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ABSTRACT. We prove that the Schubert structure constants of the quantum
K-theory ring of any minuscule flag variety or quadric hypersurface have signs
that alternate with codimension. We also prove that the powers of the de-
formation parameter g that occur in the product of two Schubert classes in
the quantum cohomology or quantum K-theory ring of a cominuscule flag va-
riety form an integer interval. Our proofs are based on several new results,
including an explicit description of the most general non-empty intersection

CONTENTS
1. Introduction 2
2. Intersections and fibers of Schubert and Richardson varieties 7
3. Projected Richardson varieties 14
4. Cominuscule flag varieties 16
5. The quantum to classical principle 22
6. Fibers of the quantum-to-classical construction 32
7. The g-degrees in quantum cohomology products 35
8. Results about quantum K-theory 44
9. Divisors of the quantum-to-classical construction 56
10. Fibers of Gromov-Witten varieties 60
References 62

Date: May 16, 2023.

2020 Mathematics Subject Classification. Primary 14N35; Secondary 19E08, 14N15, 14M15.

Key words and phrases. Quantum K-theory, Gromov-Witten invariants, cominuscule flag va-
rieties, Schubert varieties, Richardson varieties, Schubert structure constants, positivity.

The authors were partially supported by NSF grants DMS-1205351 and DMS-1503662 and
a Visiting Professorship at Université de Lorraine (Buch), NSA grants H98230-13-1-0208 and
H98320-16-1-0013 and a Simons Collaboration Grant (Mihalcea), NSF grant DMS-1929284 while
in residence at the Institute for Computational and Experimental Research in Mathematics in
Providence, RI, during the Spring of 2021 (Buch and Mihalcea), and a public grant as part of the
Investissement d’avenir project, reference ANR-11-LABX-0056-LMH, LabEx LMH (Perrin).

1



2 A. BUCH, P.-E. CHAPUT, L. MIHALCEA, AND N. PERRIN

1. INTRODUCTION

1.1. Positivity in quantum K-theory. Let X = G/Px be a flag variety defined
by a semi-simple complex linear algebraic group G and a parabolic subgroup Px.
The (small) quantum K-theory ring QK(X) of Givental and Lee [Giv00, Lee01]
is a deformation of the K-theory ring K(X) of algebraic vector bundles on X,
whose structure constants ijj;}d encode the arithmetic genera of the (3 pointed,
genus zero) Gromov-Witten varieties of X. Here N2;? denotes the coefficient of
q?Ov in the product O%x OV in QK(X), where O% = [Oxw] denotes a K-theoretic
Schubert class of X, and ¢ is a monomial in the deformation parameters of QK (X),
encoding a degree d € Ho(X,Z). The Schubert variety X™ corresponds to a Weyl
group element w such that codim(X™, X) is equal to the length ¢(w).
The constant N*:¢ is non-zero only if

u,v

0(w) + /d er(Tx) > 0(u) + £(v),

and when this inequality is satisfied with equality, N{;’f;}d is the (cohomological)
Gromov-Witten invariant ((X"], [X"], [Xy])4, equal to the number of parameterized
curves f : P! — X of degree d that map the points 0,1,00 to general translates
of the Schubert varieties X*, XV, and X,; here X, is the Schubert variety of
dimension ¢(w) opposite to X™. In particular, ijj;,d is non-negative in this case.
More generally, it is conjectured [LM06, BM11, BCMP18a] that the constants N;’f;)d
have signs that alternate with codimension, in the sense that

(1) (1)t +fyen(To) yand > g,

This generalizes the fact that the Schubert structure constants of the K-theory
ring K (X) have alternating signs [Buc02, Bri02]. Our main result is a proof of the
alternating signs conjecture for QK(X) when X is a minuscule flag variety or a
quadric hypersurface.

Theorem 1.1. Assume that X is a minuscule flag variety or a quadric hypersur-
face. Then, (—1){uvw)+ae(Tx) ywd > (),

The family of minuscule flag varieties includes Grassmannians of Lie type A,
maximal orthogonal Grassmannians, quadric hypersurfaces of even dimension, and
two exceptional spaces of type E called the Cayley plane and the Freudenthal
variety. The larger family of cominuscule flag varieties also includes Lagrangian
Grassmannians and odd dimensional quadrics (see Section 4). We will prove more
generally that the constant N;¢ has the expected sign (1) whenever X is comi-
nuscule and ¢ occurs in the product [X*] « [X?] in the quantum cohomology ring
QH(X).

