−3β3 ⊕ C−3β1−5β2−3β3 .

The extensions T [2] of the decreasing primed tableaux T corresponding to the
summands are displayed below. The coefficient of the simple root βi in the weight
obtained from of each tableau is the (negative) sum of the half-integers in the i-th
diagonal, multiplied by 2 if βi is short.

2 2 1
1 1′

0

2 2 2′

1 1′

0

An algebraic variety D is called cohomologically trivial if H0(D,OD) = C and
Hi(D,OD) = 0 for i > 0.

Corollary 4.12. Let D ⊂ Xv
u be an effective Cartier divisor of class [D] =

m[Xsγ ]|Xv
u
. Then D is cohomologically trivial if and only if there are no decreasing

primed tableaux of shape I(u)∖ I(v) with labels in [ 12 ,m) ∩ 1
2Z.

Proof. The Richardson variety Xv
u is cohomologically trivial, as it is rational with

rational singularities. The long exact sequence of cohomology groups derived from
0 → Jm|Xv

u
→ OXv

u
→ OD → 0 then shows that D is cohomologically trivial if and

only if Hi(Xv
u, J

m) = 0 for all i. The result therefore follows from Theorem 4.9. □

Example 4.13. Let Xv
u be a Richardson variety of positive dimension and let

D ⊂ Xv
u be a Cartier divisor. If [D] = [Xsγ ]|Xu

v
, then D is cohomologically trivial

if and only if u/v is not a short rook strip. In particular, D is cohomologically trivial
ifX is minuscule. If [D] = 2[Xsγ ]|Xv

u
andX is minuscule, thenD is cohomologically

trivial if and only if u/v is not a rook strip.

If X = X1 × · · · ×Xk is a product of cominuscule flag varieties, then the Schu-
bert varieties in X are given by sequences (λ1, . . . , λk) of order ideals λi ⊂ PXi .
Such a sequence can be identified with an order ideal in the disjoint union PX =
PX1

∐
· · ·

∐
PXk

. We will consider a point as a product of (zero) cominuscule vari-
eties with associated set P{point} = ∅. The results in this section hold for products
of cominuscule varieties with minor modifications. In Lemma 4.2(b), the condition
α ≥ γ can be replaced with α ∈ PX . In the results of Section 4.2, J should be the
ideal sheaf of the union of the Schubert divisors Xsγi for 1 ≤ i ≤ k.

5. The quantum to classical principle

5.1. Introduction. The quantum to classical principle allows Gromov-Witten in-
variants of certain flag varieties to be computed as classical intersection numbers on
related flag varieties. The goal in this section is to derive the quantum-to-classical
theorem with as little type-by-type checking as possible. In addition we will develop
the associated combinatorics and geometry in order to support the main results of
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this paper. We will restrict our discussion to Gromov-Witten invariants of cominus-
cule flag varieties of small degrees. Here a degree d is considered small if qd occurs
in a product of two Schubert classes in the small quantum cohomology ring QH(X).
Equivalently, d is less than or equal to the diameter dX(2) defined in Section 5.2.
Our main references include [Buc03, BKT03, CMP08, BKT09, BM11, CP11].

The first version of the quantum-to-classical theorem applied to the enumer-
ative (cohomological) Gromov-Witten invariants of classical Grassmannians. Let
X = Gr(m,n) be the Grassmannians of m-dimensional vector subspaces of Cn. A
rational curve C ⊂ X has a kernel and a span defined by [Buc03]

Ker(C) =
⋂
V ∈C

V ; Span(C) =
∑
V ∈C

V .

If C is a general curve of small degree d, then one can show that dimKer(C) = m−d
and dimSpan(C) = m + d, which means that (Ker(C),Span(C)) is a point in the
two-step flag variety Yd = Fl(m − d,m + d;n). Given three Schubert varieties
Ω1,Ω2,Ω3 ⊂ X in general position, the Gromov-Witten invariant ⟨[Ω1], [Ω2], [Ω3]⟩d
is the number of rational curves of degree d meeting these Schubert varieties (as-
suming that this number is finite). The quantum-to-classical theorem states that
the map C 7→ (Ker(C),Span(C)) gives a bijection between the counted curves and
the intersection of three Schubert varieties in Yd. As a consequence, the Gromov-
Witten invariant ⟨[Ω1], [Ω2], [Ω3]⟩d is equal to a classical Schubert structure constant
of H∗(Yd) [BKT03].

Subsequent work [CMP08] demonstrated that the quantum-to-classical theorem
can be understood in a type-independent way if the points (K,S) of Yd are replaced
with the corresponding subvarieties of X defined by Gr(d, S/K) = {V ∈ X | K ⊂
V ⊂ S}. Indeed, these subvarieties of X are non-singular Schubert varieties, and
also cominuscule flag varieties themselves. They can also be described as unions of
rational curves of degree d that pass through two given points in X. Such Schubert
varieties will be called primitive cominuscule varieties in this paper, see Section 5.4.

The quantum-to-classical theorem was extended to non-enumerative (equivariant
and K-theoretic) Gromov-Witten invariants in [BM11] by showing that the moduli
space M0,3(X, d) of stable maps to X is birational to the space {(K,S, V1, V2, V3)}
of kernel-span pairs (K,S) ∈ Yd together with 3 additional points Vi ∈ Gr(d, S/K).
Indeed, given a general 5-tuple of this type, there exists a unique rational curve
C ⊂ Gr(d, S/K) ⊂ X of degree d which contains the three points V1, V2, V3.

While we only discuss Gromov-Witten invariants of small degrees d ≤ dX(2), the
definition of the quantum K-theory ring QK(X) also depends on Gromov-Witten
invariants of higher degrees. Such Gromov-Witten invariants can be computed with
similar methods, granted that certain Gromov-Witten varieties of large degrees are
rational; this was proved in [BM11] for Grassmannians of type A and in [CP11] for
cominuscule varieties of other Lie types (see also [BCMP13, Remark 3.4]).

5.2. Curve neighborhoods. LetX = G/PX be a cominuscule flag variety defined
over C. For any non-negative integer d ≥ 0 we let Md = M0,3(X, d) denote the
Kontsevich moduli space of 3-pointed stable maps to X of degree d and genus
zero [FP97]. The evaluation map evi : Md → X, defined for 1 ≤ i ≤ 3, sends
a stable map to the image of the i-th marked point in its domain. Given classes
Ω1,Ω2,Ω3 ∈ H∗(X;Z), the corresponding cohomological Gromov-Witten invariant
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of X of degree d is defined by

⟨Ω1,Ω2,Ω3⟩d =

∫
Md

ev∗1(Ω1) · ev∗2(Ω2) · ev∗3(Ω3) .

More generally, three K-theory classes F1,F2,F3 ∈ KT (X) define the K-theoretic
Gromov-Witten invariant

Id(F1,F2,F3) = χ
Md

(ev∗1(F1) · ev∗2(F2) · ev∗3(F3)) .

Given subvarieties Ω1,Ω2 ⊂ X, let Md(Ω1,Ω2) = ev−1
1 (Ω1) ∩ ev−1

2 (Ω2) denote
the Gromov-Witten variety of stable maps that send the first two marked points to
the given subvarieties. Let Γd(Ω1,Ω2) = ev3(Md(Ω1,Ω2)) be the union of all stable
curves of degree d in X that connect Ω1 and Ω2. We also consider the special cases
Md(Ω1) = ev−1

1 (Ω1) and Γd(Ω1) = ev3(Md(Ω1)).
Define the degree distance dist(x, y) between two points x, y ∈ X to be the

smallest degree of a rational curve C ⊂ X with x, y ∈ C. This is the minimal
degree d for which Γd(x, y) ̸= ∅. We need the following key result from [CMP08].
A type-independent proof based on properties satisfied by all flag manifolds was
given in [BM15, §5.4].

Theorem 5.1. Let u ∈WX . Then dist(1.PX , u.PX) is the number of occurrences
of sγ in any reduced expression for u.

Equivalently, dist(1.PX , u.PX) is the number of boxes α ∈ I(u) with label δ(α) =
γ. Define the diameter of X to be the integer dX(2) = dist(1.PX , w0.PX). The
subset of boxes in PX labeled by γ is totally ordered by Remark 4.3(a). We denote
these boxes by

δ−1(γ) = {α̃1 < α̃2 < · · · < α̃dX(2)} .

Definition 5.2. For 0 ≤ d ≤ dX(2) we define elements κd and zd in WX by

I(κd) = {α ∈ PX | α ≤ α̃d} and I(zd) = {α ∈ PX | α ̸≥ α̃d+1} .
We set κ0 = z0 = 1 and zdX(2) = wX

0 .

Example 5.3. Let X = Gr(4, 9) be the Grassmannian of 4-planes in C9. Then the
elements κ2 and z2 are given by the following shapes:

I(κ2) = and I(z2) = .

The shapes I(z1) for a representative selection of cominuscule flag varieties are
displayed in Table 1.

Lemma 5.4. We have κ−1
d = κd, (zdw0,X)−1 = zdw0,X , and z∨d zd = wX

0 . In
addition, Γd(1.PX) = Xzd .

Proof. It follows from Theorem 5.1 that κd and zdw0,X are the unique mini-
mal and maximal elements of the set {w ∈ W | dist(1.PX , w.PX) = d}. Since
dist(1.PX , w.PX) = dist(1.PX , w

−1.PX) for any element w ∈ W , we deduce that
κd and zdw0,X are self-inverse. We then obtain

z∨d zd = w0zdw0,Xzd = w0(zdw0,X)−1zd = w0w0,X = wX
0 .

The identity Γd(1.PX) = Xzd follows from Theorem 5.1 since Γd(1.PX) is a Schubert
variety by [BCMP13, Cor. 3.3(a)]. □



POSITIVITY OF MINUSCULE QUANTUM K-THEORY 25

Remark 5.5. We have WXκdWX = {u ∈W | dist(1.PX , u.PX) = d}.

Lemma 5.6. The orbits of the diagonal action of G on X×X are given by
◦
Zd,2 =

{(x1, x2) ∈ X ×X | dist(x1, x2) = d}, for 0 ≤ d ≤ dX(2).

Proof. Each set
◦
Zd,2 is stable under the action of G. Given (x1, x2) ∈

◦
Zd,2, we can

choose g ∈ G such that g.x1 = 1.PX , and then choose b ∈ B such that bg.x2 = u.PX

is a T -fixed point, with u ∈WX . Since dist(1.PX , u.PX) = d, Theorem 5.1 implies
that u/κd ∈ WX . The lemma follows from this because (u/κd)

−1bg.(x1, x2) =
(1.PX , κd.PX). □

Lemma 5.7. We have (α, γ∨) = 1 for α ∈ I(z1) ∖ {γ}, and (α, γ∨) = 0 for
α ∈ PX ∖ I(z1).

Proof. Notice that (α, γ∨) ≥ 0 for every α ∈ PX , since otherwise the coefficient of
γ in the root sγ .α = α − (α, γ∨)γ is at least 2. In addition, if α′, α ∈ PX satisfy
α′ ≤ α, then (α′, γ∨) ≥ (α, γ∨), as α − α′ is a non-negative linear combination
of ∆ ∖ {γ}. Finally, since γ is a long root, we have (α, γ∨) ≤ 1 for any root
α ̸= γ. It is therefore enough to show that (α, γ∨) ̸= 0 for α ∈ I(z1) and that
(α̃2, γ

∨) = 0. If α ∈ I(z1) ∪ {α̃2} is any root with α ̸= γ, then we have δ(α) =
ysγ .α = y.(α − (α, γ∨)γ) ∈ ∆ for some y ∈ WX . Since the action of y does not
change the coefficient of γ, we deduce that (α, γ∨) = 0 if and only if δ(α) = γ, as
required. □

Corollary 5.8. We have
∫
Xsγ

c1(TX) = ℓ(z1) + 1.

Proof. By [FW04, Lemma 3.5] we have
∫
Xsγ

c1(TX) =
∑

α∈PX
(α, γ∨), so the corol-

lary follows from Lemma 5.7. □

Proposition 5.9. (a) The map zd : PX ∖ I(zd) → I(z∨d ) defined by α 7→ zd.α is
an order isomorphism, and δ(zd.α) = δ(α) for each α ∈ PX ∖ I(zd).

(b) The map −κd : I(κd) → I(κd) defined by α 7→ −κd.α is an order-reversing
involution, and δ(−κd.α) = δ(α) for each α ∈ I(κd).

Proof. Since z∨d = wX
0 /zd by Lemma 5.4, it follows from Lemma 4.2(a) that zd :

PX ∖ I(zd) → I(z∨d ) is an order-preserving bijection. Since z−1
d = w0,Xzdw0,X ,

the inverse bijection is also order-preserving. Let α ∈ PX ∖ I(zd) and set λ =
λ(α) ∪ I(zd). Since α is a minimal box of PX ∖ λ, we have δ(α) = wλ.α. Write
λ = I(zd)

∐
{α1, α2, . . . , αℓ}, where the roots are listed in increasing order. Then

wλ = zdsα1
sα2

· · · sαℓ
. Using that zd is an order isomorphism, we obtain λ(zd.α) =

{zd.α1, zd.α2, . . . , zd.αℓ}, with the roots listed in increasing order, hence

wλ(zd.α)zd = szd.α1
szd.α2

· · · szd.αℓ
zd = zdsα1

sα2
· · · sαℓ

z−1
d zd = wλ ,

and δ(zd.α) = wλ(zd.α).(zd.α) = wλ.α = δ(α). This proves part (a).

For α ∈ I(κd) we have −κd.α ∈ Φ+ and κd.(−κd.α) = −α < 0, hence −κd.α ∈
I(κd). The map −κd : I(κd) → I(κd) is order-reversing because κd.β > 0 for
β ∈ ∆∖ {γ}. Given any element u ≤ κd we have I(uκd) = −κd.(I(κd)∖ I(u)); in
fact, the containment ⊇ follows from the definition of inversion sets, and both sides
have the same cardinality because (uκd)

−1 = κd/u. Now choose u ≤ κd such that
α is a minimal box of I(κd) ∖ I(u). Then −κd.α is a maximal box of I(uκd), so
it follows from Lemma 4.2(b) that δ(−κd.α) = −uκd.(−κd.α) = u.α = δ(α). This
proves part (b). □
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Proposition 5.10. The element z1sγ = z1/κ1 permutes PX and satisfies
w0,X(z1sγ)w0,X = (z1sγ)

−1. The action of z1sγ on PX has the following properties.

(a) z1sγ : PX ∖ I(z1) → I(z∨1 ) is an order isomorphism, and δ(z1sγ .α) = δ(α) for
all α ∈ PX ∖ I(z1).

(b) z1sγ : I(z1)∖ {γ} → w0,X .(I(z1)∖ {γ}) is an order isomorphism.

(c) We have z1sγ .α̃d = α̃d−1 for 2 ≤ d ≤ dX(2), and z1sγ .γ = w0,X .γ is the highest
root of Φ+.

Proof. Since z1sγ ∈WX we have z1sγ .PX = PX , and Lemma 5.7 implies

z1sγ .α =


z1.α if α ∈ PX ∖ I(z1);

z1.α− z1.γ if α ∈ I(z1)∖ {γ};
−z1.γ if α = γ

for any α ∈ PX . Part (a) therefore follows from Proposition 5.9(a). In particular,
we have z1sγ .α̃d = α̃d−1 for d ≥ 2. Since z1sγ .α < z1sγ .γ for every α ∈ I(z1)∖{γ},
we deduce that z1sγ .γ = w0,X .γ is the maximal box of PX , which proves part

(c). Using Lemma 5.4 we also obtain z1sγw0,X = z1w0,Xsw0,X .γ = w0,Xz
−1
1 sz1.γ =

w0,X(z1sγ)
−1. Finally, z1sγ is order preserving on I(z1) ∖ {γ} because z1.β > 0

for each β ∈ ∆∖ {γ}, and the identity (z1sγ)
−1 = w0,X(z1sγ)w0,X shows that the

inverse map is also order preserving. This proves part (b). □

Corollary 5.11. We have (z1sγ)
d.α = zd.α for each α ∈ PX ∖ I(zd).

Proof. Noting that PX ∖ I(zd) = {α ∈ PX | α̃d+1 ≤ α ≤ w0,X .α̃1} and I(z∨d ) =
{α ∈ PX | α̃1 ≤ α ≤ w0,X .α̃d+1}, it follows from Proposition 5.10 that (z1sγ)

d :
PX ∖ I(zd) → I(z∨d ) is an order isomorphism that preserves the labeling δ. The
result therefore follows from Proposition 5.9(a) and Remark 4.3(a). □

Remark 5.12. We will show in Corollary 7.19 that zd/κd = (z1/κ1)
d = (z1sγ)

d.
Together with Corollary 5.11, this implies that κd.α = α for all α ∈ PX ∖ I(zd).
Proposition 6.2 implies that zd/κd : I(zd) ∖ I(κd) → I(κ∨d ) ∖ I(z∨d ) is an order
isomorphism, which generalizes Proposition 5.10(b). Using Proposition 5.9(b), it
follows that zd/κd : I(κd) → w0,X .I(κd) is an order isomorphism. These remarks
will not be used in the following.

For 1 ≤ d ≤ dX(2) we define Sd = (I(zd)∖ I(zd−1)) ∪ (I(κd)∖ I(κd−1)).

Proposition 5.13. We have Sd = {α ∈ PX | (α, α̃d) > 0} for 1 ≤ d ≤ dX(2), and
z1sγ .Sd = Sd−1 for 2 ≤ d ≤ dX(2).

Proof. The second identity follows from the first identity together with Proposi-
tion 5.10(c). We must therefore show that (α, α̃d) > 0 if and only if α ∈ Sd, for any
α ∈ PX . If α and α̃d are not comparable in the partial order on PX , then (α, α̃d) = 0
and α /∈ Sd. If α ≥ α̃d, then Proposition 5.9(a) shows that zd−1.α̃d = γ, and also
that α ∈ Sd if and only if zd−1.α ∈ I(z1), so the claim follows from Lemma 5.7,
noting that (α, α̃d) = (zd−1.α, γ). Finally, if α ≤ α̃d, then Proposition 5.9(b) shows
that −κd.α̃d = γ, and also that α ∈ Sd if and only if −κd.α ∈ I(z1), so the claim
again follows from Lemma 5.7, this time noting that (α, α̃d) = (−κd.α, γ). □

Corollary 5.14. Let 0 ≤ d ≤ dX(2).

(a) We have dimMd = dim(X) + ℓ(zd) + ℓ(κd).