Earlier examples where alternating signs of the structure constants in quantum
K-theory have been proved include the Pieri formula for products with special
Schubert classes on Grassmannians of type A [BM11], structure constants associ-
ated to ‘line’ degrees corresponding to certain fundamental weights on any G/P
[LM14], Chevalley formulas for products with Schubert divisors on some families
of flag varieties [BCMP18a, LNS21, KLNS], and all the structure constants of the
quantum K-theory of incidence varieties F1(1,n — 1;n) of type A [Ros20, Xu2l].
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1.2. Powers of ¢ in quantum products. We also address the problem of finding
the powers ¢ that occur in the quantum product of two Schubert classes, either
in the quantum cohomology ring QH(X) or the quantum K-theory ring QK(X).
When X is a Grassmannian of type A, the smallest power dpin(u,v) of ¢ in the
product [X"]*[X"] € QH(X) was determined by Fulton and Woodward [FW04], as
the number of diagonal units the (dual) Young diagram of X* must be translated
in order to contain the Young diagram of X. Postnikov [Pos05] gave a similar rule
for the largest degree dpax(u,v), and also proved that the powers of ¢ that occur
form an integer interval. This answers the question for the quantum cohomology
of Grassmannians of type A.

For an arbitrary flag variety X, it is not clear if a quantum product [X*]x[X"] €
QH(X) contains a minimal or maximal power of ¢, since the group Hy(X,Z) is
linearly ordered only when it has rank 1. It turns out that [X*] x [X"] always
contains a minimal power ¢% [Pos05, BCLM20], where d = dpin(u,v) is the (unique)
minimal degree of a rational curve connecting two general translates of the Schubert
varieties X" and XV. The corresponding product O" x OV in QK (X)) contains the
same minimal power ¢?. However, a quantum cohomology product [X*] x [X?]
may not contain a unique maximal power of ¢, and the powers that occur may not
form a convex subset in the natural partial order of Ho(X,Z). For example, the
g-degrees in the square of [X164%32] in QH(F1(C®)) do not form a convex subset,
and no unique maximal degree exists.

Any cominuscule flag variety X has Picard rank one, so all quantum products
automatically contain a maximal power of ¢. We will show that the interval property
also holds when X is cominuscule. More precisely, let B = {¢?[X“]} denote the
natural Z-basis of QH(X). It was proved in [Bel04, CMP09] that any product
[point] * [X "] belongs to B when X is cominuscule. Define a partial order on B by
¢°[X"] < ¢¥[X¥] if and only if the Schubert varieties X, and X" are connected by
a rational curve of degree d — e.

Theorem 1.2. Assume that X is cominuscule. Then the powers ¢% that occur
in [X%] % [X?] € QH(X) form an integer interval. More precisely, q@ occurs in
(X% [X*] if and only if [X*] < q*[X,] < [point] x [X"].

Postnikov’s description of the extreme powers of ¢ in a quantum product on the
Grassmannian Gr(m, n) involves order ideals in the cylinder Z2 /(—m,n—m)Z that
extends the usual m x (n—m)-rectangle of boxes associated with the Grassmannian.
Theorem 1.2 can be interpreted as a type-uniform generalization of this construc-
tion. In fact, B turns out to be a distributive lattice, and the join-irreducible
elements in B can be identified with a set of boxes in the plane that specializes to
Postnikov’s cylinder in type A. Examples are provided in Section 7.2. Isomorphic
partially ordered sets have been constructed in [Hag04, Grel3], where they are used
to study to minuscule representations.

In quantum K-theory it is known that the powers of ¢ in any product O x O"
are bounded above [BCMP13, BCMP16, Kat, ACT22]; this is not apparent from
Givental’s definition of the product in QK(X). Theorem 1.2 has the following
generalization.
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Theorem 1.3. (a) Assume that X is minuscule. Then q@ occurs in O%x O if and
only if ¢% occurs in [X"] % [X?].

(b) Assume that X is cominuscule. Then the powers of q that occur in O¥xO" form
an integer interval. The smallest power matches the smallest power in [X"] * [X"],
and the largest power is at most one larger than the largest power in [X"] x [X"].

In Definition 8.2 we give a combinatorial definition of an exceptional degree of a
product O% x O? in the quantum K-theory ring of any cominuscule flag variety X.
Exceptional degrees occur only when X is not minuscule, and even in this case, most
products have no exceptional degrees (see Table 4). If O* x OV has an exceptional
degree, then this degree is dpax(u,v) + 1. We prove that if ¢¢ occurs in O% x OV,
then either dpin(u,v) < d < dpax(u,v), or d = dpax(u,v) + 1 is an exceptional
degree. In particular, this means that ijjgjd has the expected sign whenever d is
not an exceptional degree. We conjecture that ¢% occurs in O% « OV whenever d is
an exceptional degree.

1.3. Strategy of proof. To illustrate the main strategy in our proofs, fix a comi-
nuscule flag variety X and let My = Mg 3(X,d) denote the Kontsevich moduli
space of 3-pointed stable maps to X of degree d and genus zero [FP97]. Let
Mg(Xy, X?) = evi'(Xy) Nevy ' (X?) € My denote the Gromov-Witten variety
of stable maps that send the first two marked points to the Schubert varieties
X, and XV, respectively. The image I'q(X,, X") = evy(My(X,, X")) C X is a
two-pointed curve neighborhood, equal to the closure of the union of all rational
curves of degree d in X that meet X, and X". We also let My_1 1 C My denote
the divisor of stable maps f : C' — X for which the domain has (at least) two
components, C' = C7 U Cs, such that C; contains the first two marked points, Cs
contains the third marked point, and the restrictions of f to C; and C3 have de-
grees d — 1 and 1, respectively. Set Mg_11(Xy, XV) = Mg_11 N My(X,,X") and
Fg_1,1(Xy, X?) = evs(Mg_1,1(Xy, X")). In other words, I'q_1,1(X,, X?) is the clo-
sure of the set of points in X that are connected by a line to a rational curve of
degree d — 1 from X, to X".

Let O, = [Ox,] and OV = [Oxv] be two opposite Schubert classes. It follows
from [BCMP18a, Prop. 3.2] that the product O, x O” € QK(X) is given by’

OH*O” = Z N;U\}jdv qd oY = Z(Ou *Ov)d qda

w,d>0 d>0

where the classes (O, x 0")4 € K(X) are determined by

(2) (Oux 0%)a = (ev3)«[Onry(x,,x)] — (ev3)[Onry_y 1 (x4, x0)] -

It was proved in [BCMP18b, Thm. 4.1] that I';(X,, X") is a projected Richardson
variety in X, and the restricted map evs : My(X,, X?) — I'y(X,, X?) is cohomolog-
ically trivial, that iS7 (eVg)*Ol\/[d(Xu’Xu) = Opd(mev) and Rj (eV?))*OMd(Xu,X”) =0
for j > 0. In particular, we have (evs).[On,(x,,xv)] = [Or,(x,,x»)] in K(X). Since
projected Richardson varieties have rational singularities [BC12, K1.S14], it follows
from a theorem of Brion [Bri02] that the expansion of [Or,(x,,xv)] in the Schubert
basis of K(X) has alternating signs in the sense of Theorem 1.1.

IThe dual Weyl group element u" satisfies ov' = Oy.
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The further restriction evs : Mg_11(Xy, X¥) = Tg_1,1(Xy, X?) is not as well
understood; for example, we do not know if I'y_1 1 (X, X") has rational singulari-
ties. Our strategy is to establish the following two properties.

(i) The general fibers of the map evs : Mg_11(Xy, XV) = Ta—11(Xy, XV) are
cohomologically trivial.

(ii) The variety T'g—1,1(Xy, XV) is either equal to I'y(X,, X") or a divisor in
Ta( Xy, X7).

The first property (i) implies, by using a result of Kollar [Kol86] (see Corol-
lary 8.13), that (ev3)«[On,_, ,(x.,x+)] is equal to the class of a resolution of sin-
gularities of T'g—11(Xy, X¥). In particular, if T'g_1 1 (X, X¥) = T'q(X,, X7), then
(O x O%)q = 0. Otherwise, property (ii) predicts that I'y_1 1(X,, X") is a divisor
in I'y(X,, X"). In this case Brion’s theorem [Bri02] implies that the expansion of
(ev3)«[Onry 11 (x.,xv)] has signs that are opposite to the signs of [Or,(x,, xv)]; 50
that all signs are compatible in the difference (2). Theorem 1.1 is therefore a con-
sequence of properties (i) and (ii). In addition, ¢¢ occurs in the product O, * OV if
and only if Ty_1.1(X,, X¥) C Tg(X,, XV).