(b) The variety Md(1.PX , κd.PX) is irreducible of dimension ℓ(κd).
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Proof. Since ℓ(zd) + ℓ(κd)− ℓ(zd−1)− ℓ(κd−1) = #Sd + 1 for d ≥ 1, it follows from
Proposition 5.13 and Corollary 5.8 that ℓ(zd) + ℓ(κd) = d

∫
Xγ

c1(TX). This proves

part (a). Since ev1 :Md → X is a locally trivial fibration, it follows that Md(1.PX)
is irreducible of dimension ℓ(zd) + ℓ(κd). Part (b) follows from this, using that
ev2 : Md(1.PX) → Xzd is a locally trivial fibration over a dense open subset of
Xzd = PXκd.PX that contains κd.PX . □

5.3. Incidence varieties. Given any flag variety Y = G/PY , the incidence variety
of X and Y is the flag variety Z = G/PZ defined by PZ = PX ∩PY . Let p : Z → X
and q : Z → Y be the projections and set F = p−1(1.PX) = PX/PZ and Γ =
q−1(1.PY ) = PY /PZ . For example, if X = Gr(m,n) and Y = Fl(m− d,m+ d;n),
then Z = Fl(m−d,m,m+d;n), Γ = Gr(d, 2d), and F = Gr(m−d,m)×Gr(d, n−m).
For ω ∈ Y we write Γω = p(q−1(ω)) ⊂ X. We identify Z with the subvariety
{(ω, x) ∈ Y × X | x ∈ Γω} of Y × X. The restricted maps p : Γ → p(Γ) and
q : F → q(F ) are isomorphisms, hence p(Γ) ⊂ X and q(F ) ⊂ Y are non-singular
Schubert varieties. More precisely we have F = ZwZ

0,X
and q(F ) = YwZ

0,X
, and also

Γ = Zκ and p(Γ) = Xκ, where κ = wZ
0,Y . In our applications of this construction

we have κ = κd for some degree d, see Corollary 5.20 (but κ is not related to
Theorem 2.4).

If γ /∈ ∆Y , then PY ⊂ PX and Γ is a point. Assume that γ ∈ ∆Y . Since ∆Y ∖
∆Z = {γ} consists of a cominuscule simple root, it follows that Γ is a cominuscule
flag variety. The corresponding partially ordered set is given by PΓ = I(κ) =
Φ+

Y ∖ ΦZ = PX ∩ ΦY . The labeling PΓ → ∆Y is the restriction of the labeling
δ : PX → ∆, and a curve C ⊂ Γ has the same degree in Γ as in X. The variety
Γ = PY /(PY ∩ PX) depends only on the connected component of (the Dynkin
diagram of) ∆Y that contains γ.

If S ⊂ ∆ is any subset that is connected in the Dynkin diagram of Φ, then the
sum of all simple roots in S is a root in Φ. Given β ∈ ∆, let [γ, β] denote the
smallest connected subset of ∆ that contains γ and β. A simple root β ∈ ∆∖∆Y

is an essential excluded root of Y if [γ, β] ⊂ ∆Y ∪ {β}, i.e. β is connected to the
component of γ in ∆Y . The group PY is contained in the stabilizer of Xκ in G, and
is equal to this stabilizer if and only if all roots in ∆ ∖∆Y are essential excluded
roots of Y .

Remark 5.15. Assume that PY is the stabilizer of Xκ in G. Then ∆Y = {β ∈
∆ | (κ.ωγ , β

∨) ≤ 0}. In fact, if β ∈ ∆ and (κ.ωγ , β
∨) > 0, then α = κ−1.β must

be a minimal box of PX ∖ I(κ) by Lemma 4.2(b), which implies that β ∈ ∆∖∆Y .
On the other hand, if β ∈ ∆ ∖ ∆Y , then let α be the sum of the simple roots
in the interval [γ, β]. Then α is a minimal box of PX ∖ I(κ), (ωγ , α

∨) > 0, and
Lemma 4.2(b) implies that β = κ.α.

5.4. Primitive cominuscule varieties. The cominuscule flag variety X will be
called primitive if the excluded cominuscule simple root γ is invariant under the
Cartan involution, that is, γ = −w0.γ. The list of all primitive cominuscule varieties
is contained in Table 2.

Proposition 5.16. Let X be a cominuscule flag variety of diameter d = dX(2),
and let ρ ∈ Φ+ be the highest root. The following conditions are equivalent and
hold if and only if X is primitive. (1) γ = −w0.γ. (2) δ(ρ) = γ. (3) κd = zd. (4)
(wX

0 )−1 = wX
0 . (5) dim(Md) = 3 dim(X).
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Table 2. Primitive cominuscule varieties.

X dX(2)

Gr(d, 2d) d
LG(d, 2d) d
OG(2d, 4d) d

QN 2
E7/P7 3

Proof. Condition (1) is our definition of primitive. Lemma 4.4 shows that δ(ρ) =
δ(w0,X .γ) = −w0.δ(γ) = −w0.γ, so (1) is equivalent to (2). The implication (2) ⇒
(3) is clear from the definitions, (3)⇒ (4) holds because κ−1

d = κd and zd = wX
0 , and

(4) ⇒ (2) holds because (4) implies that (wX
0 )−1 ∈ WX . Finally, (5) is equivalent

to (3) by Corollary 5.14(a). □

The following identity is a consequence of the structure theorems for quantum co-
homology proved in [Ber97, BKT03, KT03, KT04, CMP08]. It can also be checked
by constructing the unique rational curve through three general points in each case.
We sketch how this is done in the proof.

Theorem 5.17. Let X be a primitive cominuscule variety of diameter d = dX(2).
Then ⟨point,point,point⟩d = 1.

Proof. Assume first that V, V ′, V ′′ ⊂ C2d are three general points in the primitive
Grassmannian Gr(d, 2d) of type A. Choose any basis {v1, . . . , vd} of V , and write
vi = v′i + v′′i for each i, with v′i ∈ V ′ and v′′i ∈ V ′′. Then the only rational curve
of degree d through V , V ′, V ′′ is C = {⟨sv′1 + tv′′1 , . . . , sv

′
d + tv′′d ⟩ | (s : t) ∈ P1},

see [BKT03, Prop. 1] for details. The same construction works for the Lagrangian
Grassmannian LG(d, 2d) and the maximal orthogonal Grassmannian OG(2d, 4d),
see [BKT03, Prop. 2 and Prop. 4]. If V, V ′, V ′′ ⊂ CN+2 are general points in the
quadric QN = OG(1, N+2), then E = V ⊕V ′⊕V ′′ is an orthogonal vector space of
dimension 3, and the unique curve of degree 2 through V , V ′, V ′′ is C = P(E)∩QN .
A similar construction of the unique cubic curve through three general points of
the Freudenthal variety E7/P7 can be found in [CMP08, Lemma 5]. □

Lemma 5.18. Let X be a primitive cominuscule variety. For 0 ≤ d ≤ dX(2) we
have κ∨d = zdX(2)−d.

Proof. This follows from Lemma 4.4, noting that w0,X .α̃d = α̃dX(2)−d+1. □

In the following we will consider a single point to be a primitive cominuscule flag
variety of diameter zero.

Proposition 5.19. Let X be any cominuscule variety and 0 ≤ d ≤ dX(2). There
exists a unique largest parabolic subgroup PYd

⊂ G containing B such that Γd =
PYd

/(PX ∩ PYd
) is a primitive cominuscule variety of diameter d. In addition,

Fd = PX/(PX ∩ PYd
) is a product of cominuscule varieties.

Proof. This must be checked from the classification of cominuscule flag varieties,
but only the associated Dynkin diagrams need to be considered. For d = 0 we
have Y0 = X and Γ0 = F0 = {point}. If X is a primitive cominuscule variety and
d = dX(2), then Yd = Fd = {point} and Γd = X. The choice of PYd

in all other
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cases is indicated in Table 3, where the roots of ∆∖∆Yd
are colored gray and γ is

colored black. □

Let X be a cominuscule variety. For 0 ≤ d ≤ dX(2) we define Yd = G/PYd

by the parabolic subgroup of Proposition 5.19, and we let Zd = G/PZd
be the

incidence variety defined by PZd
= PYd

∩ PX . Let pd : Zd → X and qd : Zd → Yd
denote the projections, with fibers Fd = PX/PZd

and Γd = PYd
/PZd

. For any point
ω ∈ Yd we will use the notation Γω = pdq

−1
d (ω) ⊂ X. We identify Zd with its

image by the map qd × pd, that is Zd = {(ω, x) ∈ Yd ×X | x ∈ Γω}. We will also
frequently identify Γd with pd(Γd) = Γ1.PY

. Since PYd
is the stabilizer of Γ1.Yd

by
the maximality condition of Proposition 5.19, the following result shows that the
assignment ω 7→ Γω is a bijection from Yd to the set of all translates of Xκd

in X.
Recall that Γd(x, y) is the union of all stable curves of degree d through x and y,

and
◦
Zd,2 = {(x, y) ∈ X ×X | dist(x, y) = d}.

Corollary 5.20. (a) We have Xκd
= Γd = Γd(1.PX , κd.PX).

(b) Let x, y ∈ X. We have dist(x, y) ≤ d if and only if x, y ∈ Γω for some ω ∈ Yd.
The element ω is unique if dist(x, y) = d.

(c) The function φ :
◦
Zd,2 → Yd defined by Γφ(x,y) = Γd(x, y) is a morphism of

varieties.

Proof. Since Γd is a primitive cominuscule variety of diameter d, it follows that α̃d is
the largest root in PΓd

, hence PΓd
= I(κd) and Γd = Xκd

. Corollary 5.14(b) implies
that Γd(1.PX , κd.PX) = ev3(Md(1.PX , κd.PX)) is an irreducible subvariety of X of
dimension at most ℓ(κd), and Theorem 5.17 shows that Xκd

⊂ Γd(1.PX , κd.PX).
This proves part (a). For part (b) we may assume that x = 1.PX and y = κd′ .PX

by Lemma 5.6, where d′ = dist(x, y). If dist(x, y) ≤ d, then x, y ∈ Γ1.PYd
by part

(a). On the other hand, since the diameter of Γω is d for each ω ∈ Yd, we have
dist(x, y) ≤ d whenever x, y ∈ Γω. Finally, if x, y ∈ Γω and dist(x, y) = d, then The-
orem 5.17 applied to Γω shows that Γω ⊂ Γd(x, y) = Γ1.PYd

, hence ω = 1.PYd
. Part

(b) follows from this. Choose splittings s1 :
◦
X1 → B− and s2 :

◦
Xzd → B so that x =

s1(x).PX for all x ∈
◦
X1, and y = s2(y)zd.PX for all y ∈

◦
Xzd . For all points (x, y) in

a dense open subset of
◦
Zd,2 we have (x, y) = s1(x)s2(s1(x)

−1.y)zdκd.(1.PX , κd.PX),
so φ is defined by φ(x, y) = s1(x)s2(s1(x)

−1.y)zdκd.PYd
on this subset. This proves

part (c). □

5.5. A blow-up of the Kontsevich moduli space. Let 0 ≤ d ≤ dX(2). The map
qd : Zd → Yd is a locally trivial fibration with fibers Γω

∼= Xκd
, ω ∈ Yd. Define a new

family Bℓd → Yd by replacing each fiber Γω with the moduli space M0,3(Γω, d).

Since Γω is a subvariety of X, we have M0,3(Γω, d) ⊂ Md, and these inclusions

define a morphism π : Bℓd →Md. Equivalently, we have Bℓd = G×PYd M0,3(Γd, d).
We will identify Bℓd with its image in Yd ×Md, that is

Bℓd = {(ω, f) ∈ Yd ×Md | Image(f) ⊂ Γω} .
We also define the space

Z
(3)
d = Zd ×Yd

Zd ×Yd
Zd = {(ω, x1, x2, x3) ∈ Yd ×X3 | x1, x2, x3 ∈ Γω} .

Define a morphism ϕ : Bℓd → Z
(3)
d by ϕ(ω, f) = (ω, ev1(f), ev2(f), ev3(f)), and let

ei : Z
(3)
d → Zd denote the i-th projection. We obtain the following commutative
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Table 3. The quantum-to-classical construction.

Grassmannian X = Gr(m,n+ 1) of type An

dX(2) = min(m,n+1−m)
1 m-d m m+d n

Yd = Fl(m−d,m+d;n+1) ; Γd = Gr(d, 2d) ;
Fd = Gr(m−d,m)×Gr(d, n+1−m)

Lagrangian Grassmannian X = LG(n, 2n) of type Cn

dX(2) = n 1 n-d n

Yd = SG(n−d, 2n) ; Γd = LG(d, 2d) ; Fd = Gr(n−d, n)

Max. orthogonal Grassmannian X = OG(n, 2n) of type Dn

dX(2) = ⌊n/2⌋ 1 n-2d

n

Yd = OG(n−2d, 2n) ; Γd = OG(2d, 4d) ; Fd = Gr(n−2d, n)

Even quadric X = Q2n−2 of type Dn

dX(2) = 2 1 2

n
Y1 = OG(2, 2n) ; Γ1 = P1 ; F1 = Q2n−4

Odd quadric X = Q2n−1 of type Bn

dX(2) = 2 1 2 n

Y1 = OG(2, 2n+1) ; Γ1 = P1 ; F1 = Q2n−3

Cayley plane X = E6/P6

dX(2) = 2

Y1 = E6/P5 ; Γ1 = P1 ; F1 = OG(5, 10)

1

2

3 4 5 6

Y2 = E6/P1 ; Γ2 = Q8 ; F2 = Q8

1

2

3 4 5 6

Freudenthal variety X = E7/P7

dX(2) = 3

Y1 = E7/P6 ; Γ1 = P1 ; F1 = E6/P6

1

2

3 4 5 6 7

Y2 = E7/P1 ; Γ2 = Q10 ; F2 = E6/P1

1

2

3 4 5 6 7
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diagram from [BM11]:

(3) Bℓd
π //

ϕ
��

Md

evi

��
Z

(3)
d

ei // Zd
pd //

qd

��

X

Yd

Proposition 5.21. The maps π : Bℓd →Md and ϕ : Bℓd → Z
(3)
d are birational.

Proof. It follows from Theorem 5.17 that ϕ is birational. Since the image of the
map ev1 × ev2 : Md → X ×X is contained in Zd,2 = {(x1, x2) | dist(x1, x2) ≤ d},
it follows that U = (ev1 × ev2)

−1(
◦
Zd,2) is a dense open subset of Md. Given any

stable map f ∈ U , we have dist(ev1(f), ev2(f)) = d, so Corollary 5.20 implies
that the image of f is contained in Γω for a unique point ω ∈ Yd. It follows that
π−1(f) = (ω, f), so π is birational. □

The (three point, genus zero) Gromov-Witten invariants of small degrees of a
cominuscule flag variety are given by the following result. Generalizations to larger
degrees can be found in [BM11, CP11, BCMP18b].

Corollary 5.22. Let X be cominuscule and 0 ≤ d ≤ dX(2).
(a) For Ω1,Ω2,Ω3 ∈ H∗

T (X;Z) we have

⟨Ω1,Ω2,Ω3⟩d =

∫
Yd

qd∗p
∗
d(Ω1) · qd∗p∗d(Ω2) · qd∗p∗d(Ω3) .

(b) For F1,F2,F3 ∈ KT (X) we have

Id(F1,F2,F3) = χ
Yd

(
qd∗p

∗
d(F1) · qd∗p∗d(F2) · qd∗p∗d(F3)

)
.

Proof. Since all varieties in the diagram (3) have rational singularities, it follows
from Proposition 5.21 that π∗[OBℓd ] = [OMd

] and ϕ∗[OBℓd ] = [O
Z

(3)
d

]. We obtain

χ
Md

(ev∗1(F1) · ev∗2(F2) · ev∗3(F3)) = χ
Z

(3)
d

(e∗1p
∗
d(F1) · e∗2p∗d(F2) · e∗3p∗d(F3))

= χ
Yd
(qd∗p

∗
d(F1) · qd∗p∗d(F2) · qd∗p∗d(F3)) ,

where the first identity follows from the projection formula (twice) together with
commutativity of the diagram (3), and the second follows from [BM11, Lemma 3.5].
This proves part (b). Part (a) is proved by repeating the same argument with
cohomology classes, or by extracting the initial terms of both sides in part (b), see
[BM11, §4.1]. □

For any subvarieties Ω1,Ω2 ⊂ X and 0 ≤ d ≤ dX(2) we define

Yd(Ω1,Ω2) = qd(p
−1
d (Ω1)) ∩ qd(p−1

d (Ω2))

= {ω ∈ Yd | Γω ∩ Ω1 ̸= ∅ and Γω ∩ Ω2 ̸= ∅} ,
Zd(Ω1,Ω2) = q−1

d (Yd(Ω1,Ω2)) .

We also define the special cases Yd(Ω1) = qdp
−1
d (Ω1) and Zd(Ω1) = q−1

d (Yd(Ω1)).
Notice that for ω ∈ Yd we have Γω ∩ Ω1 ̸= ∅ if and only if ω ∈ Yd(Ω1).
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Corollary 5.23. We have Γd(Ω1,Ω2) = pd(Zd(Ω1,Ω2)). As a special case we
obtain Γd(Ω1) = pd(Zd(Ω1)) = pdq

−1
d qdp

−1
d (Ω1).

Proof. Since the diagram (3) is commutative and the maps π and ϕ are surjective,
we obtain

Γd(Ω1,Ω2) = ev3 π
(
(ev1 π)

−1(Ω1) ∩ (ev2 π)
−1(Ω2)

)
= pde3

(
(pde1)

−1(Ω1) ∩ (pde2)
−1(Ω2)

)
= pd ({(ω, x3) ∈ Zd | Γω ∩ Ω1 ̸= ∅ and Γω ∩ Ω2 ̸= ∅})

as required. □

6. Fibers of the quantum-to-classical construction

In this section we obtain explicit descriptions of the general fibers of several
maps related to the quantum-to-classical construction. These results are required
for determining the powers of q that occur in quantum products, as well as for our
proof that the structure constants of quantum K-theory have alternating signs.

6.1. Bijections between order ideals.

Lemma 6.1. For 0 ≤ d ≤ dX(2) we have the identities κd = wZd

0,Yd
, zd =

w0,Xw0,Yd
, zd/κd = wZd

0,X , and w0,Yd
= κdw0,Zd

= w0,Zd
κd.