We show that property (ii) is always true. More precisely, I'q_11(X,, X7) is
empty for d < dpin(u",v), is a (non-empty) divisor in I'g(X,, X¥) for dmin(u",v) <
d < dmax(u,v), and is equal to T'g(X,, X?) for d > dpax(u”,v). We also show
that (i) is true, except when d is an exceptional degree of O, « OV. In this case the
general fibers of the map evs : My_1 1(Xy, X¥) — Tg—1,1(Xy, XV) have arithmetic
genus one (see Theorem 8.26 and Corollary 10.5), which explains the exceptional
behavior of exceptional degrees.

1.4. The quantum-to-classical construction. Our proofs rely on the geometric
construction underlying the quantum equals classical theorem for cominuscule flag
varieties [Buc03, BKT03, CMP08, BM11, CP11], which we proceed to discuss when
X = Gr(m,n) is the Grassmannian of m-planes in C™. Given any stable map
f:C = X, let Ker(f) C C™ be the intersection of the m-planes contained in the
image f(C), and let Span(f) C C™ be the linear span of these m-planes. For f
in a dense open subset of My = Mg 3(X,d), with d < min(m,n — m), we have
dim Ker(f) = m —d and dim Span(f) = m+d, that is, (Ker(f), Span(f)) is a point
in the two-step flag variety Y; = Fl(m — d,m + d;n). Define the three-step flag
variety Zg = Fl(m —d,m,m + d;n), and let pg : Zg — X and qq : Z4 — Yy be the
projections. The quantum equals classical theorem states that any (3 point, genus
zero) Gromov-Witten invariant of X is given by

(4, 00, ), = / 40,230 - 405 Q) - i)

Ya

Define a rational map ¢ : My --» Z; by o(f) = (Ker(f),evs(f),Span(f)), and
define subvarieties of Z; by

Zg( Xy, X?) = o(Mg( Xy, X?)) and Zg_1,1 (X, X?) = @(Mg_1,1(Xy, X?)) .

We will show that (completions of) the general fibers of the restricted maps ¢ :
My( Xy, X?) --» Zg(Xy, X?) and ¢ + My_11(Xy, X¥) --> Zy_11(X,, X"7) are
cohomologically trivial. As a consequence, we can replace My_1,1(X,,X") with
Zg—1,1(Xy, X") in property (i). Furthermore, Zq(X,, X") is a Richardson variety
in Zg, and Zg_1,1(X,, X") is the inverse image of a projected Richardson variety
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in Yy, Geometric results about Schubert varieties can therefore be utilized for
studying the fibers of the map pg : Zg—1,1(Xy, XV) = Tg11(Xu, X7).

The quantum-to-classical construction can be generalized to any cominuscule flag
variety X by replacing kernel-span pairs w = (K, S) with certain well-behaved sub-
varieties I',, C X, which in type A are the sub-Grassmannians I',, = Gr(d, S/K) C
Gr(m,n). These subvarieties correspond to points in a related flag variety Yy =
G/ Py,, which in turn defines the incidence variety Zy = G/(Px N Py,) = {(w,z) €
Yy x X | « € T,}. This provides a type-independent framework for studying
properties (i) and (ii).

1.5. Semi-transversal intersections. In order to establish the required geomet-
ric properties of (especially) fibers of maps related to the quantum-to-classical con-
struction, we prove a number of new results about intersections of Schubert varieties
in arbitrary flag varieties that are not in general position. In particular, given two
opposite Schubert varieties with empty intersection, we define and study a semi-
transversal intersection obtained when these varieties are moved towards each other
until they just meet, using the group action. In fact, semi-transversal intersections
can be defined for subvarieties of any variety with a group action, but in this gen-
erality it is not guaranteed that a semi-transversal intersection exists. We show
that the semi-transversal intersection of two Schubert varieties always exists, is a
Richardson variety, and we give explicit descriptions of the defining Weyl group
elements. For example, if X = G/Px is a cominuscule flag variety, then the semi-
transversal intersection of X, with X? is the Richardson variety X, N X“" where
uNwv denotes the join operation on the set of minimal length Weyl group elements,
corresponding to the intersection of Young diagrams in type A. We also prove the
following result about the fibers of a projection of a Schubert or Richardson variety
to a smaller flag variety.

Theorem 1.4. Let 7 : Z — X be a projection of flag varieties. Each fiber 1= (z) =
Px /Pz is again a flag variety.

(a) Let Z, C Z be a Schubert variety. Then Z, N7 *(z) a (reduced) Schubert
variety in 7 () for all x € m(X,).

(b) Let Z! = Z, N Z" C Z be a Richardson variety. Then Z° N7 (z) is a
Richardson variety in 7= (x) for all x in a dense open subset of w(ZY).

The general fibers are given by explicitly determined Weyl group elements (see
Theorem 2.8 and Theorem 2.10).

We apply these results to the projection pg : Z; — X of the quantum-to-
classical construction. For each x € X, the fiber Fy = p;'(z) = Px/Pz, is a
product of cominuscule flag varieties. If x is a general point of I'y(X,, X"), then
R =F;N Z4(X,,X") is a Richardson variety in Fj given by explicitly determined
Weyl group elements. The most interesting case of property (i) happens in the
range of degrees dmax(u",v) < d < min(dpax(u"), dmax(v)), where dpyax(v) denotes
the unique power of ¢ in [point]+ [X7]. In this case, I'g_1,1(X,, XV) = T'q(X,, XV).
We show that D = FyNZ4_11(X,, X"?) is a Cartier divisor in R, obtained as the in-
tersection of R with a divisor in F;. We then prove that D is cohomologically trivial
if and only if d is not an exceptional degree. This is done by explicitly computing
the cohomology groups of any negative line bundle restricted to a Richardson vari-
ety in any cominuscule flag variety (Theorem 4.9). A special case is the following
statement.
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Theorem 1.5. Let X be a minuscule flag variety, let R C X be a Richardson
variety of positive dimension, and let Ox(—1) C Ox be the ideal sheaf of the
Schubert divisor in X. Then H'(R,Ox(—1)) =0 for all i.

Our results can also be used to prove that the Seidel representation of the funda-
mental group m;(Aut(X)) on the localized quantum cohomology ring QH(X),=1,
as studied in [Bel04, CMP09], has a natural generalization to the quantum K-
theory ring in the cominuscule case. We plan to discuss this elsewhere together
with applications to Pieri formulas in quantum K-theory.

1.6. Organization. This paper is organized as follows. In Section 2 we fix our no-
tation for flag varieties and related combinatorics and prove several results about
intersections of Schubert varieties in special position that are valid for arbitrary
flag varieties. In particular, we introduce the notion of semi-transversal intersec-
tions. In Section 3 we give short proofs of some related results about projections
of Richardson varieties, which were first obtained in [KLS14]. In Section 4 we in-
troduce our notation for cominuscule flag varieties. We also compute the (top)
cohomology group of any negative line bundle restricted to a Richardson variety in
a cominuscule flag variety, as a representation of the maximal torus T' C G. This
allows us to determine when the intersection of a Richardson variety with an ef-
fective Cartier divisor is cohomologically trivial. Section 5 gives a detailed account
of the quantum equals classical theorem, focusing on Gromov-Witten invariants of
degrees no larger than the diameter of a cominuscule variety X, that is, the smallest
degree of a rational curve connecting two general points. We take this opportunity
to provide a type-uniform proof of this theorem, something that has so far not been
available in the literature. At the same time we further develop the geometry and
combinatorics of the quantum-to-classical construction. Section 6 provides explicit
descriptions of the general fibers of several maps of varieties related to this con-
struction. Section 7 proves that the ¢-degrees in the quantum cohomology product
of two cominuscule Schubert classes form an integer interval. We also construct
our generalization of Postnikov’s cylinder, which provides a combinatorial descrip-
tion of the minimal and maximal degrees in a quantum product. Section 8 proves
the results about alternating signs and ¢-degrees in the quantum K-theory ring of
a cominuscule flag variety. The proofs of some technical facts are postponed to
Section 9. Finally, Section 10 proves that the general fibers of the rational map
Mi_11(Xy, X?) --» Zg_1,1(X,, XV) have cohomologically trivial completions.