Proof. Since the projection pd : q−1
d (1.PYd

) → Xκd
is an isomorphism, it follows

that q−1
d (1.PYd

) = (Zd)κd
and wZd

0,Yd
= κd. We also obtain p−1

d (1.PX) = (Zd)wZd
0,X

and Yd(1.PX) = (Yd)wZd
0,X

, and therefore Zd(1.PX) = (Zd)wZd
0,Xw

Zd
0,Yd

. Since we have

dist(z, 1.PX) = d for all points z in a dense open subset of Γd(1.PX), it follows
from Corollary 5.20 and Corollary 5.23 that pd : Zd(1.PX) → Γd(1.PX) = Xzd

is birational. We deduce that wZd

0,Xw
Zd

0,Yd
= zd, hence w

Zd

0,X = zd/κd. Finally, we

have κdw0,Zd
= w0,Yd

= w−1
0,Yd

= w0,Zd
κd, and zd = wZd

0,Xκd = w0,Xw0,Zd
κd =

w0,Xw0,Yd
, which completes the proof. □

The variety Fd = p−1
d (1.PX) = PX/PZd

is a product of cominuscule varieties by
Proposition 5.19, and the Schubert varieties in this space (which are products of
Schubert varieties in the factors of Fd) are indexed by elements of the set WFd ⊂
WX of minimal representatives of the cosets in WX/WZd

. The maximal element

in WFd is wZd

0,X = zd/κd, so the elements of WFd correspond to order ideals in

PFd
= I(zd/κd). This subset of Φ+ is always disjoint from PX (see Example 6.3).

Notice that if Fd has more than one cominuscule factor, then PFd
is a disjoint union

of the corresponding partially ordered sets. For η ∈ PFd
we set λ′(η) = {η′ ∈ PFd

|
η′ < η}. Then the labeling δ′ : PFd

→ ∆X is given by δ′(η) = w′
λ′(η).η, where

w′
λ′(η) is the product of the reflections sη′ for η′ ∈ λ′(η), in increasing order.

Proposition 6.2. The following order isomorphisms are obtained by restricting
the actions of Weyl group elements.

(a) κd : PFd
→ I(zd)∖ I(κd) is an order isomorphism, and δ(κd.η) = δ′(η) for

each η ∈ PFd
.

(b) zd : PFd
→ I(κ∨d )∖ I(z∨d ) is an order isomorphism, and δ(zd.η) = wX

0 .δ
′(η)

for each η ∈ PFd
.



POSITIVITY OF MINUSCULE QUANTUM K-THEORY 33

Proof. It follows from Lemma 4.2(a) that κd : I(zd) ∖ I(κd) → PFd
is an order-

preserving bijection, and since κd.β > 0 for each β ∈ ∆∖ {γ}, the inverse bijection
κ−1
d = κd is also order-preserving. Given η ∈ PFd

, the set µ = I(κd) ∪ κd.λ′(η) is a
straight shape in PX such that κd.η is a minimal box of PX ∖ µ, hence δ(κd.η) =
wµ.(κd.η). Using that wµ = w′

λ′(η)κd, we obtain δ(κd.η) = w′
λ′(η).η = δ′(η). This

proves part (a). Lemma 4.4(a) applied to Fd shows that w0,Zd
: PFd

→ PFd
is an

order-reversing involution such that δ′(w0,Zd
.η) = −w0,X .δ

′(η). Part (b) therefore
follows from Lemma 4.4(a), part (a), and the identities zd = w0,Xκdw0,Zd

and
w0w0,X = wX

0 . □

Example 6.3. Consider X = Gr(7, 17) and d = 4, so that Γd = Gr(4, 8) and
Fd = Gr(3, 7)×Gr(4, 10). Let Φ+ = {ei−ej | 1 ≤ i < j ≤ 17} be the set of positive
roots of type A16. We identify each root ei − ej with the box in row 17 − i and
column j−1 of a triangular diagram of boxes. Proposition 6.2 shows that PFd

can be
identified with κd.PFd

= I(zd)∖ I(κd), and also with zd.PFd
= I(κ∨d )∖ I(z∨d ). This

gives two dissections of PX . Notice that PΓd
= I(κd), and PFd

can be identified
with the disjoint union of PGr(3,7) and PGr(4,10).

γ

PX

PFd

PFd

PX =

PΓd

κd.PFd

κd.PFd

PX∖I(zd)

PX =

I(z∨d )

zd.PFd

zd.PFd

PX∖I(κ∨
d )

Example 6.4. Let X = LG(8, 16) and d = 5. Then Proposition 6.2 provides the
following dissections of PX .

PX =

γ

PΓd
κd.PFd

PX∖I(zd)

=

I(z∨d ) zd.PFd

PX∖I(κ∨
d )
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6.2. Fibers of the quantum-classical diagram.

Definition 6.5. Given u, v ∈ WX and 0 ≤ d ≤ dX(2), define the Weyl group
elements

u(d) = (u ∩ z∨d )zd , ûd = (u ∩ κ∨d )/(u ∩ z∨d ) , ud = (wX
0 )−1 ûd w

X
0 ,

v(−d) = (v ∪ zd)/zd , and vd = (v ∩ zd)/(v ∩ κd) .

It was proved in [BCMP18a] that Xu(d) = Γd(Xu) and Xv(−d) = Γd(X
v). We

will reprove these statements in Corollary 6.9 below, together with similar geometric
interpretations of ud and vd. In particular, u(d) and v(−d) belong to WX . The
shape I(v(−d)) is obtained from I(v) by removing the boxes in I(v∩zd) and moving
the remaining boxes north-west until they fit in the upper-left corner of PX (see
[BCMP18a, §3.2]). Similarly, I(u(d)) is obtained by attaching the shape I(u) to the
south-east border of I(zd) and discarding any boxes that do not fit within PX . More
precisely, the following identities follow from Proposition 5.9(a) and Corollary 5.11.

Lemma 6.6. We have I(u(−d)) = (z1sγ)
d.(I(u) ∖ I(zd)) and I(u(d)) = I(zd) ∪

(z1sγ)
−d.(I(u) ∩ I(z∨d )).

Our next result shows that ud and vd belong to WFd = WX ∩WZd , and the
shapes of these elements in PFd

are determined by zd.I(ud) = I(u) ∩ zd.PFd
and

κd.I(v
d) = I(v)∩κd.PFd

(see Example 6.3, Example 6.4, and Example 6.8). Recall
from Section 2.1 that the parabolic factorization of v ∈ W with respect to PYd

is
denoted by v = vYdvYd

.

Proposition 6.7. Let u, v ∈WX and 0 ≤ d ≤ dX(2).

(a) We have vYd
= v∩κd and vYd = (v∪κd)/κd, and the parabolic factorization

of vYd with respect to PX is vYd = v(−d)vd.
(b) We have ud, v

d ∈ WFd , with shapes given by I(ud) = z−1
d .I(u) ∩ PFd

and

I(vd) = κd.I(v) ∩ PFd
.

(c) We have that u∨(−d) = u(d)∨ = w0u(d)w0,X is dual to u(d) in WX , and
(u∨)d = w0,Xudw0,Zd

is dual to ud in WFd .

Proof. The element ûd is by definition the product of the simple reflections sδ(α)
for all boxes α in I(u) ∩ (I(κ∨d ) ∖ I(z∨d )), in decreasing order. Proposition 6.2(b)
therefore shows that

ud = (wX
0 )−1ûdw

X
0 =

∏
η∈z−1

d .I(u)∩PFd

sδ′(η) ,

the product in decreasing order. This shows that ud ∈WFd and I(ud) = z−1
d .I(u)∩

PFd
. Proposition 6.2(a) similarly shows that vd ∈WFd and I(vd) = κd.I(v)∩PFd

.
This proves part (b).

Since v ∪ κd ∈ WX ⊂ WZd , the product of (v ∪ κd)/κd with w0,Yd
= κdw0,Zd

is reduced, hence (v ∪ κd)/κd ∈ WYd . Since v ∩ κd ∈ WYd
, we deduce that the

parabolic factorization v = vYdvYd
is given by vYd = (v ∪ κd)/κd and vYd

= v ∩ κd.
Since u(d) ≤L z

∨
d zd = wX

0 , we have u(d) ∈WX . The dual element is w0u(d)w0,X =

w0(u∩ z∨d )w0,Xz
−1
d = (u∨ ∪ zd)/zd = u∨(−d). This implies that v(−d) ∈WX , and

since vd ∈ WX , it follows that vYd = v(−d)vd is the parabolic factorization of vYd

with respect to PX . This proves part (a).
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The element τ = z∨d /(u∩z∨d ) commutes with ûd and satisfies τu(d) = z∨d zd = wX
0 .

This implies ud = (wX
0 )−1ûdw

X
0 = u(d)−1ûdu(d), hence w0u

∨(−d)(u∨)dw0,Zd
=

w0(u
∨∪κd)κdw0,Zd

= (u∩κ∨d )zd = ûdu(d) = u(d)ud. This shows that u
∨(−d)(u∨)d

is dual to u(d)ud inWZd . Since u∨(−d) is dual to u(d) inWX , it follows that (u∨)d

is dual to ud in WFd , see Remark 2.9. This completes the proof of part (c). □

In examples we denote an element u ∈WX by the partition λ = (λ1, λ2, . . . , λp)
for which λj is the number of boxes in the j-th row of I(u).

Example 6.8. Let X = LG(8, 16), u = (8, 6, 2) ∈WX , v = u∨ = (7, 5, 4, 3, 1), and
set d = 5. The shape of ud = (5, 4, 1) is obtained by intersecting the shape of u
with zd.PFd

, and the shape of vd = (2, 1, 1, 1) is obtained by intersecting the shape
of v with κd.PFd

, see Example 6.4.

The elements ud and vd are dual to each other in WFd , but the images zd.I(ud)
and κd.I(v

d) of their shapes are represented in two different rectangles in PX . The
composed bijection zd/κd : κd.PFd

∼= PFd
∼= zd.PFd

is given by a transposition when
X is a Lagrangian Grassmannian. An expression of an element ofWFd as a partition
therefore depends on how the rectangle PFd

is oriented. Opposite conventions are
used in the expressions ud = (5, 4, 1) and vd = (2, 1, 1, 1) given above. We also have
u(d) = wX

0 and v(−d) = 1. Other shifts of u include u(−2) = (2), u(−1) = (6, 2),
u(1) = (8, 7, 6, 2), and u(2) = (8, 7, 6, 5, 2).

Corollary 6.9. Let u, v ∈WX and 0 ≤ d ≤ dX(2).

(a) The general fibers of the map qd : p−1
d (Xv) → Yd(X

v) are translates of
(Γd)

v∩κd .

(b) We have Yd(X
v) = (Yd)

v(−d)vd

, Γd(X
v) = Xv(−d), and the general fibers

of the map pd : Zd(X
v) → Γd(X

v) are translates of (Fd)
vd

.

(c) We have Zd(Xu) = (Zd)u(d)ud
, Γd(Xu) = Xu(d), and the general fibers of

the map pd : Zd(Xu) → Γd(Xu) are translates of (Fd)ud
.

(d) The general fibers of the map pd : Zd(Xu, X
v) → Γd(Xu, X

v) are translates

of (Fd)
ud∩vd

ud
.

Proof. Parts (a) and (b) follow from Theorem 2.8, Corollary 5.23, and Proposi-
tion 6.7(a), and Proposition 6.7(c) implies that part (c) is equivalent to part (b),
see Remark 2.9. Finally, part (d) follows from Theorem 2.10 and Proposition 4.5
together with parts (b) and (c). □

7. The q-degrees in quantum cohomology products

7.1. Quantum cohomology. Let X = G/PX be a cominuscule flag variety, and
let QH(X) be the (small) quantum cohomology ring of X. As an additive group,



36 A. BUCH, P.–E. CHAPUT, L. MIHALCEA, AND N. PERRIN

this ring is defined as QH(X) = H∗(X;Z)⊗Z Z[q]. Multiplication is defined by

[Xu] ⋆ [X
v] =

∑
w,d≥0

⟨[Xu], [X
v], [Xw]⟩d qd [Xw]

for u, v ∈WX . Let

([Xu] ⋆ [X
v])d =

∑
w

⟨[Xu], [X
v], [Xw]⟩d [Xw]

denote the coefficient of qd in this product. The goal of this section is to identify
the degrees d for which ([Xu] ⋆ [X

v])d ̸= 0. In particular, we will show that these
degrees form an integer interval.

It follows from [FW04, Thm. 9.1] that the smallest degree d for which ([Xu] ⋆
[Xv])d ̸= 0 is equal to the degree distance between Xu and Xv, defined as the
minimal d for which Γd(Xu, X

v) ̸= ∅. In particular, the quantum product of two
Schubert classes is never zero. Let dmin(u

∨, v) and dmax(u
∨, v) denote the minimal

and maximal degrees for which ([Xu] ⋆ [Xv])d ̸= 0. We let dmax(v) denote the
(unique) number of occurrences of sγ in a reduced expression for v. Notice that
d = dmax(v) is also determined by κd ≤ v ≤ zd. The following result implies that
dmax(v) is the only power of q that occurs in the product [point] ⋆ [Xv], that is
dmax(v) = dmin(w

X
0 , v) = dmax(w

X
0 , v). More generally, it was proved in [Bel04,

CMP09] that [point] ⋆ [Xv] = qdmax(v) [XwX
0 v] holds in QH(X).

Proposition 7.1. We have ([Xu] ⋆ [X
v])d ̸= 0 if and only if dmin(u

∨, v) ≤ d ≤
min(dmax(u

∨), dmax(v)) and ud ≤ vd. In this case we have ([Xu] ⋆ [Xv])d =
[Γd(Xu, X

v)].

Proof. Using Corollary 5.22 and the projection formula we obtain

⟨[Xu], [X
v], [Xw]⟩d =

∫
X

pd∗q
∗
d

(
qd∗p

∗
d[Xu] · qd∗p∗d[Xv]

)
· [Xw] ,

which implies that

([Xu] ⋆ [X
v])d = pd∗q

∗
d

(
qd∗p

∗
d[Xu] · qd∗p∗d[Xv]

)
.

Corollary 6.9(a) shows that qd∗p
∗
d[X

v] is equal to [qd(p
−1
d (Xv))] for d ≤ dmax(v)

and is zero otherwise. It follows that ([Xu] ⋆ [Xv])d is non-zero only if d ≤
min(dmax(u

∨), dmax(v)), in which case

([Xu] ⋆ [X
v])d = p∗[Zd(Xu, X

v)] .

The proposition therefore follows from Corollary 6.9(d). □

The main technical result of this section is the following lemma, which we will
prove after discussing its consequences. Notice that Proposition 6.2(a) shows that
wκd ∈WX and I(wκd) = I(κd) ∪ κd.I(w) for each w ∈WFd .

Lemma 7.2. Let u, v ∈WX .

(a) For 0 < d ≤ dmax(u
∨) we have ud−1κd−1 = (udκd)(−1).

(b) For 0 < d ≤ dmax(v) we have vd−1κd−1 = (vdκd) ∩ zd−1.

Part (b) of the following lemma will be relevant for our study of quantum K-
theory in Section 8.

Lemma 7.3. Let u, v ∈WX and 0 < d ≤ min(dmax(u
∨), dmax(v)).
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(a) Assume that ud ≤ vd. Then ud−1 ≤ vd−1.

(b) If I(ud)∖ I(vd) is a non-empty rook strip in PFd
, then d = dmax(u

∨, v)+1.

Proof. The inequality ud ≤ vd holds if and only if udκd ≤ vdκd. Part (a) therefore
follows from Lemma 7.2, using that (udκd)(−1) ≤ udκd and (udκd)(−1) ≤ zd(−1) ≤
zd−1. If ud ̸≤ vd, then it follows from Proposition 7.1 and part (a) that d >
dmax(u

∨, v). If I(ud)∖I(vd) is a rook strip, then (udκd)(−1) ≤ vdκd, which implies
that ud−1 ≤ vd−1 and d− 1 ≤ dmax(u

∨, v). This proves part (b). □

The following result was proved in [Pos05] for Grassmannians of type A.

Corollary 7.4. The q-degrees appearing in a quantum product [Xu]⋆ [X
v] form an

interval, that is ([Xu] ⋆ [X
v])d ̸= 0 if and only if dmin(u

∨, v) ≤ d ≤ dmax(u
∨, v).

Proof. This follows from Proposition 7.1 and Lemma 7.3. □

The equivariant (small) quantum cohomology ring QHT (X) = H∗
T (X;Z)⊗ZZ[q]

is defined like QH(X), except that equivariant Gromov-Witten invariants are used
to define the quantum product [Xu]T ⋆ [X

v]T , see [Kim95]. Proposition 7.1 is true
also for the equivariant quantum product, with the same proof.

Corollary 7.5. The equivariant quantum product [Xu]T ⋆ [X
v]T in QHT (X) con-

tains the same powers of q as the non-equivariant product [Xu] ⋆ [X
v].

Remark 7.6. It is natural to ask whether the powers of q appearing in an equi-
variant quantum product of Schubert classes defined by the same Borel subgroup
form an interval. Based on substantial computer evidence we conjecture that qd

occurs in the product [Xu]T ⋆ [X
v]T in QHT (X) if and only if 0 ≤ d ≤ dmax(u, v).

7.2. The minimal and maximal degrees. We next give a type-uniform descrip-
tion of the minimal and maximal powers of q in the quantum product [Xu]⋆[X

v] that
generalizes the description for Grassmannians of type A proved in [FW04, Pos05].
The minimal degree dmin(u

∨, v) is the smallest integer d for which Γd(Xu, X
v) ̸= ∅.

Since Γd(Xu, X
v) is non-empty if and only if v ≤ u(d), the degree dmin(u

∨, v) can
be interpreted as the number of steps the shape I(u) must be shifted in order to
contain I(v). This recovers Fulton and Woodward’s description in type A [FW04].
Postnikov gave a similar description [Pos05] of the maximal degree dmax(u

∨, v) in
type A, as the number of steps I(u) can be shifted before it no longer fits inside a
shape. These descriptions of the powers of q in a quantum product are generalized
in Theorem 7.8 and Theorem 7.13. The maximal degree for arbitrary cominuscule
varieties is given by the following formula from [CMP07, Thm. 1.2].

Theorem 7.7. We have dmax(u
∨, v) = dmax(v)− dmin((w

X
0 v)

∨, u).

Let B = {qd[Xu] : u ∈ WX , d ∈ Z} denote the natural Z-basis of the localized
quantum cohomology ring QH(X)q = QH(X) ⊗Z[q] Z[q, q−1]. We define a partial
order on B by

qe[Xv] ≤ qd[Xu] ⇐⇒ Γd−e(Xu, X
v) ̸= ∅ ⇐⇒ Xv ⊂ Γd−e(Xu) .