1.7. Acknowledgments. Parts of this work was carried out while the authors vis-
ited the Hausdorff Research Institute for Mathematics in Bonn, the Department
of Mathematical Sciences at the University of Copenhagen, or participated in the
semester program in Combinatorial Algebraic Geometry at the Institute for Com-
putational and Experimental Research in Mathematics at Brown University. We
are grateful to these institutions for their hospitality and stimulating environments.
We also thank David Anderson, Jesper Thomsen, and Chenyang Xu for helpful dis-
cussions. We finally thank Prakash Belkale and Robert Proctor for making us aware
of the references [Bel04, Hag04, Grel3].

2. INTERSECTIONS AND FIBERS OF SCHUBERT AND RICHARDSON VARIETIES

In this section we fix our notation for flag varieties. In addition, we prove some
results about intersections of Schubert and Richardson varieties in special position
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that are valid for arbitrary flag varieties over any algebraically closed field. In this
paper, a variety is always reduced but not necessarily irreducible. By a point we
will always mean a closed point. The fibers of a morphism are understood to be
fibers over closed points, and the general fibers mean the fibers over all closed points
in a dense open subset of the target.

2.1. Flag varieties. Let G be a connected linear algebraic group, and fix a max-
imal torus T and a Borel subgroup B such that 7' C B C G. The opposite Borel
subgroup B~ C G is defined by BN B~ = R,(G)T, where R, (G) is the unipotent
radical. Let ® be the root system of (G,T), with positive roots ® and simple
roots A C ®* given by B. This means that ® is the set of roots of the reductive
quotient G/R,(G), see [Spr98, §7.4.3]. Let W = Ng(T')/Zc(T) be the Weyl group
of G. The reflection along a root a € ® is denoted by s,.

A complete homogeneous G-variety will be called a flag variety of G. Any
such flag variety X contains a unique B-invariant point. We denote the parabolic
subgroup stabilizing this point by Py C G and the point itself by 1. Px. We identify
X with the quotient G/Px. Each element g € G defines a point g.Px = ¢.(1.Px)
in X. Let ®x be the root system of (the reductive quotient of) Px, and set
(P; = ot N®xy and Ax = ANdx. Let Wx = NPX(T)/ZPX(T) be the Weyl
group of Py, and let WX C W be the subset of minimal representatives of the
cosets in W/Wx. Each element u € W defines a T-fixed point u.Px € X and the
Schubert varieties X,, = Bu.Px and X* = B~u.Px. We denote the corresponding
Schubert cells by )%u = Bu.Px and Xu = B~ u.Px. These Schubert varieties
and cells depend only on the coset uWx in W/Wx, and for u € W¥ we have
dim(X,) = codim(X", X) = £(u).

Let < denote the Bruhat order on W. For uw,v € WX we then have v < u
< X, C Xy & Xy NXY # 0. In this case the intersection X! = X, N X"
is called a Richardson variety; this variety is reduced, irreducible, rational, and
dim(X?) = £(u) — £(v) [Ric92]. The Richardson cell )O(}j = X, N X" is a dense
open subset of X. Any translate of X will be called a Richardson variety. In
other words, a non-empty closed subvariety 2 C X is a Richardson variety if and
only if Q = g. X" for some u,v € WX and g € G. Similarly, arbitrary translates of
Schubert varieties will be called Schubert varieties.

Each element v € W has a unique factorization v = uXux for which vX € WX
and ux € Wyx, called the parabolic factorization of u with respect to Px. This
factorization is reduced in the sense that £(u) = (uX) + f(ux). The parabolic
factorization of the longest element wy € W is wy = w3< wo, x, where wgf and wo, x
are the longest elements in W* and Wy, respectively. The Poincaré dual element
of ue WX is u¥ = wouwe x € WX, which satisfies X" = wg.X,.

Suppose Y is an additional flag variety of G such that Py C Py, and let 7 :
X — Y be the projection. We then have (uy)X = (u¥)y for any u € W, so
this element of Wy N WX may be written as u{f without ambiguity. The parabolic
factorizations of u with respect to both Py and Px can be simultaneously expressed
as u = u”ugux. Notice also that 7~ (Y*) = X* and 7' (Y,,) = X,,x_ for any

uewv.

uw
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We need the Hecke product on W, which by definition is the unique associative
monoid product satisfying

usg if u < us
U’S/gi A . ok
U if u > usg

for all w € W and § € A. Equivalently, the Hecke product u-v of u,v € W is given
by B(u-v)B = BuBvB [Spr98, §8.3]. In particular we have u.X, C X,.,. The
product of u and v is reduced (i.e. £(uv) = £(u) + £(v)) if and only if uv = u - v.
Several other useful properties of the Hecke product can be found in e.g. [BM15,
§3].