Here the sets Γd−e(Xu, X
v) and Γd−e(Xu) can be non-empty only if d ≥ e. Notice

that if qf [Xw] ≤ qe[Xv] ≤ qd[Xu], then Xw ⊂ Γe−f (Xv) ⊂ Γe−f (Γd−e(Xu)) ⊂
Γd−f (Xu) shows that q

f [Xw] ≤ qd[Xu]. The order on B extends the Bruhat order
on WX , and [FW04, Thm. 9.1] implies that qe[Xv] ≤ qd[Xu] holds if and only

if qd[Xu] occurs with non-zero coefficient in the expansion of qe[Xv] ⋆ qd
′
[Xw] in
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QH(X)q, for some w ∈WX and d′ ≥ 0 2. Notice that [point]⋆[Xv] = qdmax(v)[XwX
0 v]

is an element of B, as proved in [Bel04, CMP09].

Theorem 7.8. Let u, v ∈ WX and d ∈ Z. The power qd occurs in [Xu] ⋆ [X
v] if

and only [Xv] ≤ qd[Xu] ≤ [point] ⋆ [Xv].

Proof. The smallest degree d for which [Xv] ≤ qd[Xu] is dmin(u
∨, v) by definition of

the partial order on B, and the largest degree d for which qd[Xu] ≤ qdmax(v)[XwX
0 v]

is dmax(u
∨, v) by Theorem 7.7. □

Our next goal is to show that B is a distributive lattice. In the remainder of this
section we extend earlier definitions by setting u(d) = zd = wX

0 and u(−d) = 1 for
d ≥ dX(2) and u ∈WX .

Lemma 7.9. Let u, v ∈WX , d ∈ Z, and e ∈ N. The following identities hold.

(u ∪ v)(d) = u(d) ∪ v(d) (u ∩ v)(d) = u(d) ∩ v(d)
(u ∪ v(d))(e) = u(e) ∪ v(d+ e) (u(d) ∩ v)(−e) = u(d− e) ∩ v(−e)

Proof. The identities (u∪v)(d) = u(d)∪v(d) and (u∩v)(d) = u(d)∩v(d) follow from
Lemma 6.6, which also implies that u(−e)(e) = u ∪ ze. We claim that u(d)(e) =
u(d+ e)∪ ze. For d ≥ 0 it follows from Theorem 5.1 that Γe(Γd(Xu)) = Γd+e(Xu),
which implies u(d)(e) = u(d+e) = u(d+e)∪ze by Corollary 6.9(c). A dual argument
shows that u(−d)(−e) = u(−d− e) for d ≥ 0. For e′ ≥ 0 we obtain u(−e− e′)(e) =
u(−e′)(−e)(e) = u(−e′) ∪ ze and u(−e)(e + e′) = u(−e)(e)(e′) = (u ∪ ze)(e

′) =
u(e′)∪ ze+e′ . This proves all cases of u(d)(e) = u(d+ e)∪ ze. Using that ze ≤ u(e),
we obtain u(e) ∪ v(d + e) = u(e) ∪ ze ∪ v(d + e) = u(e) ∪ v(d)(e) = (u ∪ v(d))(e).
The last identity of the lemma follows from this, using that u(d)∨ = u∨(−d) by
Proposition 6.7(c). □

Proposition 7.10. The partially ordered set B = {qd[Xu] : u ∈ WX , d ∈ Z} is a
distributive lattice with meet and join operations given by

qd[Xu] ∩ qe[Xv] = qe[Xu(d−e)∩v] and qd[Xu] ∪ qe[Xv] = qd[Xv(e−d)∪u]

for u, v ∈WX and e ≤ d.

Proof. In this proof we denote qd[Xu] by [d, u] for brevity. Let u, v, w ∈ WX and
d, e, f ∈ Z. The partial order on B = Z×WX is defined by

[e, v] ≤ [d, u] ⇔
(
e ≤ d and v ≤ u(d− e)

)
⇔

(
e ≤ d and v(e− d) ≤ u

)
.

We first show that [e, u(d − e) ∩ v] is the greatest lower bound of [d, u] and [e, v]
when e ≤ d. The relations [e, u(d−e)∩v] ≤ [d, u] and [e, u(d−e)∩v] ≤ [e, v] follow
from the definition. If [f, w] ≤ [d, u] and [f, w] ≤ [e, v], then

w ≤ u(d− f) ∩ v(e− f) = (u(d− e) ∩ v)(e− f) ,

hence [f, w] ≤ [e, u(d− e) ∩ v]. This proves [d, u] ∩ [e, v] = [e, u(d− e) ∩ v]. Noting
that the map [d, u] 7→ [−d, u∨] is an order-reversing involution of B, the expression
[d, u] ∪ [e, v] = [d, u ∪ v(e − d)] for the least upper bound is equivalent to the
expression for the greatest lower bound. This shows that B is a lattice. To prove
distributivity, assume again that e ≤ d, and set n = max(e, f) and m = max(d, f).

2Our construction defines a partial order on B = {qd[Mu] : u ∈ WM , d ∈ H2(M,Z)} for any
flag variety M , with the same interpretation in terms of quantum multiplication.
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Notice that u(d −m)(m − n) = u(d − n), as we have either m = d or m = f = n.
Using Lemma 7.9 we obtain

([d, u] ∪ [f, w]) ∩ ([e, v] ∪ [f, w])

= [m,u(d−m) ∪ w(f −m)] ∩ [n, v(e− n) ∪ w(f − n)]

= [n, (u(d−m) ∪ w(f −m))(m− n) ∩ (v(e− n) ∪ w(f − n))]

= [n, (u(d−m)(m− n) ∪ w(f − n)) ∩ (v(e− n) ∪ w(f − n))]

= [n, (u(d− n) ∪ w(f − n)) ∩ (v(e− n) ∪ w(f − n))]

= [n, (u(d− n) ∩ v(e− n)) ∪ w(f − n)]

= [n, (u(d− e) ∩ v)(e− n) ∪ w(f − n)]

= [e, u(d− e) ∩ v] ∪ [f, w]

= ([d, u] ∩ [e, v]) ∪ [f, w] .

Since this identity is formally equivalent to

([d, u] ∪ [e, v]) ∩ [f, w] = ([d, u] ∩ [f, w]) ∪ ([e, v] ∩ [f, w]) ,

this completes the proof. □

Definition 7.11. An element α̂ ∈ B is called join-irreducible if α̂ = α̂1∪ α̂2 implies

α̂ = α̂1 or α̂ = α̂2, for α̂1, α̂2 ∈ B. Let P̂X ⊂ B denote the subset of join-irreducible
elements. Given qd[Xu] ∈ B, set

I(qd[Xu]) = {α̂ ∈ P̂X | α̂ ≤ qd[Xu]} .
For α ∈ PX , define ∂(α) ∈ N, ξ(α) ∈WX , and τ(α) ∈ B by

∂(α) = min {d ≥ 0 | (z1sγ)−d.α ∈ PX ∖ I(z∨1 )} ,
I(ξ(α)) = {α′ ∈ PX | α′ ≤ α} , and

τ(α) = q−∂(α)[Xξ(β)] , where β = (z1sγ)
−∂(α).α .

The integer ∂(α) exists by Proposition 5.10(a). For example, we have

(4) τ(γ) = q1−dX(2)[XκdX (2) ] and τ(ρ) = [point] ,

where ρ ∈ Φ+ denotes the highest root. For any box α ∈ PX , we will show in
Theorem 7.13 that [Xξ(α)] = τ(α) ∪ 1 holds in B, and [Xξ(α)] is join-irreducible if
and only if α ∈ PX ∖ I(z∨1 ). This motivates the definition of τ(α).

Lemma 7.12. Let α ∈ PX and qd[Xu] ∈ B. We have τ(α) ≤ qd[Xu] in B if and
only if α ∈ I(u(d)).

Proof. Set e = ∂(α) and β = (z1sγ)
−e.α, so that τ(α) = q−e[Xξ(β)]. We then have

τ(α) ≤ qd[Xu] if and only if −e ≤ d and ξ(β) ≤ u(d+ e), or equivalently, d+ e ≥ 0
and β ∈ I(u(d+ e))). Since β ∈ PX ∖ I(z∨1 ), the condition d+ e ≥ 0 follows from
β ∈ I(u(d+ e)). Using that

I(u(d+ e)) ∪ I(ze) = I(u(d)(e)) = (z1sγ)
−e

(
I(u(d)) ∩ I(z∨e )

)
∪ I(ze)

by Lemma 7.9 and Lemma 6.6, and that β /∈ I(ze) and α ∈ I(z∨e ), we deduce that
β ∈ I(u(d+ e)) is equivalent to α ∈ I(u(d)), as required. □

Part (d) of the following result is essentially a consequence of Birkhoff’s repre-
sentation theorem [Bir37] together with Proposition 7.10; we supply a proof since

P̂X is an infinite set.
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Theorem 7.13. (a) We have [Xξ(α)] = τ(α) ∪ 1 in B for each α ∈ PX .

(b) We have P̂X = {qd[Xξ(α)] : α ∈ PX ∖ I(z∨1 ), d ∈ Z} ∪ {qd : d ∈ Z}.
(c) The map τ : PX → τ(PX) is an order isomorphism onto an interval in P̂X .

(d) The map qd[Xu] 7→ I(qd[Xu]) is an order isomorphism of B with the set of

non-empty, proper, lower order ideals in P̂X , ordered by inclusion.

Proof. If qd = qe[Xv]∪ qd[Xu], then e ≤ d and v(e−d)∪u = 1, hence qd[Xu] = qd.
This shows that qd is join-irreducible. Let qd[Xu] ∈ B satisfy u ̸= 1. If qd[Xu] is
join-irreducible, then u is join-irreducible in WX , so u = ξ(α) for some α ∈ PX .
If α ∈ I(z∨1 ), then β = (z1sγ)

−1.α ∈ PX by Proposition 5.10(a), and it follows

from Lemma 6.6 that u = ξ(β)(−1). But then qd[Xu] = qd ∪ qd−1[Xξ(β)] is not
join-irreducible, a contradiction. On the other hand, assume that u = ξ(α) where

α ∈ PX ∖ I(z∨1 ). If qd[Xu] = qe[Xv] ∪ qd[Xu′
] with e < d, then u = v(e− d) ∪ u′.

Since α /∈ I(v(e− d)), we have α ∈ I(u′), so u′ = u. This proves part (b).
Let α′, α ∈ PX , and set u = ξ((z1sγ)

−∂(α).α). Using that u(−∂(α)) = ξ(α)
by Lemma 6.6, it follows from Lemma 7.12 that τ(α′) ≤ τ(α) holds if and only if
α′ ∈ I(ξ(α)), which is equivalent to α′ ≤ α. This shows that τ : PX → τ(PX)

is an order isomorphism. To see that τ(PX) is an interval in P̂X , assume that
τ(γ) ≤ qd[Xξ(α)] ≤ τ(ρ), where α ∈ PX ∖ I(z∨1 ) and d ∈ Z. By Lemma 7.12 and
(4), this is equivalent to 1 − dX(2) ≤ d ≤ 0 and I(ξ(α)(d)) ̸= ∅. We deduce that
(z1sγ)

e.α ∈ PX ∖ I(z1) for 0 ≤ e < −d, and qd[Xξ(α)] = τ((z1sγ)
−d.α) ∈ τ(PX).

This proves part (c).
Given α ∈ PX , Proposition 7.10 implies that τ(α) ∪ 1 = [Xu] for some u ∈

WX . Since τ(α′) ̸≤ 1 for each α′ ∈ PX by Lemma 7.12, another application of
Lemma 7.12 shows that α′ ∈ I(u) holds if and only if τ(α′) ≤ τ(α), so it follows
from part (c) that u = ξ(α). This proves part (a).

Let I ⊂ P̂X be any non-empty, proper, lower order ideal. Since I has finitely
many maximal elements, say α̂1, . . . , α̂ℓ, it follows from Proposition 7.10 that I has
a well-defined least upper bound qd[Xu] = α̂1 ∪ · · · ∪ α̂ℓ in B. For any element

β̂ ∈ I(qd[Xu]), we obtain

β̂ = β̂ ∩ qd[Xu] = (β̂ ∩ α̂1) ∪ · · · ∪ (β̂ ∩ α̂ℓ) .

Since β̂ is join-irreducible, this implies β̂ = β̂ ∩ α̂i for some i, so β̂ ∈ I. We deduce
that I = I(qd[Xu]). Part (d) follows from this, noting that any element qd[Xu] ∈ B
is the least upper bound of the finite set {qd}∪{qdτ(α) | α ∈ I(u)} by part (a). □

Remark 7.14. By Theorem 7.13(c), we may identify PX with the subset τ(PX)

of P̂X . Lemma 7.12 shows that the shift operations on WX can be expressed as

I(u(d)) = I(qd[Xu]) ∩ PX = qdI([Xu]) ∩ PX

for all u ∈WX and d ∈ Z. Theorem 7.8 and Theorem 7.13(d) show that qd occurs
in [Xu]⋆ [X

v] if and only if the order ideal of qd[Xu] lies between the order ideals of

[Xv] and [point] ⋆ [Xv]. When X is a Grassmannian of type A, P̂X is Postnikov’s

cylinder from [Pos05, §3]. The analogue of Postnikov’s torus is the quotient of P̂X

by the group {[point]d | d ∈ Z} of powers of a point. Pictures of P̂X for cominuscule
varieties of types other than A can be found in Example 7.15 and Figure 1.

The partially ordered sets P̂X are isomorphic to certain full heaps of affine
Dynkin diagrams that were defined in [Gre13, Ch. 6] based on a type-by-type
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construction, and used to study minuscule representations. Postnikov’s cylinder
was constructed in [Hag04, §8] from a similar viewpoint.

Example 7.15. Let X = LG(4, 8) be the Lagrangian Grassmannian of maximal
isotropic subspaces in an 8-dimensional symplectic vector space, and define u, v ∈
WX by the shapes I(u) = and I(v) = . We have

[Xu] ⋆ [X
v] = q2[X ] + q2[X ] + q3

in QH(X), so dmin(u
∨, v) = 2 and dmax(u

∨, v) = 3. The following picture shows a

section of the partially ordered set P̂X , with the boxes of PX colored gray.

The south-east borders of the order ideals of [Xv] and [point] ⋆ [Xv] are colored
black, and the south-east border of the order ideal of [Xu] is colored red. The order
ideal of [point] ⋆ [Xv] is obtained by reflecting I(v) in a diagonal line and attaching
the result to the right side of PX ; this follows from [BS16, Lemma 2.9], by observing
that multiplication by a point preserves the partial order on B. Notice that the red
border will fit between the two black borders if it is shifted south-east by 2 or 3
steps.

Figure 1. The partially ordered sets P̂X for a collection of comi-
nuscule flag varieties, with the boxes of PX colored gray.

OG(6, 12)

E6/P6

E7/P7

Q10
Q7
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Remark 7.16. Let α0 be the added simple root of the affine root system corre-
sponding to G. For any affine root θ = n0α0+

∑
β∈∆ nββ, let λ(θ) = nγ−n0. Since

γ is cominuscule, we have λ(θ) ∈ {−1, 0, 1}. We plan to prove in a follow-up paper

with Nicolas Ressayre that P̂X is isomorphic to the partially ordered set of affine
roots θ for which λ(θ) = 1, where the order on this set is defined by the covering
relation θ1 ⋖ θ2 if and only if θ2 − θ1 is a positive affine root.

7.3. Proof of the main lemma. Our proof of Lemma 7.2 utilizes a relationship
between all the cominuscule flag varieties F = G/PF of the same group G. Let
W comin ⊂ W denote the set of representatives of single points in these varieties,
together with the identity element:

W comin = {wF
0 | F is a cominuscule flag variety of G } ∪ {1} .

For each cominuscule root γ ∈ ∆ we let Fγ = G/Pγ denote the corresponding
cominuscule flag variety. The following result was used to determine the Seidel
representation on the quantum cohomology ring of any flag variety in [CMP09], see
also [Bou81, Prop. VI.2.6].

Proposition 7.17. The set W comin is a subgroup of W isomorphic to the coweight

lattice of Φ modulo the coroot lattice. The isomorphism maps w
Fγ

0 to the class of
the fundamental coweight ω∨

γ corresponding to γ.

We mostly need this result when G has Lie type A. Let w
Gr(d,n)
0 ∈ Sn denote

the permutation representing the point class on Gr(d, n). This permutation is

determined by w
Gr(d,n)
0 (p) ≡ p−d (mod n) for p ∈ [1, n]. The following consequence

of Proposition 7.17 is also immediate from this description.

Corollary 7.18. The assignment d 7→ w
Gr(d,n)
0 defines an isomorphism of groups

Z/nZ → Scomin
n .

Corollary 7.19. For 0 ≤ d ≤ dX(2) we have zd/κd = (z1/κ1)
d = (z1sγ)

d.

Proof. Since zd/κd = wZd

0,X represents a point in Fd = PX/PZd
by Lemma 6.1,

we can prove the identity by applying Proposition 7.17 to the Weyl group WX of
PX . If X is a Grassmannian of type A, a Lagrangian Grassmannian, or a maximal
orthogonal Grassmannian, then the Levi subgroup of PX is a group of type A (or
a product of two such groups), and the identity follows from Corollary 7.18 and
Table 3. If X is a quadric hypersurface, then F1 is also a quadric, F2 is a point, and
the identity follows from Proposition 5.16(4) because F1 is primitive. Finally, ifX is
the Cayley plane E6/P6 or the Freudenthal variety E7/P7, the identity follows from
Table 3 together with the isomorphisms W comin

D5

∼= Z/4Z and W comin
E6

∼= Z/3Z. □

Lemma 7.20. For 1 ≤ d ≤ dX(2) we have (z1sγ)
d−1.(I(zd) ∖ I(zd−1)) = I(z1 ∩

z∨d−1) and I(κd) ∪ w0,Xz1sγ .I(z1 ∩ z∨d−1) = I(z1 ∪ κd).

Proof. Recall the definition of the set Sd before Proposition 5.13. Noting that
I(zd) ∖ I(zd−1) = Sd ∩ (PX ∖ I(zd−1)) and I(z1 ∩ z∨d−1) = S1 ∩ I(z∨d−1), the first
identity of the lemma follows from Proposition 5.13, Proposition 5.9(a), and Corol-
lary 5.11. Proposition 5.10 implies that

w0,Xz1sγ .I(z1 ∩ z∨d−1) = w0,Xz1sγ .I(z1) ∩ (z1sγ)
−1w0,X .I(z

∨
d−1)

= I(z1)∖ (z1sγ)
−1.I(zd−1) ,
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so the second identity is equivalent to

I(z1) ∩ (z1sγ)
−1.I(zd−1) ⊂ I(κd) .

Since (z1sγ)
−1.I(zd−1) =

⋃d
e=2 Se by Proposition 5.13, it suffices to show that

I(z1) ∩ Sd ⊂ I(κd) for d ≥ 2. This follows from the definition of Sd, as I(z1) ∩
(I(zd)∖ I(zd−1)) = ∅. □

Proof of Lemma 7.2. The definition of vd is equivalent to vdκd = (v∩zd)∪κd, which
specializes to vdκd = v∩zd for d ≤ dmax(v). Part (b) follows from this. For part (a),
let v = u∨ be dual to u inWX . Then Proposition 6.7(c) shows that ud is dual to vd

in WFd , and ud−1 is dual to vd−1 in WFd−1 . Since Corollary 7.19 and Lemma 6.1
show that w0,X(z1sγ)

d = w0,Zd
= κdw0,Zd

κd, it follows from Proposition 6.2(a)
that

w0,X(z1sγ)
d.(I(zd)∖ I(vdκd)) = κdw0,Zd

κd.(I(zd)∖ I(vdκd))

= κdw0,Zd
.(PFd

∖ I(vd)) = κd.I(ud)

= I(udκd)∖ I(κd) ,

and part (b) implies that

I(zd−1)∖ I(vd−1κd−1) = (I(zd)∖ I(vdκd)) ∩ I(zd−1)

= (I(zd)∖ I(vdκd))∖ (I(zd)∖ I(zd−1)) .

By combining these identities and using Lemma 7.20 and Lemma 6.6, we obtain

I(ud−1κd−1)∖ I(κd−1) = w0,X(z1sγ)
d−1.(I(zd−1)∖ I(vd−1κd−1))

= z1sγw0,X(z1sγ)
d.((I(zd)∖ I(vdκd))∖ (I(zd)∖ I(zd−1)))

= z1sγ .
(
(I(udκd)∖ I(κd))∖ w0,Xz1sγ .I(z1 ∩ z∨d−1)

)
= z1sγ . (I(udκd)∖ I(z1 ∪ κd))
= z1sγ . (I(udκd)∖ I(z1))∖ z1sγ . (I(κd)∖ I(z1))

= I((udκd)(−1))∖ I(κd−1) .

This proves part (a). □

Example 7.21. Let X = LG(8, 16), u = (8, 6, 2) ∈ WX , and set d = 5. Then
ud = (5, 4, 1) is obtained by intersecting I(u) with the rectangle zd.PFd

, see Ex-
ample 6.4 and Example 6.8. The following pictures illustrate how the skew shape
I(ud−1κd−1)∖ I(κd−1) is obtained from I(udκd)∖ I(κd). Notice that, since the bi-
jection zd.PFd

∼= κd.PFd
is given by a transposition, the partition of ud is conjugated

when we form I(udκd)∖ I(κd).
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I(udκd)∖ I(κd)

• •
• •
• •
• • •

•

I(zd)∖ I(vdκd)

• •
• •
• •
• •

•

•

I(zd−1)∖ I(vd−1κd−1)

• •
• •
• •
• •

•

•

I(ud−1κd−1)∖ I(κd−1)

• •
• •
• •
• • •

•

Example 7.22. Let X = Gr(7, 17), u = (10, 8, 5, 5, 4, 1, 0) ∈ WX , and d = 4.
Then Fd = Gr(3, 7)×Gr(4, 10), so elements of WFd can be represented by pairs of
partitions. We find ud = ((4, 2, 0), (5, 4, 1, 0)) by intersecting I(u) with zd.PFd

, see
Example 6.3. The skew shape I(ud−1κd−1) ∖ I(κd−1) is obtained from I(udκd) ∖
I(κd) with the following steps.

•

• • • •
• • • •

•

•

• • •
• •

•

• • • •
• • • •

•

•

• • •
••

•

• • • •
• • • •

•

•

• • •
••

•

• • • •
• • • •

•

•

• • •
• •

8. Results about quantum K-theory

8.1. The small quantum K-theory ring. Let X = G/PX be a cominuscule
flag variety. The (small) quantum K-theory ring QK(X) of Givental and Lee
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[Giv00, Lee01] is an algebra over the ring ZJqK of formal power series in a single
variable q called the deformation parameter. As a ZJqK-module we have QK(X) =
K(X) ⊗ ZJqK. The associative product ⋆ of QK(X) is defined in terms of K-
theoretic Gromov-Witten invariants. We recall a construction of this product from
[BCMP18a].

Let ψ : K(X) → K(X) be the linear map defined by ψ(Ow) = Ow(−1). This
map can also be defined by ψ = (ev2)∗(ev1)

∗, where ev1 and ev2 are the evaluation
maps fromM0,2(X, 1). Corollary 5.23 implies that ψ = (p1)∗(q1)

∗(q1)∗(p1)
∗. Given

u, v ∈WX and d ≥ 1, we define the class

(5) (Ou ⋆Ov)d = [OΓd(Xu,Xv)]− ψ([OΓd−1(Xu,Xv)])

in K(X). Let (Ou ⋆Ov)0 = Ou · Ov be the product in the K-theory ring. It then
follows from [BCMP18a, Prop. 3.2] that Givental’s product in QK(X) is given by

(6) Ou ⋆Ov =
∑
d≥0

(Ou ⋆Ov)d q
d .

The proof in [BCMP18a] showing that (6) agrees with Givental’s definition relies on
a version of the quantum-to-classical principle for large degrees that was established
in [BM11, CP11, BCMP18b].

The definition (5) implies that (Ou ⋆Ov)d = 0 for all sufficiently large degrees d,
since eventually we have Γd−1(Xu, X

v) = X. As a consequence, the productOu⋆Ov

contains only finitely many non-zero terms. A similar finiteness result is known for
the quantumK-theory of arbitrary flag varieties [BCMP13, BCMP16, Kat, ACT22].
In the cominuscule case we have (Ou ⋆Ov)d = 0 whenever d > dX(2) by [BCMP13,
Thm. 1]. Using this explicit bound, we can focus on the terms (Ou ⋆Ov)d of small
degrees, which will be studied using the tools developed in the previous sections.

The Schubert structure constants of QK(X) are the integers Nw,d
u,v defined by

(7) Ou ⋆Ov =
∑

w,d≥0

Nw,d
u,v q

d Ow .

Equivalently, we have (Ou ⋆Ov)d =
∑

wN
w,d
u∨,vOw for each degree d. These struc-

ture constants are expected to have alternating signs in the following sense [LM06,
BM11].

Conjecture 8.1. We have (−1)ℓ(uvw)+deg(qd)Nw,d
u,v ≥ 0.

Here deg(qd) = d
∫
Xsγ

c1(TX) = d (ℓ(z1) + 1) denotes the degree of qd in the

quantum cohomology ring QH(X). This conjecture generalizes the fact that the
structure constants Nw,0

u,v of the ordinary K-theory ring of X have alternating signs
[Buc02, Bri02]. A more general version of Conjecture 8.1 for the equivariant quan-
tum K-theory of arbitrary flag varieties is discussed in [BCMP18a, §2.4].

Recall from Corollary 6.9(d) that the general fibers of the map pd : Zd(Xu, X
v) →

Γd(Xu, X
v) are translates of (Fd)

ud∩vd

ud
. The quotient (ud ∪ vd)/vd of Weyl group

elements will be called a short rook strip if it is a product of commuting reflections
associated to short simple roots of Φ. We emphasize that the lengths of the simple
roots should be measured relative to the root system Φ of G, as opposed to the
root system ΦX of the group PX acting on Fd. For example, when X = LG(n, 2n)
is a Lagrangian Grassmannian, ΦX is a root system of type A, but its roots are
considered short since they are short in Φ.
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Definition 8.2. Let u, v ∈ WX . An integer d is an exceptional degree of the
product Ou ⋆ Ov if d ≤ min(dmax(u

∨), dmax(v)) and (ud ∪ vd)/vd is a non-empty
short rook strip.

Notice that exceptional degrees do not occur when X is minuscule, as all roots
of a simply laced root system are considered long. In addition, most products
Ou ⋆ Ov on odd quadrics Q2n−1 and Lagrangian Grassmannians LG(n, 2n) have
no exceptional degrees, see Example 8.5 and Table 4. Notice also that, if d is
an exceptional degree of Ou ⋆ Ov, then we must have d = dmax(u

∨, v) + 1 by
Lemma 7.3(b). We proceed to state our main results about quantum K-theory of
cominuscule flag varieties.

Theorem 8.3. Let u, v ∈WX . The quantum K-theory product Ou ⋆Ov in QK(X)
contains the same powers of q as the quantum cohomology product [Xu] ⋆ [X

v] in
QH(X), with the exception that qd may also occur in Ou ⋆Ov if d = dmax(u

∨, v)+1
is an exceptional degree. In particular, the powers qd occurring in Ou ⋆Ov form an
integer interval.

We conjecture that (Ou ⋆ Ov)d ̸= 0 whenever d is an exceptional degree. This
is true for quadrics and has been verified for Lagrangian Grassmannians LG(n, 2n)
with n ≤ 6. See Conjecture 8.28 for a more detailed statement.

Theorem 8.4. Conjecture 8.1 is true whenever X is minuscule or any quadric
hypersurface. It is also true whenever d is not an exceptional degree of the product
Ou∨ ⋆Ov.

Example 8.5. Let X = Q2n−1 = OG(1, 2n+1) be a quadric hypersurface of type
Bn. We have dX(2) = 2, deg(q) = 2n− 1, and

PX = 1 2 · · · n−1 n n−1 · · · 2 1 .

All boxes of PX are long except the middle box. Notice that κ1.PF1 = z1.PF1

consists of the middle 2n−3 boxes of PX . It follows that Ou⋆Ov has an exceptional
degree if and only if I(u) ∖ I(v) consists of the middle box. In other words, the
only exceptional product is On−1⋆On−1 = On⋆On−1; here we denote each element
u ∈WX by its length ℓ(u). Using the Chevalley formula from [BCMP18a] together
with the associativity of the quantum K-theory product, we obtain

On−1 ⋆On−1 = On−1 ⋆ (O1)n−1 = 2O2n−2 −O2n−1 − q + qO1 .

This product has alternating signs and exceptional degree 1. The corresponding
product in QH(X) is [Xn−1] ⋆ [Xn−1] = 2[X2n−2].

Example 8.6. Let Iu = [I∂Xu ] ∈ K(X) denote the class of the ideal sheaf I∂Xu ⊂
OXu of the boundary ∂Xu = Xu ∖

◦
Xu, for u ∈ WX . These classes are dual to

the Schubert structure sheaves in the sense that χ
X
(Ou · Iv) = δu,v [Bri02, Cor. 2],

and the structure constants of K(X) with respect to the dual basis {Iu} have
alternating signs by [Bri02, Thm. 1] and [GK08, Remark 3.7]. More precisely, if we

write Iu · Iv =
∑

w C̃
w
u,vIw in K(X), with u, v, w ∈WX , then (−1)ℓ(uvw)C̃w

u,v ≥ 0.
An equivariant generalization can be found in [GK08, Conj. 3.1] and [AGM11,
Cor. 5.2]. However, this version of positivity does not extend to quantum K-theory.
In fact, the dual basis of K(P1) consists of the classes

I0 = 1− [Opoint] and I1 = [Opoint] ,
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Table 4. The number of products Ou ⋆ Ov with exceptional de-
grees on Lagrangian Grassmannians LG(n, 2n).

n Total products Exceptional degrees
2 10 1 (10%)
3 36 3 (8.3%)
4 136 17 (12.5%)
5 528 70 (13.3%)
6 2080 313 (15.0%)
7 8256 1317 (16.0%)
8 32896 5590 (17.0%)
9 131328 23310 (17.7%)
10 524800 96932 (18.5%)

and in QK(P1) we have

I0 ⋆ I0 = 1− 2[Opoint] + q = I0 − I1 + qI0 + qI1 .

8.2. A geometric construction of the quantum product. We give a geometric
construction of the classes (Ou ⋆Ov)d ∈ K(X) that is better suited for determining
the signs of the structure constants of QK(X).

Lemma 8.7. Let 1 ≤ d ≤ dX(2). The diagonal action of G on the set {(η, ω) ∈
Yd−1 × Yd | Γη ⊂ Γω} is transitive.

Proof. Let (η, ω) ∈ Yd−1×Yd be such that Γη ⊂ Γω. We must show that (η, ω) is in
the orbit G.(1.PYd−1

, 1.PYd
). Since G acts transitively on Yd, we may assume that

ω = 1.PYd
. Choose x, y ∈ Γη such that dist(x, y) = d− 1. Then Γd−1(x, y) = Γη by

Corollary 5.20, and Lemma 5.6 applied to Γω shows that we can find g ∈ PYd
such

that g.(x, y) = (1.PX , κd−1.PX). It follows that g.Γη = Xκd−1
, as required. □

For 1 ≤ d ≤ dX(2) we set Yd−1,d = G/(PYd−1
∩ PYd

). By Lemma 8.7 we can
make the identification

Yd−1,d = {(η, ω) ∈ Yd−1 × Yd | Γη ⊂ Γω} .
Let ϕd−1 : Yd−1,d → Yd−1 and ϕd : Yd−1,d → Yd be the projections. Given u, v ∈
WX we define the varieties

Yd−1,1(Xu, X
v) = ϕd(ϕ

−1
d−1(Yd−1(Xu, X

v)))

= {ω ∈ Yd | ∃ η ∈ Yd−1(Xu, X
v) : Γη ⊂ Γω} ,

Zd−1,1(Xu, X
v) = q−1

d (Yd−1,1(Xu, X
v)) , and

Γd−1,1(Xu, X
v) = pd(Zd−1,1(Xu, X

v)) .

Notice that ϕ−1
d−1(Yd−1(Xu, X

v)) is a Richardson variety and Yd−1,1(Xu, X
v) is a

projected Richardson variety, so Theorem 2.13 implies that Yd−1,1(Xu, X
v) has

rational singularities and [OYd−1,1(Xu,Xv)] = (ϕd)∗(ϕd−1)
∗[OYd−1(Xu,Xv)]. Since the

map qd : Zd−1,1(Xu, X
v) → Yd−1,1(Xu, X

v) is a locally trivial fibration with non-
singular fibers, it follows that Zd−1,1(Xu, X

v) has rational singularities as well. On
the other hand, Γd−1,1(Xu, X

v) is not in general a (projected) Richardson variety. It
would be interesting to understand the singularities of this variety. In Example 8.31
we give an example where Γd−1,1(Xu, X

v) has rational singularities and fails to be
a projected Richardson variety.
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Question 8.8. Does Γd−1,1(Xu, X
v) always have rational singularities?

The following lemma applied to Yd−1(Xu, X
v) shows that Γd−1,1(Xu, X

v) =
Γ1(Γd−1(Xu, X

v)), that is, Γd−1,1(Xu, X
v) is the set of all points in X that are

connected by a line to a stable curve of degree d− 1 meeting Xu and Xv.

Lemma 8.9. For any subset Ω ⊂ Yd−1 we have

(8) pd q
−1
d ϕd ϕ

−1
d−1(Ω) = p1 q

−1
1 q1 p

−1
1 pd−1 q

−1
d−1(Ω) .

Proof. A point z ∈ X belongs to the left hand side of (8) if and only if there exists
η ∈ Ω and ω ∈ Yd such that z ∈ Γω and Γη ⊂ Γω. Since p1q

−1
1 q1p

−1
1 (x) = Γ1(x) for

all x ∈ X by Corollary 5.23, the point z ∈ X belongs to the right hand side of (8) if
and only if there exists η ∈ Ω such that Γ1(z) ∩ Γη ̸= ∅. Assume that z belongs to
the left hand side of (8) and choose (η, ω) ∈ Ω× Yd such that z ∈ Γω and Γη ⊂ Γω.
Since Γ1(z) ∩ Γω and Γη represent dual classes in H∗(Γω;Z) by Lemma 5.18, we
have Γ1(z)∩Γη ̸= ∅, so z belongs to the right hand side of (8). On the other hand,
if z belongs to the right hand side of (8), then choose (η, x) ∈ Ω × X such that
x ∈ Γ1(z)∩Γη. Then choose y ∈ Γη such that dist(x, y) = d− 1. Since there exists
a (possibly reducible) rational curve of degree d through x, y, and z, it follows from
Proposition 5.21 that we may choose ω ∈ Yd such that x, y, z ∈ Γω. Since x, y ∈ Γω

and dist(x, y) = d − 1, it follows from Corollary 5.20 that Γη = Γd−1(x, y) ⊂ Γω.
This shows that z belongs to the left hand side of (8). □

Theorem 8.10. We have (Ou ⋆Ov)d = [OΓd(Xu,Xv)]− (pd)∗[OZd−1,1(Xu,Xv)].

Proof. By equation (5) and Corollary 5.23 we have

(Ou ⋆Ov)d = [OΓd(Xu,Xv)]− (p1)∗(q1)
∗(q1)∗(p1)

∗[OΓd−1(Xu,Xv)] .

It is therefore enough to show that

(pd)∗(qd)
∗(ϕd)∗(ϕd−1)

∗[OYd−1(Xu,Xv)] =

(p1)∗(q1)
∗(q1)∗(p1)

∗(pd−1)∗(qd−1)
∗[OYd−1(Xu,Xv)] .

More generally, the linear operators

(pd)∗(qd)
∗(ϕd)∗(ϕd−1)

∗ and (p1)∗(q1)
∗(q1)∗(p1)

∗(pd−1)∗(qd−1)
∗

define the same map K(Yd−1) → K(X). In fact, using that K(Yd−1) has a basis of
Schubert classes [OΩ], this follows from Lemma 8.9. □

8.3. Proof of our main theorems. In [BCMP18b] we proved that Γd(Xu, X
v)

has rational singularities and that

(pd)∗[OZd(Xu,Xv)] = [OΓd(Xu,Xv)] .

In fact, this follows from Corollary 5.23 and Theorem 2.13.

Let Ω be an irreducible variety defined over C and let ρ : Ω̃ → Ω be a resolu-
tion of singularities. Define the resolution class of Ω to be the image ρ∗[OΩ̃] =∑

i≥0(−1)i[Riρ∗OΩ̃] in the Grothendieck group K(Ω) of coherent sheaves on Ω.
This class is independent of the chosen desingularization and will be denoted sim-
ply by [OΩ̃]. When Ω ⊂ X is a closed subvariety, we also write [OΩ̃] for the image
of the resolution class in K(X). If Ω has rational singularities, then [OΩ̃] = [OΩ].
We need the following result [Bri02, §4, Remark].
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Theorem 8.11 (Brion). Let M = G/PM be a flag variety over C and let Ω ⊂ M
be an irreducible closed subvariety. Then the resolution class [OΩ̃] is an alternating
linear combination of Schubert classes, that is, we have

[OΩ̃] =
∑

w∈WM

cw(Ω)Ow

in K(M), where (−1)ℓ(w)−codim(Ω,M) cw(Ω) ≥ 0 for all w ∈WM .

Theorem 8.12. Let f : Ω′ → Ω be a surjective morphism between complex pro-
jective varieties with rational singularities. Then f is cohomologically trivial if and
only if the general fibers of f are cohomologically trivial.

Proof. The implication ‘if ’ follows from [Kol86, Thm 7.1] (see the proof of [BM11,
Thm. 3.2]), and ‘only if ’ follows from [Har77, III.12.8 and III.12.9]. □

We will use the following consequence of Theorem 8.12 when condition (b) is
satisfied. The condition that Ω′ has rational singularities is necessary in this case,
see Example 8.14.

Corollary 8.13. Let f : Ω′ → Ω be a surjective morphism of irreducible projec-
tive varieties over C. Assume that either (a) the general fibers of f are rationally
connected, or (b) Ω′ has rational singularities and the general fibers of f are coho-
mologically trivial. Then, f∗[OΩ̃′ ] = [OΩ̃].

Proof. Let Ω̃ be a desingularization of Ω, and let Ω̃′ be a desingularization of the

unique irreducible component of Ω′×Ω Ω̃ that maps birationally onto Ω′. We obtain
a commutative diagram where the vertical maps are resolutions of singularities.

Ω̃′

π′

��

f̃ // Ω̃

π

��
Ω′ f // Ω

Let U ′ ⊂ Ω′ be a dense open subset such that π′ : π′−1
(U ′) → U ′ is an isomorphism,

and set Z = Ω̃′∖π′−1
(U ′). For x ∈ Ω we let Ω′

x ⊂ Ω′, Ω̃′
x ⊂ Ω̃′, and Zx ⊂ Z denote

the fibers over x. Set r = dim(Ω′) − dim(Ω). Choose a dense open subset U ⊂ Ω
such that fπ′ : (fπ′)−1(U) → U is smooth, dim(Zx) < r for all x ∈ U , and Ω′

x is
rationally connected for x ∈ U in case (a), or cohomologically trivial with rational
singularities in case (b). Here we use that the general fibers of f have rational
singularities when Ω′ has rational singularities by [Bri02, Lemma 3].

Let x ∈ U . Then Ω̃′
x is a disjoint union of non-singular varieties of dimension r,

and Ω′
x is irreducible. Since Ω̃′

x ∩ π′−1
(U ′) ⊂ Ω̃′

x is a dense open subset isomorphic

to Ω′
x∩U ′, it follows that Ω̃′

x is birational to Ω′
x. We deduce that Ω̃′

x is cohomolog-
ically trivial; this follows from [Deb01, Cor. 4.18(a)] if Ω′

x is rationally connected,
and from the Leray spectral sequence if Ω′

x is cohomologically trivial with ratio-

nal singularities. Theorem 8.12 now shows that f̃ is cohomologically trivial, which
completes the proof. □

The alternating signs conjecture for QK(X) would be a consequence of the fol-
lowing two statements.
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Table 5. Divisors in Yd(Xu, X
v) and Γd(Xu, X

v).

Range of degrees Yd−1,1(Xu, X
v) Γd−1,1(Xu, X

v)

1 ≤ d ≤ dmin(u
∨, v) = ∅ = ∅

dmin(u
∨, v) < d ≤ dmax(u

∨, v) ⊊ Yd(Xu, X
v) ⊊ Γd(Xu, X

v)

dmax(u
∨, v) < d ≤ min(dmax(u

∨), dmax(v)) ⊊ Yd(Xu, X
v) = Γd(Xu, X

v)

min(dmax(u
∨), dmax(v)) < d ≤ dX(2) = Yd(Xu, X

v) = Γd(Xu, X
v)

(I) The general fibers of the map pd : Zd−1,1(Xu, X
v) → Γd−1,1(Xu, X

v) are
cohomologically trivial.

(II) The variety Γd−1,1(Xu, X
v) is either equal to Γd(Xu, X

v) or a divisor in
Γd(Xu, X

v).

In fact, the class [OΓd(Xu,Xv)] has alternating signs by Theorem 8.11, and these
signs are compatible with Conjecture 8.1 for dmin(u

∨, v) ≤ d ≤ dmax(u
∨, v), as

Proposition 7.1 shows that codim(Γd(Xu, X
v), X) = ℓ(u∨) + ℓ(v)− deg(qd). Prop-

erty (I) implies that (pd)∗[OZd−1,1(Xu,Xv)] is the resolution class of Γd−1,1(Xu, X
v)

by Corollary 8.13, which also has alternating signs by Theorem 8.11. The point of
(II) is that, if Γd−1,1(Xu, X

v) is a divisor in Γd(Xu, X
v), then the alternating signs

of the two terms in Theorem 8.10 enhance each other to yield the alternating signs
of (Ou ⋆ Ov)d. Properties (I) and (II) also imply that (Ou ⋆ Ov)d is non-zero if
and only if Γd−1,1(Xu, X

v) ̸= Γd(Xu, X
v). This determines whether the power qd

occurs in Ou ⋆Ov. We will show that (II) is true in all cases, whereas (I) holds if
and only if d is not an exceptional degree of Ou ⋆ Ov. These results are sufficient
to establish Theorem 8.3 and Theorem 8.4. Table 4 illustrates that most products
Ou ⋆Ov on Lagrangian Grassmannians are fully described by these results.

Proofs of Theorem 8.3 and Theorem 8.4. Table 5 shows the range of degrees where
Yd−1,1(Xu, X

v) is a divisor in Yd(Xu, X
v), and where Γd−1,1(Xu, X

v) is a divisor in
Γd(Xu, X

v). The codimension of Yd−1,1(Xu, X
v) is determined by Proposition 8.18

and Proposition 8.21, after which the codimension of Γd−1,1(Xu, X
v) is determined

by Proposition 8.20 and Corollary 8.24. The results now follow from Corollary 8.25
using the strategy discussed above. □

Example 8.14. Let E ⊂ P2 be an elliptic curve, let Ω′ ⊂ P3 be the cone over
E, set Ω = Spec(C), and let f : Ω′ → Ω be the structure morphism. Using the
exact sequence 0 → OP3(−3) → OP3 → OΩ′ → 0, it follows that the fibers of f are

cohomologically trivial. Let Ω̃′ be the blow-up of Ω′ at its vertex, and let g : Ω̃′ → E
be the map induced by the projection Ω′ 99K E. Since the fibers of g are projective
lines, it follows from Corollary 8.13(a) that g∗[OΩ̃′ ] = [OE ]. Since χ(E,OE) = 0,
we deduce that f∗[OΩ̃′ ] = 0 ̸= [OΩ]. This shows that Corollary 8.13(b) may fail
without the assumption that Ω′ has rational singularities.

Remark 8.15. The equivariant quantum K-theory ring QKT (X) is defined by
(5) and (6), except that all structure sheaves are endowed with their natural T -
equivariant structure, see [BCMP18a] for details. Since Corollary 8.13 remains true
in equivariant K-theory, our results imply that the identity

Ou ⋆Ov = [OΓd(Xu,Xv)]− [O
Γ̃d−1,1(Xu,Xv)

]
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holds in QKT (X) whenever d is not an exceptional degree. In particular, Theo-
rem 8.3 holds for QKT (X).

Let Ñw,d
u,v ∈ KT (point), for u, v, w ∈WX , denote the structure constants describ-

ing the action of the B−-stable Schubert basis {Ov} on the B-stable basis {Ou} of
QKT (X):

Ou ⋆Ov =
∑

w,d≥0

Ñw,d
u,v q

d Ow

If Theorem 8.11 is upgraded to the equivariant setting of [AGM11, Thm. 4.1], then
these constants would satisfy the positivity property

(−1)ℓ(uvw)+deg(qd) Ñw,d
u,v ∈ N

[
[C−β ]− 1 : β ∈ ∆

]
.

We thank D. Anderson [And] for sending us an outline of a proof of the equivariant
version of Theorem 8.11, with some details left to check. We hope to address this
elsewhere, and possibly prove a slight generalization of Theorem 8.11.

The classes Ou∨ and Ou are distinct in KT (X), so it is not clear how to apply
our results to products Ou ⋆Ov of two B−-stable Schubert classes in QKT (X). A
positivity conjecture for the structure constants of such products is discussed in
[BCMP18a, Conj. 2.2], generalizing [GR04, Conj. 5.1] and [AGM11, Cor. 5.3].

Conjecture 8.16. The power qd occurs in the equivariant quantum product Ou ⋆
Ov ∈ QKT (X) if and only if 0 ≤ d ≤ dmax(u, v) or d = dmax(u, v) + 1 is an
exceptional degree of Ou∨ ⋆Ov.

8.4. Proofs and counterexamples to (I) and (II). Fix elements u, v ∈ WX

and a degree 1 ≤ d ≤ dX(2). We proceed to establish the required properties of
the map pd : Zd−1,1(Xu, X

v) → Γd−1,1(Xu, X
v). Notice that Γd(Xu, X

v) is empty
for d < dmin(u

∨, v), and Γd−1,1(Xu, X
v) is empty for d ≤ dmin(u

∨, v).

Lemma 8.17. We have w
Yd−1,d

0,Yd
= sα̃d

.

Proof. The element w
Yd−1,d

0,Yd
describes the fiber of the map ϕd : Yd−1,d → Yd over

1.PYd
, that is, ϕ−1

d (1.PYd
) = (Yd−1,d)

w
Yd−1,d
0,Yd

. Since this fiber does not change if the

cominuscule variety X is replaced with Xκd
, we may assume that X is a primitive

cominuscule variety of diameter d. In this case Yd is a point and Yd−1,d = Yd−1,

so Lemma 6.1 and Lemma 5.18 imply that w
Yd−1,d

0,Yd
= w0w0,Yd−1

= w0w0,Xzd−1 =

wX
0 zd−1 = sα̃d

, as required. □

We first consider degrees in the range dmin(u
∨, v) < d ≤ min(dmax(u

∨), dmax(v)).
In this case the maps qd : p−1

d (Xu) → Yd(Xu) and qd : p−1
d (Xv) → Yd(X

v) are
birational by Corollary 6.9(a). Since the fibers of pd : Zd → X and qd : Zd → Yd
are described by wZd

0,X = zd/κd and wZd

0,Yd
= κd by Lemma 6.1, we deduce that

uzdκd = u(zd/κd) and vκd = v/κd belong to WYd , and uzd ∈ WZd . With the
notation for projected Richardson varieties from Section 3, we obtain Yd(Xu, X

v) =
(Yd)

vκd
uzdκd

= Πvκd
uzdκd

(Yd) and Zd(Xu, X
v) = (Zd)

vκd
uzd

= Πvκd
uzd

(Zd).

Proposition 8.18. Assume that dmin(u
∨, v) < d ≤ min(dmax(u

∨), dmax(v)). Then
vκdsγ ≤Yd

uzdκd, and Yd−1,1(Xu, X
v) = Π

vκdsγ
uzdκd(Yd) is a divisor in Yd(Xu, X

v).

Proof. Define η ∈ WZd
by sγη = κd/κd−1. We have Yd−1(X

v) = (Yd−1)
v/κd−1 =

(Yd−1)
vκdsγη, and Proposition 6.7(a) shows that vκdsγη = v/κd−1 ∈ WYd−1 . We
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also have κd/κd−1 ∈WYd
∩WYd−1 , hence uzdκdη ∈WYd−1,d . Define

Zd−1,d = G/(PYd−1
∩ PYd

∩ PX) = {(η, ω, x) ∈ Yd−1 × Yd ×X | x ∈ Γη ⊂ Γω} ,
with projections p : Zd−1,d → Zd and q : Zd−1,d → Yd−1,d.

X Zd−1

pd−1oo

qd−1

��

Zd−1,d
oo p //

q

��

Zd
pd //

qd

��

X

Yd−1 Yd−1,d

ϕd−1oo ϕd // Yd

Using that κdw
Zd−1,d

0,Zd
= w

Yd−1,d

0,Yd
w

Zd−1,d

0,Yd−1,d
= sα̃d

κd−1 by Lemma 6.1 and Lemma 8.17,

we obtain w
Zd−1,d

0,Zd
= κdsα̃d

κd−1 = η. This implies

ϕ−1
d−1(Yd−1(Xu)) = qp−1p−1

d (Xu) = (Yd−1,d)uzdκdη .

We obtain

Yd−1,1(Xu, X
v) = ϕd(ϕ

−1
d−1(Yd−1(Xu, X

v)))

= ϕd
(
ϕ−1
d−1(Yd−1(Xu)) ∩ ϕ−1

d−1(Yd−1(X
v))

)
= ϕd

(
(Yd−1,d)

vκdsγη
uzdκdη

)
= Πvκdsγη

uzdκdη
(Yd) = Πvκdsγ

uzdκd
(Yd) ,

where the last two equalities follow from Corollary 3.6 and Theorem 3.4(b), or
[KLS14, Prop. 3.3]. The inequality vκdsγ ≤Yd

uzdκd holds because Yd−1(Xu, X
v) ̸=

∅ and uzdκd ∈ WYd . Finally, it follows from Proposition 3.2 that Yd−1,1(Xu, X
v)

is a divisor in Yd(Xu, X
v) = Πvκd

uzdκd
(Yd). □

Lemma 8.19. Assume that dmin(u
∨, v) < d ≤ min(dmax(u

∨), dmax(v)). Then

Zd−1,1(Xu, X
v) ∩

◦
Πvκd

uzd
(Zd) is a dense open subset of Zd−1,1(Xu, X

v).

Proof. By Proposition 8.18, Zd−1,1(Xu, X
v) is a divisor in Zd(Xu, X

v) = Πvκd
uzd

(Zd).

If the claim is false, then Theorem 3.5 implies that Zd−1,1(Xu, X
v) = Πb

a(Zd),
where vκd ≤ b ≤Zd

a ≤ uzd. Since Πb
a(Yd) = Π

vκdsγ
uzdκd(Yd) by Proposition 8.18 and

uzdκd ∈ WYd , it follows from Theorem 3.4 that a ≥ uzdκd and b ≥ vκdsγ . Since
we also have ℓ(a)− ℓ(b) = ℓ(uzd)− ℓ(vκdsγ), it follows that a = uzd and b = vκdsγ .
But Theorem 3.4 also implies that Π

vκdsγ
uzd (Yd) = Πvκd

uzdκd
(Yd), a contradiction. □

Proposition 8.20. Assume that dmin(u
∨, v) < d ≤ dmax(u

∨, v). Then the map
pd : Zd−1,1(Xu, X

v) → Γd−1,1(Xu, X
v) is birational.

Proof. Since pd : Zd(Xu, X
v) → Γd(Xu, X

v) is birational by Proposition 7.1 and
Corollary 6.9(d), it follows from Proposition 3.2 that the restriction of pd to the open

projected Richardson variety
◦
Πvκd

uzd
(Zd) is injective. The result therefore follows

from Lemma 8.19. □

Our next result shows that Zd−1,1(Xu, X
v) = Zd(Xu, X

v) and Γd−1,1(Xu, X
v) =

Γd(Xu, X
v) whenever d > min(dmax(u

∨), dmax(v)).

Proposition 8.21. Assume d > min(dmax(u
∨), dmax(v)). Then, Yd−1,1(Xu, X

v) =
Yd(Xu, X

v).

Proof. Let ω ∈ Yd(Xu, X
v) and assume that d > dmax(v). Then Γω ∩ Xv has

positive dimension by Corollary 6.9(a). Choose any point x ∈ Γω ∩ Xu. Then
Γd−1(x)∩Γω is a divisor in Γω by Lemma 5.18. It follows that Γd−1(x)∩Γω∩Xv ̸= ∅.
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Choose any point y ∈ Γd−1(x) ∩ Γω ∩ Xv. Since dist(x, y) ≤ d − 1, there exists
η ∈ Yd−1 such that x, y ∈ Γη ⊂ Γω by Corollary 5.20(b) applied to Γω. This proves
that ω ∈ Yd−1,1(Xu, X

v). A symmetric argument works if d > dmax(u
∨). □

We finally discuss the remaining range dmax(u
∨, v) < d ≤ min(dmax(u

∨), dmax(v)).
For degrees in this range, the map pd : Zd(Xu, X

v) → Γd(Xu, X
v) has fibers of

positive dimension by Proposition 7.1 and Corollary 6.9(d).

Notation 8.22. Given a fixed cominuscule variety X, we let ϵ denote the constant
defined by ϵ = 1 if X is minuscule or an odd quadric of dimension at least five,
while ϵ = 2 if X is a Lagrangian Grassmannian. The three-dimensional quadric
Q3 = LG(2, 4) is considered a Lagrangian Grassmannian.

The proof of the following result is postponed to Section 9, where we also justify
the definition of ϵ. Let [∂Yd] =

∑
β∈∆∖∆Yd

[Y
sβ
d ] denote the (ample) sum of the

Schubert divisors in Yd.

Proposition 8.23. Let dmax(u
∨, v) < d ≤ min(dmax(u

∨), dmax(v)). For all points
z in a dense open subset of Γd(Xu, X

v), the fiber D = p−1
d (z) ∩ Zd−1,1(Xu, X

v)

is a Cartier divisor of class ϵ q∗d[∂Yd] in the Richardson variety R = p−1
d (z) ∩

Zd(Xu, X
v).

Corollary 8.24. For d > dmax(u
∨, v) we have Γd−1,1(Xu, X

v) = Γd(Xu, X
v).

Proof. This follows from Proposition 8.21 and Proposition 8.23. □

Corollary 8.25. Let dmin(u
∨, v) < d ≤ dX(2). The general fibers of the map

pd : Zd−1,1(Xu, X
v) → Γd−1,1(Xu, X

v) are cohomologically trivial if and only if d
is not an exceptional degree of Ou ⋆Ov.

Proof. This follows from Proposition 8.20 if d ≤ dmax(u
∨, v), and it follows from

Proposition 8.21 and Corollary 2.11 for d > min(dmax(u
∨), dmax(v)). Assume that

dmax(u
∨, v) < d ≤ min(dmax(u

∨), dmax(v)), and let R and D be as in Proposi-

tion 8.23. Then R is a translate of the Richardson variety (Fd)
ud∩vd

ud
, and we have

[D] = ϵ[∂Fd] in Pic(R). Notice that R has positive dimension by Proposition 7.1.
We use Corollary 4.12 to argue that D is cohomologically trivial if and only if
(ud ∪ vd)/vd is not a short rook strip. If X is minuscule, then Fd is a product
of minuscule varieties, ϵ = 1, and D is cohomologically trivial because there are
no tableaux of shape I(ud) ∖ I(vd) with integer values from the interval [ 12 , 1). If

X = Q2n−1 is an odd quadric with n ≥ 3, then ϵ = 1, and the assumptions imply
that d = 1, hence Fd = Q2n−3. This time D is cohomologically trivial if and only if
there are no decreasing primed tableau of shape I(ud)∖ I(vd) using only the label
1
2 , that is, (ud ∪ vd)/vd is not a short rook strip. Finally, if X = LG(n, 2n) is a
Lagrangian Grassmannian, then ϵ = 2, Fd = Gr(n−d, n) is a Grassmannian of type
A, and D is cohomologically trivial if and only if there are no decreasing primed
tableaux of shape I(ud)∖ I(vd) using only the label 1, that is, (ud ∪ vd)/vd is not a
rook strip. In this case a rook strip is the same as a short rook strip, since all boxes
of PFd

are short by convention. The result follows from these observations. □

Since the general fibers of pd : Zd−1,1(Xu, X
v) → Γd−1,1(Xu, X

v) have rational
singularities by [Bri02, Lemma 3], it follows from Corollary 8.25 that these fibers
are irreducible projective varieties of arithmetic genus zero for any non-exceptional
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degree in the range dmin(u
∨, v) < d ≤ dX(2). The following result describes the

fibers for exceptional degrees.

Theorem 8.26. Let d = dmax(u
∨, v)+1 be an exceptional degree of Ou ⋆Ov. Then

the general fibers of pd : Zd−1,1(Xu, X
v) → Γd(Xu, X

v) have rational singularities
and arithmetic genus one. They are irreducible projective varieties if they have
positive dimension.

Proof. The general fibers D = Zd−1,1(Xu, X
v) ∩ p−1

d (z) have rational singulari-
ties by [Bri02, Lemma 3], and it follows from Theorem 4.9 that D has arithmetic
genus one. In the positive dimensional case, the general fibers are connected by
Proposition 8.23 and the Fulton-Hansen theorem [FH79]. □

Remark 8.27. When d = dmax(u
∨, v)+ 1 is an exceptional degree of Ou ⋆Ov, the

general fibers of pd : Zd−1,1(Xu, X
v) → Γd(Xu, X

v) can be described more explic-
itly as follows. Since (ud∪vd)/vd is a rook strip, it follows from Corollary 6.9(d) and
[BR12, Lemma 3.2(b)] that the Richardson variety R = Zd(Xu, X

v) ∩ p−1
d (z) is a

product of projective lines for general z ∈ Γd(Xu, X
v). Proposition 8.23 shows that

D = Zd−1,1(Xu, X
v) ∩ p−1

d (z) has multidegree (2, 2, . . . , 2) in R. The arithmetic
genus of D can also be computed from this description.

Given a non-zero K-theory class F ∈ K(X), the initial term lead(F) is defined
as the homogeneous component of lowest degree in the Chern character ch(F) ∈
H∗(X,Q). Equivalently, lead(F) is the leading term of F modulo the topological
filtration of K(X) (see [Ful98, Ex. 15.2.16]). Let codim(F) denote the complex
degree of lead(F), so that lead(F) ∈ H2 codim(F)(X,Z), and let

F =
∑

w∈WX

cw(F)Ow

be the expansion of F in the Schubert basis of K(X). Then codim(F) is the
minimal length ℓ(w) for which cw(F) ̸= 0. The class F has alternating signs if
(−1)ℓ(w)−codim(F)cw(F) ≥ 0 holds for all w ∈WX .

Part (a) of the following conjecture might point towards a generalization of
Brion’s positivity theorem. Parts (b) and (c) imply that (Ou ⋆Ov)d ̸= 0 whenever
d is an exceptional degree.

Conjecture 8.28. Assume that d = dmax(u
∨, v) + 1 is an exceptional degree of

Ou ⋆Ov.

(a) The class (pd)∗[OZd−1,1
(Xu, X

v)] ∈ K(X) has alternating signs.

(b) If dimΓd(Xu, X
v) ̸≡ dimZd(Xu, X

v) (mod 2), then the initial term of
(pd)∗[OZd−1,1

(Xu, X
v)] is equal to 2 [Γd(Xu, X

v)].

(c) If dimΓd(Xu, X
v) ≡ dimZd(Xu, X

v) (mod 2), then the initial term of
(pd)∗[OZd−1,1

(Xu, X
v)] has complex degree codim(Γd(Xu, X

v), X) + 1.

Example 8.29. Let X = Q2n−1 be a quadric of odd dimension. By Example 8.5,
the only exceptional product in QK(X) is On ⋆ On−1, with corresponding excep-
tional degree d = 1. Since (On ⋆On−1)1 = −1 +O1, we obtain from Theorem 8.10
that Γ1(Xn, X

n−1) = X and

(p1)∗[OZ0,1(Xn,Xn−1)] = [OΓ1(Xn,Xn−1)]− (On ⋆On−1)1 = 2−O1 .
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The general fibers of p1 : Z1(Xn, X
n−1) → X are projective lines by Corol-

lary 6.9(d), and the general fibers of p1 : Z0,1(Xn, X
n−1) → X consist of two

reduced points by Proposition 8.23. This proves Conjecture 8.28 for odd quadrics.

Example 8.30. Let X = LG(4, 8) and define u, v ∈ WX by I(u) = and

I(v) = . The corresponding products in QH(X) and QK(X) are given by

[Xu] ⋆ [X
v] = 4[X(4,3,1)] + 4q[X(3)] + 2q[X(2,1)]

and

Ou ⋆Ov = 4O(4,3,1) − 4O(4,3,2) +O(4,3,2,1)

+ 4qO(3) + 2qO(2,1) − 4qO(4) − 11qO(3,1) + 7qO(3,2) + 7qO(4,1)

− 5qO(4,2) − 2qO(3,2,1) + qO(4,3) + 2qO(4,2,1) − qO(4,3,1)

+ q2 − 2q2O(1) + 2q2O(2) − q2O(3) − q2O(2,1) + q2O(3,1) .

The product Ou ⋆Ov has exceptional degree d = 2, and we have Γd(Xu, X
v) = X,

Fd = Gr(2, 4), ud = , and vd = . The general fibers of pd : Zd−1,1(Xu, X
v) → X

are elliptic curves by Theorem 8.26. The identity

(pd)∗[OZd−1,1(Xu,Xv)] = 1− (Ou ⋆Ov)d = 2O(1) − 2O(2) +O(3) +O(2,1) −O(3,1)

shows that Conjecture 8.28 holds for the product Ou ⋆Ov.

In [BCMP18b, Ex. 5.4] we gave an example of a projected Richardson variety in
the Grassmannian Gr(2, 6) that is not of the form Γd(Xu, X

v). On the other hand,
the following example shows that not all varieties of the form Γd−1,1(Xu, X

v) are
projected Richardson varieties. The studied variety Γd−1,1(Xu, X

v) has rational
singularities and satisfies (pd)∗[OZd−1,1(Xu,Xv)] = [OΓd−1,1(Xu,Xv)].

Example 8.31. Let X = Gr(3, 6) be the Grassmannian of 3-planes in C6 and set

v = s2s4s3 and u = v∨. Then v corresponds to the partition I(v) = (2, 1) = .

A calculation in QH(X) gives ([Xu] ⋆ [X
v])1 = 1, so we have Γ1(Xu, X

v) = X,
and it follows from Proposition 8.20 that Γ0,1(Xu, X

v) is a divisor in X. Let
{e1, e2, e3, e4, e5, e6} be the standard basis of C6 and set A1 = Span{e1, e2}, A2 =
Span{e3, e4}, and A3 = Span{e5, e6}. The Richardson variety Xv

u is isomorphic to
P1 × P1 × P1 and consists of all 3-planes V = Span{a1, a2, a3} for which ai ∈ Ai.
The variety Γ0,1(Xu, X

v) = Γ1(X
v
u) is the union of all lines through Xv

u. For any
point V ′ ∈ X we have V ′ ∈ Γ1(X

v
u) if and only if there exists a point V ∈ Xv

u such
that dim(V + V ′) ≤ 4. Consider the open affine subset U ⊂ X corresponding to
matrices of the form:

(9)

1 x11 0 x12 0 x13
0 x21 1 x22 0 x23
0 x31 0 x32 1 x33


The row space of such a matrix belongs to Xv

u if and only if has the form:

(10)

1 t1 0 0 0 0
0 0 1 t2 0 0
0 0 0 0 1 t3


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The span of the 6 row vectors in (9) and (10) has rank 4 or less if and only if the
matrix x11 − t1 x12 x13

x21 x22 − t2 x23
x31 x32 x33 − t3


has rank at most one, which implies that x12x23x31 = x32x21x13. Since the divisor
defined by this equation is irreducible, it coincides with Γ1(X

v
u) ∩ U .

Let pijk for 1 ≤ i < j < k ≤ 6 denote the Plücker coordinates on X. Then
Γ1(X

v
u) is defined by the equation p123 p456 = p124 p356. It follows that Γ1(X

v
u) is

a divisor of degree 2 in X, so it is not a projected Richardson variety. In fact,
it follows from Theorem 3.4 that there are 6 projected Richardson divisors in X,
namely Π1

s3wX
0
(X) and Πsk

wX
0
(X) for 1 ≤ k ≤ 5, and since their union is anticanonical

by [KLS14, Lemma 5.4], each of these divisors has degree 1. Moreover, we obtain

[OΓ1(Xv
u)
] = 2O(1) −O(1) · O(1) = 2O(1) −O(2) −O(1,1) +O(2,1) .

Using the Pieri formula [BM11, Thm. 5.4] we obtain

(Ou ⋆Ov)1 = 1− 2O(1) +O(2) +O(1,1) −O(2,1)

Using Theorem 8.10, we obtain

(p1)∗[OZ0,1(Xu,Xv)] = [OΓ1(Xu,Xv)]− (Ou ⋆Ov)1 = [OΓ1(Xv
u)
] .

This identity also follows from Proposition 8.20, granted that Γ1(X
v
u) has rational

singularities. In fact, Chenyang Xu has shown us a proof [Xu] that the local equa-
tion x12x23x31 = x32x21x13 is a canonical singularity, which implies that Γ1(X

v
u)∩U

has rational singularities. One can check that the local neighborhood of Γ1(X
v
u)

defined by the non-vanishing of any Plücker coordinate pijk is a deformation of
Γ1(X

v
u) ∩ U . It therefore follows from [Kaw99] that Γ1(X

v
u) has canonical singu-

larities globally, or from [Elk78] that Γ1(X
v
u) has rational singularities globally.

As mentioned earlier, it would be interesting to know if all varieties of the form
Γd−1,1(Xu, X

v) have rational singularities.

9. Divisors of the quantum-to-classical construction

Let X = G/PX be cominuscule and fix a degree 1 ≤ d ≤ dX(2). Define the
variety

Z
(2)
d = Zd ×Yd

Zd = {(ω, x, y) ∈ Yd ×X2 | x, y ∈ Γω} ,

with projections ei : Z
(2)
d → Zd for i = 1, 2. Recall from Notation 8.22 that we set

ϵ = 2 if X is a Lagrangian Grassmannian and ϵ = 1 otherwise. This means that
the roots of ∆ ∖ ∆Yd

are long if ϵ = 1 and short if ϵ = 2. In particular, we have
(α∨, ωγ) = ϵ for any α ∈ PX satisfying δ(α) ∈ ∆∖∆Yd

.

Proposition 9.1. The set D = {(ω, x, y) ∈ Z
(2)
d | dist(x, y) ≤ d − 1} is a divisor

in Z
(2)
d with rational singularities. The class of D in PicZ

(2)
d is given by

[D] = (pde1)
∗[Xsγ ] + (pde2)

∗[Xsγ ]− ϵ (qde1)
∗[∂Yd] .

Proof. The projection e2 : D → Zd is G-equivariant and therefore a locally trivial
fibration [BCMP13, Prop. 2.3], with fibers given by D ∩ e−1

2 (ω, x) ∼= Γd−1(x) ∩ Γω.

Lemma 5.18 and Lemma 5.4 therefore imply that D is a divisor in Z
(2)
d with rational

singularities.
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The group H2(Z
(2)
d ;Z) is a free abelian group generated by the basis elements

(pdei)
∗[Xsγ ] for i = 1, 2 and (qde1)

∗[Y
sβ
d ] for β ∈ ∆ ∖ ∆Yd

. Set ω0 = 1.PYd
∈ Yd

and x0 = 1.PX ∈ X, and define an embedding ζ : Γω0 → Z
(2)
d by ζ(x) = (ω0, x, x0).

Since ζ(Γω0
) = e−1

2 (ω0, x0), it follows from the local triviality of D that ζ−1(D) is
reduced. The identity ζ∗[D] = [Γω0 ∩Γd−1(x0)] = ζ∗(pde1)

∗[Xsγ ] then implies that
the coefficient of (pde1)

∗[Xsγ ] in [D] is one. A symmetric argument shows that the
coefficient of (pde2)

∗[Xsγ ] in [D] is one.
Given β ∈ ∆ ∖∆Yd

, let α ∈ PX be the minimal root for which δ(α) = β. This
root α can be constructed as the sum of all simple roots in the interval [γ, β] from
γ to β in the Dynkin diagram. Then I(κd) ∪ {α} is a straight shape in PX , and
β = δ(α) = κd.α. Let C ⊂ Zd be the T -stable curve through the points κd.(ω0, x0)
and κdsα.(ω0, x0). Since κ

−1
d = κd, we obtain sακd.x0 = κdsβ .x0 = κd.x0 ∈ Γω0 . It

follows that x0 ∈ Γω for each ω ∈ qd(C), so C
′ = {(ω, x, x0) | (ω, x) ∈ C} is a curve

in Z
(2)
d . Since κd.x0 and κdsα.x0 are points in Γd(x0)∖ Γd−1(x0) by Theorem 5.1,

we obtain dist(x, x0) = d for all x ∈ pd(C), hence C
′ ∩ D = ∅ and

∫
C′ [D] = 0.

Finally, since
∫
C′(pde1)

∗[Xsγ ] = (α∨, ωγ) = ϵ and
∫
C′(qde1)

∗[Y
sβ
d ] = (α∨, ωβ) = 1,

we deduce that the coefficient of (qde1)
∗[Y

sβ
d ] in [D] is −ϵ, as required. □

Given any closed subset Ω ⊂ X we set
◦
Γd(Ω) = Γd(Ω)∖ Γd−1(Ω). We have

Yd(Ω,
◦
Γd(Ω)) = {ω ∈ Yd(Ω) | Γω ∩

◦
Γd(Ω) ̸= ∅} .

For any point ω ∈ Yd(Ω) we have Γω∩Ω ̸= ∅, and since Γω has diameter d, we obtain

Γω ⊂ Γd(Ω). It follows that Yd(Ω,
◦
Γd(Ω)) = Yd(Ω, X ∖ Γd−1(Ω)). Since qd is an

open map, this shows that Yd(Ω,
◦
Γd(Ω)) is a relatively open subset of Yd(Ω). Notice

also that for v ∈WX , we have Yd(X
v,

◦
Γd(X

v)) ̸= ∅ if and only if d ≤ dmax(v).

Proposition 9.2. Assume that Ω ⊂ X is a Schubert variety.

(a) For each ω ∈ Yd(Ω,
◦
Γd(Ω)), Γω ∩ Ω is a (reduced) single point.

(b) The map σ : Yd(Ω,
◦
Γd(Ω)) → Ω defined by {σ(ω)} = Γω ∩Ω is a morphism

of varieties.

Proof. Given any point ω ∈ Yd(Ω,
◦
Γd(Ω)), the intersection Γω ∩ Ω is a Schubert

variety in Γω by Theorem 2.8. If it has positive dimension, then it meets the
Schubert divisor Γω ∩Γd−1(z) for every point z ∈ Γω by Lemma 5.18. This implies
that Γω ⊂ Γd−1(Ω), a contradiction. This proves part (a).

Since qd : p−1
d (Ω) → Yd(Ω) is a projective morphism, so is the restriction qd :

p−1
d (Ω) ∩ Zd(

◦
Γd(Ω)) → Yd(Ω,

◦
Γd(Ω)), and part (a) implies that this restricted map

is bijective. Since the target is normal, the map is an isomorphism by Zariski’s main
theorem. Part (b) follows from this because σ is the composition of the inverse map
with pd. □

Given u, v ∈WX we define the varieties
◦
Yd(Xu, X

v) = Yd(Xu,
◦
Γd(Xu)) ∩ Yd(Xv,

◦
Γd(X

v)) , and
◦
Yd−1,1(Xu, X

v) =
◦
Yd(Xu, X

v) ∩ Yd−1,1(Xu, X
v) .

It follows from Kleiman’s transversality theorem [Kle74] that
◦
Yd(Xu, X

v) is a dense
open subset of Yd(Xu, X

v) whenever d ≤ min(dmax(u
∨), dmax(v)). By Proposi-

tion 9.2 there are morphisms σ1 :
◦
Yd(Xu, X

v) → Xu and σ2 :
◦
Yd(Xu, X

v) → Xv
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defined by {σ1(ω)} = Γω ∩Xu and {σ2(ω)} = Γω ∩Xv. By Corollary 5.20(b) we
have

(11)
◦
Yd−1,1(Xu, X

v) =
{
ω ∈

◦
Yd(Xu, X

v) | dist(σ1(ω), σ2(ω)) ≤ d− 1
}
.

Proposition 9.3. Assume 1 ≤ d ≤ min(dmax(u
∨), dmax(v)). Then

◦
Yd−1,1(Xu, X

v)

is a Cartier divisor in
◦
Yd(Xu, X

v), with class in Pic
◦
Yd(Xu, X

v) given by

[
◦
Yd−1,1(Xu, X

v)] = σ∗
1 [X

sγ ] + σ∗
2 [X

sγ ]− ϵ [∂Yd] .

Proof. Define the variety
◦
Z

(2)
d (Xu, X

v) = e−1
1 (Ω1) ∩ e−1

2 (Ω2) ,

where Ω1 = p−1
d (Xu) ∩ Zd(

◦
Γd(Xu)) and Ω2 = p−1

d (Xv) ∩ Zd(
◦
Γd(X

v)). Since

Ω1 ⊂ p−1
d (Xu) and Ω2 ⊂ p−1

d (Xv) are open subsets of opposite Schubert varieties

in Zd, it follows from Kleiman’s transversality theorem [Kle74] that
◦
Z

(2)
d (Xu, X

v)

and D ∩
◦
Z

(2)
d (Xu, X

v) are reduced, where D is the divisor of Proposition 9.1.

Proposition 9.2 shows that the map φ :
◦
Yd(Xu, X

v) →
◦
Z

(2)
d (Xu, X

v) defined by
φ(ω) = (ω, σ1(ω), σ2(ω)) is an isomorphism with inverse morphism qde1, and (11)

shows that
◦
Yd−1,1(Xu, X

v) = φ−1(D) holds as (reduced) subschemes of
◦
Yd(Xu, X

v).
The result therefore follows from Proposition 9.1. □

Proposition 9.4. Let u ∈ WX , 1 ≤ d ≤ dmax(u
∨), and z ∈

◦
Xu(d). Then the

morphism σ : Yd(Xu, z) → Xu defined by {σ(ω)} = Γω ∩ Xu is injective, and we
have σ∗[Xsγ ] = ϵ[∂Yd] in PicYd(Xu, z).

Proof. The assumptions imply that z ∈
◦
Γd(Xu), so we must have dist(σ(ω), z) ≥

d for any point ω ∈ Yd(Xu, z). We deduce from Corollary 5.20(b) that Γω =
Γd(σ(ω), z). This shows that σ is injective.

The projection qd : p−1
d (z) → Yd(z) is an isomorphism, and the inverse image of

Yd(Xu, z) is p−1
d (z) ∩ Zd(Xu), which is a translate of the Schubert variety (Fd)ud

by Corollary 6.9(c). This shows that the restriction map PicYd(z) → PicYd(Xu, z)
is surjective. Since the restriction map PicYd → PicYd(z) is also surjective, it
follows that PicYd(Xu, z) is generated by (the restrictions of) the divisors [Y

sβ
d ]

for β ∈ ∆ ∖ ∆Yd
. The class [Y

sβ
d ] is non-zero if and only if β ∈ I(ud), which by

Proposition 6.7(b) is equivalent to zd.β ∈ I(u). Notice also that zd.β is a minimal
box of I(κ∨d )∖ I(z∨d ) by Proposition 6.2(b).

To compute σ∗[Xsγ ], we may assume that z = u(d).PX , since the maps pd
and qd are equivariant. Let β ∈ ∆ ∖ ∆Yd

and assume that α = zd.β ∈ I(u).
Set u = u ∩ z∨d . Then u(d) = uzd, usα ∈ WX , and I(usα) = I(u) ∪ {α}. We
claim that the points u(d).PYd

and u(d)sβ .PYd
belong to Yd(Xu, z). Indeed these

points are in Yd(z), since they are the images of u(d).PZd
and u(d)sβ .PZd

. Since

κd.PX ∈ Xκd
= pdq

−1
d (1.PYd

), we have 1.PYd
∈ Yd(κd.PX), hence u(d).PYd

∈
Yd(uzdκd.PX) = Yd(u.PX) and u(d)sβ .PYd

= usαzd.PYd
∈ Yd(usα.PX). This proves

the claim, and also shows that σ(u(d).PYd
) = u.PX and σ(u(d)sβ .PYd

) = usα.PX .
We deduce that Yd(Xu, z) contains the T -stable curve C ⊂ Yd through u(d).PYd

and
u(d)sβ .PYd

, and that σ(C) ⊂ Xu is the T -stable curve through u.PX and usα.PX .
This implies that σ∗[(Yd)sβ ] = σ∗[C] = [σ(C)] = (α∨, ωγ)[Xsγ ], so it follows from

Poincaré duality that the coefficient of [Y
sβ
d ] in σ∗[Xsγ ] is equal to ϵ = (α∨, ωγ), as

required. □
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Proof of Proposition 8.23. Let z ∈ Γd(Xu, X
v) be a general point, and set R =

p−1
d (z)∩Zd(Xu, X

v) and D = p−1
d (z)∩Zd−1,1(Xu, X

v). Then R is a Richardson va-

riety by Theorem 2.10, and qd restricts to an isomorphism of R onto R′ = qdp
−1
d (z)∩

Yd(Xu, X
v) = Yd(Xu, z) ∩ Yd(X

v, z), under which D is pulled back from D′ =
R′∩Yd−1,1(Xu, X

v). By the choice of z and the bound d ≤ min(dmax(u
∨), dmax(v)),

we may assume that z ∈
◦
Xu(d) ∩

◦
Xv(−d) ⊂

◦
Γ(Xu) ∩

◦
Γ(Xv). This implies that R′

is contained in
◦
Yd(Xu, X

v), so it follows from Proposition 9.3 and Proposition 9.4
that D′ is a Cartier divisor in R′ of class [D′] = σ∗

1 [X
sγ ]+σ∗

2 [X
sγ ]−ϵ[∂Yd] = ϵ[∂Yd].

The result follows from this. □

Remark 9.5. We demonstrate in Example 9.6 that the identity σ∗[Xsγ ] = ϵ[∂Yd]

may fail to hold in PicYd(Xu,
◦
Γd(Xu)), with σ as in Proposition 9.2. However, the

proof of Proposition 9.4 shows that this identity holds whenever ∆∖∆Yd
⊂ I(ud),

as in this case we have PicYd(Xu, z) = PicYd(Xu,
◦
Γd(Xu)) = PicYd.

Example 9.6. Let X = Gr(m,n) be a Grassmannian of diameter dX(2) ≥ 3, and
set d = 2 and u = sγ . Let Ek = ⟨e1, e2, . . . , ek⟩ ⊂ Cn be the subspace spanned by
the first k basis vectors, for 0 ≤ k ≤ n. Then Xu = P(Em+1/Em−1) = {V ∈ X |
Em−1 ⊂ V ⊂ Em+1}. Set N0 = ⟨em+2, em+3⟩, S0 = Em ⊕ N0, and let C ⊂ Yd =
Fl(m − 2,m + 2;n) be the curve given by C = {(K,S0) | K ∈ P(Em−1/Em−3)}.
Since Em ∈ Γω ∩Xu for each ω ∈ C, we have C ⊂ Yd(Xu). Define z : C → X by
z((K,S0)) = K⊕N0. For V ∈ Xu and (K,S0) ∈ C we have V ∩(K⊕N0) = K. This

implies that dist(V, z(ω)) = 2 for each V ∈ Xu and ω ∈ C, so z(ω) ∈
◦
Γd(Xu) ∩ Γω.

In particular, we have ω ∈ Yd(Xu, z(ω)) and C ⊂ Yd(Xu,
◦
Γd(Xu)). However, since

the restriction σ : C → Xu of the morphism of Proposition 9.2 is the constant
function σ(ω) = Em, we obtain

∫
C
σ∗[Xsγ ] = 0 ̸= 1 =

∫
C
[∂Yd]. More generally, our

construction shows that σ∗[Xsγ ] = 0 ∈ PicYd(Xu,
◦
Γd(Xu)) = PicYd.

Proposition 8.23 shows that the restriction of the divisor Zd−1,1(Xu, X
v) to

R = Zd(Xu, X
v)∩p−1

d (z) is a Cartier divisor that can be pulled back from Zd. The
following example shows that Zd−1,1(Xu, X

v) may not itself be a Cartier divisor
pulled back from Zd.

Example 9.7. Let X = LG(3, 6) and define u, v ∈ WX by I(u) = (3, 2) and
I(v) = (2, 1). The corresponding products in QH(X) and QK(X) are given by

[Xu] ⋆ [X
v] = 2[X(3,1)] and

Ou ⋆Ov = 2O(3,1) −O(3,2) + qO(1) − qO(2) .

Let d = 1. We have Yd = IG(2, 6) = C3/P2 and Yd(Xu, X
v) = qdp

−1
d (Xs3s2s3) =

Y s3s2
d . The general fibers of pd : Zd(Xu, X

v) → Γd(Xu, X
v) are projective lines,

and pd : Zd−1,1(Xu, X
v) → Γd(Xu, X

v) is a morphism of degree 2. We also have

Yd−1 = X, Yd−1,d = Zd, and Yd−1,1(Xu, X
v) = qdp

−1
d (Xu ∩Xv). It follows that

[Zd−1,1(Xu, X
v)] = (qd)

∗(qd)∗(pd)
∗([Xu] · [Xv]) = 2[Zs3s1s2

d ] .

Assume that Zd−1,1(Xu, X
v) is the intersection of Zd(Xu, X

v) with an effective
Cartier divisor D ⊂ Zd. Then we must have [D] · [Zd(Xu, X

v)] = [Zd−1,1(Xu, X
v)]

in H∗(Zd). But we have [Zd(Xu, X
v)] = [Zs3s2

d ] and [D] = a[Zs2
d ] + b[Zs3

d ] for some
integers a and b. Now compute the products

[Zs2
d ] · [Zs3s2

d ] = [Zs3s1s2
d ] + [Zs2s3s2

d ]
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and

[Zs3
d ] · [Zs3s2

d ] = [Zs3s2s3
d ] + 2[Zs2s3s2

d ]

It follows that the coefficient of [Zs3s2s3
d ] in [D]·[Zd(Xu, X

v)] is b, and the coefficient
of [Zs2s3s2

d ] is a+2b. Since these Schubert classes do not appear in [Zd−1,1(Xu, X
v)],

we obtain a = b = 0, a contradiction.

10. Fibers of Gromov-Witten varieties

Let X be a cominuscule flag variety and fix u, v ∈ WX and 1 ≤ d ≤ dX(2). We
finish this paper by proving that completions of the general fibers of the rational
maps Md(Xu, X

v) 99K Zd(Xu, X
v) and Md−1,1(Xu, X

v) 99K Zd−1,1(Xu, X
v) are

cohomologically trivial. While this assertion from the introduction is not required
for the proofs of our main results, it provides additional details of the relationship
between the geometry of Gromov-Witten varieties and analogous varieties obtained
from the quantum-to-classical construction.

Recall the maps of the diagram (3), and define the varieties

Bℓd−1,1 = π−1(Md−1,1) ⊂ Bℓd ,

Bℓd(Xu, X
v) = π−1(Md(Xu, X

v)) , and

Bℓd−1,1(Xu, X
v) = Bℓd(Xu, X

v) ∩ Bℓd−1,1 .

Since the birational map Md 99K Zd is defined as a morphism exactly on the
open subset of Md over which π : Bℓd → Md is an isomorphism, our assertion is
justified by the following result. (We consider a map between empty varieties to
have cohomologically trivial fibers.)

Theorem 10.1. The general fibers of the maps e3ϕ : Bℓd(Xu, X
v) → Zd(Xu, X

v)
and e3ϕ : Bℓd−1,1(Xu, X

v) → Zd−1,1(Xu, X
v) are cohomologically trivial.

The proof requires some additional results, starting with the following conse-
quence of Theorem 8.12.

Corollary 10.2. Let f : M → N and g : N → P be morphisms of complex
projective varieties with rational singularities. Assume that the general fibers of f
are cohomologically trivial. Then the general fibers of g are cohomologically trivial
if and only if the general fibers of gf are cohomologically trivial.

Proof. This follows from Theorem 8.12, as the Grothendieck spectral sequence
shows that Rig∗ON = Ri(gf)∗OM . □

Lemma 10.3. Let f : M → N be a birational morphism of irreducible varieties,
with N normal. Let D ⊂ M be an irreducible subvariety of codimension 1, and
assume that f(D) has codimension 1 in N . Then the restricted map f : D → f(D)
is birational.

Proof. The assumptions imply that f(D) meets the non-singular locus of N , so we
may assume that N is non-singular. Let Z ⊂ N be the closed subset of points where
the rational map f−1 is not defined as a morphism. Then f−1(Z) is a proper closed
subset of M , and the fibers of f−1(Z) → Z have positive dimension by [Sha94, 4.4,
Thm. 2]. It follows that Z has codimension at least 2 in N , so f−1 is defined on a
dense open subset of f(D). □
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Recall the variety Yd−1,d = G/(PYd−1
∩ PYd

) from Section 8.2 and define

Ẑd−1,1 = Zd ×Yd
Yd−1,d

= {(η, ω, z) ∈ Yd−1 × Yd ×X | Γη ⊂ Γω and z ∈ Γω} ,

Ẑ
(3)
d−1,1 = Zd−1 ×Yd−1

Zd−1 ×Yd−1
Ẑd−1,1

= {(η, ω, x, y, z) ∈ Yd−1 × Yd ×X3 | x, y ∈ Γη ⊂ Γω and z ∈ Γω} , and

Z
(3)
d−1,1 = {(ω, x, y, z) ∈ Z

(3)
d | dist(x, y) ≤ d− 1} ⊂ Z

(3)
d .

Lemma 10.4. The restricted morphism ϕ : Bℓd−1,1 → Z
(3)
d−1,1 and the projection

p′ : Ẑ
(3)
d−1,1 → Z

(3)
d−1,1 are birational.

Proof. Let (ω, x, y, z) ∈ Z
(3)
d−1,1. By Corollary 5.20(b) there exists η ∈ Yd−1 such

that x, y ∈ Γη ⊂ Γω, and η is unique when dist(x, y) = d − 1. This shows that
p′ is birational. It follows from Lemma 5.18 that Γη ∩ Γ1(z) contains at least one
point t. There exists a stable curve in Γη of degree d − 1 through x, y, and t by
Theorem 5.17, and t is connected to z by a line. This shows that (ω, x, y, z) belongs

to ϕ(Bℓd−1,1). Since ϕ : Bℓd → Z
(3)
d is birational by Proposition 5.21, it follows

from Proposition 9.1 and Lemma 10.3 that ϕ : Bℓd−1,1 → Z
(3)
d−1,1 is birational. □

The proof of Theorem 10.1 uses the following varieties:

Z
(3)
d (Xu, X

v) = (pde1)
−1(Xu) ∩ (pde2)

−1(Xv) ⊂ Z
(3)
d ,

Z
(3)
d−1,1(Xu, X

v) = Z
(3)
d (Xu, X

v) ∩ Z(3)
d−1,1 ,

Ẑ
(3)
d−1,1(Xu, X

v) = p−1
d−1(Xu)×Yd−1

p−1
d−1(X

v)×Yd−1
Ẑd−1,1 ,

Yd−1,d(Xu, X
v) = ϕ−1

d−1(Yd−1(Xu, X
v)) , and

Ẑd−1,1(Xu, X
v) = Yd−1,d(Xu, X

v)×Yd
Zd .

The first three spaces are the subvarieties of Z
(3)
d , Z

(3)
d−1,1, Ẑ

(3)
d−1,1 defined by x ∈ Xu

and y ∈ Xv. The last variety Ẑd−1,1(Xu, X
v) consists of all triples (η, ω, z) ∈ Ẑd−1,1

for which Xu ∩ Γη ̸= ∅ and Xv ∩ Γη ̸= ∅.

Proof of Theorem 10.1. It follows from Proposition 5.21 and Kleiman’s transver-

sality theorem [Kle74] that ϕ : Bℓd(Xu, X
v) → Z

(3)
d (Xu, X

v) is birational, and the

fiber of e3 : Z
(3)
d (Xu, X

v) → Zd(Xu, X
v) over (ω, z) is isomorphic to (Γω ∩Xu) ×

(Γω ∩ Xv), which is a product of Schubert varieties by Theorem 2.8. Using that

Bℓd(Xu, X
v), Z

(3)
d (Xu, X

v), and Zd(Xu, X
v) have rational singularities, it follows

from Corollary 10.2 that the general fibers of e3ϕ : Bℓd(Xu, X
v) → Zd(Xu, X

v) are
cohomologically trivial.
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Consider the commutative diagram:

(12) Z
(3)
d−1,1(Xu, X

v)

e3
++

Bℓd−1,1(Xu, X
v)

≈
ϕ

oo

e3ϕ

��
Ẑ

(3)
d−1,1(Xu, X

v)

≈ p′

OO

p̂
// Ẑd−1,1(Xu, X

v)

��

ϕ′
d

// Zd−1,1(Xu, X
v)

qd

��

⊂
// Zd

qd

��
Yd−1,d(Xu, X

v)
ϕd

// Yd−1,1(Xu, X
v) ⊂

// Yd

Here p̂ is the projection that forgets x and y, and ϕ′d is the base change of ϕd
along qd. It follows from [BCMP13, Thm. 2.5 and Prop. 3.7] together with The-
orem 2.13 and Proposition 9.1 that all varieties in the diagram (12) have ratio-

nal singularities. The maps p′ and ϕ with target Z
(3)
d−1,1(Xu, X

v) are birational

by Lemma 10.4 and Kleiman’s transversality theorem [Kle74]. The fiber of p̂ over

(η, ω, z) ∈ Ẑd−1,1(Xu, X
v) is the product (Γη∩Xu)×(Γη∩Xv) of Schubert varieties

by Theorem 2.8. The fibers of ϕ′d coincide with the fibers of ϕd, and the general such
fibers are Richardson varieties by Theorem 2.10. We deduce from Corollary 10.2
that the general fibers of the maps e3 and e3ϕ with target Zd−1,1(Xu, X

v) are
cohomologically trivial. This completes the proof. □

Corollary 10.5. The restricted maps e3ϕ : Bℓd(Xu, X
v) → Zd(Xu, X

v) and e3ϕ :
Bℓd−1,1(Xu, X

v) → Zd−1,1(Xu, X
v) are birational for d ≤ min(dmax(u

∨), dmax(v)).

Proof. It follows from Corollary 5.14(a) and Lemma 6.1 that dimBℓd(Xu, X
v) =

dimZd(Xu, X
v) = ℓ(u)−ℓ(v)+

∫
d
c1(TX) (when these varieties are not empty), and

from Proposition 8.18 that dimBℓd−1,1(Xu, X
v) = dimZd−1,1(Xu, X

v) = ℓ(u) −
ℓ(v) +

∫
d
c1(TX)− 1. □

Remark 10.6. The proof of Theorem 10.1 shows more generally that the general
fibers of e3ϕ : Bℓd(Xu, X

v) → Zd(Xu, X
v) are rational, and the general fibers

of e3ϕ : Bℓd−1,1(Xu, X
v) → Zd−1,1(Xu, X

v) are rationally connected. The last
statement uses [GHS03, Cor. 1.3].
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2020. arXiv:2202.00773.

[Sha94] I. R. Shafarevich. Basic algebraic geometry. 1. Springer-Verlag, Berlin, second edi-

tion, 1994. Varieties in projective space, Translated from the 1988 Russian edition
and with notes by Miles Reid.

[Spr98] T. A. Springer. Linear algebraic groups, volume 9 of Progress in Mathematics.
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