The left weak Bruhat order on W is defined by u <p w if and only if £(wu~!) =
¢(w) — £(u). Equivalently, there exists z € W such that w = zu is a reduced
factorization of w. We also need the Px-Bruhat order <x on W, which we define
by

v<xu if and only if v <wu and ux <p vx.

It follows from Corollary 2.12 below that this definition is equivalent to the defini-
tion given in [KLS14, §2] (see also [BS98]).

Lemma 2.1. For z,u € W we have u <p z-u and (v -u)u~™' < 2.

Proof. By definition of the Hecke product, there exists 2’ < x such that z-u = z’u
and the product z’u is reduced. The lemma, follows from this. ([l

Given a positive root a € ®1 \ ®x there exists a unique T-stable curve C' C
X through 1.Px and s,.Px. For any simple root 8 € A~ Ax we then have
JolX#%] = (¥, ws), where a” denotes the coroot of a and wg is the fundamental
weight corresponding to S (see [FW04, §3]).

An action of an algebraic group H on a variety Y is called split if there exists a
morphism s : U — H defined on a dense open subset U C Y, and a point yg € U,
such that s(y).yo = y for all y € U. Many actions encountered in the study of
Schubert varieties are split, including the action of B on a Schubert variety X, and
the action of B x B on a double Bruhat cell BuB. If f: Z — Y is any equivariant
morphism of H-varieties such that the action of H on Y is split, then f is a locally
trivial fibration over the dense open orbit in Y [BCMP13, Prop. 2.3]. In fact, the
map ¢ : U x f~1(yo) — f~H(U) defined by ¢(y, z) = s(y).z is an isomorphism. We
will make repeated use of this fact throughout this paper.

2.2. Semi-transversal intersections. Let 2; and 5 be closed subsets of a flag
variety X of the group G. It is customary to study the intersection of general
translates of these varieties, that is, any intersection of the form €, N g.Qs, where
g is a general element of G. In particular, the product of (Chow) cohomology
classes is given by [Q4] - [22] = [©1 N g.Q]. In this section we consider the situation
where the intersection of general translates of 2; and 25 is empty. We then seek
to understand non-empty intersections of the form Q; N ¢.Q25 that are as general
as possible. Such intersections will be called semi-transversal intersections of €2y
and Qo (when they exist). Intuitively, a semi-transversal intersection is obtained
by moving general translates of 2; and 5 towards each other until they just meet.
Semi-transversal intersections make sense for actions of arbitrary algebraic groups,
so we will formulate our definition in this setting.
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Let X be an algebraic variety and let G be an algebraic group acting on X. For
any subset ! C X we let Go = {g € G | 9. = Q} denote the stabilizer. Given two
closed subsets Q7,Qy C X, we define a subset of G by

G(Ql,ﬂz) = {g ed | 04 ﬁg.Qg 75 @}

This set is stable under the action of G, x Gq, defined by (a1,as2).g = algagl,
so we have Gq,Gq, C G(Q1,Qs) if and only if Q3 N Qs # B. Notice also that
G(Q2,91) = G(Q1,92)71, and G(g1.Q1,92.Q2) = glG(Ql,Qg)ggl for g1,92 € G.
If X is a complete variety, then G(€1,2) is closed in G; this follows because
G(Q1,92) = p(p=1 (1)), where p : G x Qy — G is the projection and p : G x Qg —
X is defined by the action.

Definition 2.2. We will say that ; and Qy meet semi-transversally if Gq,Gq,
is a dense subset of G(Q1,€2). A semi-transversal intersection of Qq and Qg is
any subscheme of the form ¢;.27 N g2.Q9 for which ¢1.2; and g¢5.Q5 meet semi-
transversally (with g1, g2 € G).

If Q1 and €2 meet semi-transversally, then for all g in a dense open subset of
G(1,92), the intersection €y N g.0Qy is a translate of 3 N Qa, so Q3 N Qg is as
general as possible among non-empty intersections. A semi-transversal intersection
of Q1 and Qs exists if and only if G(Q1,3) contains a dense orbit for the action
of Gq, x Gq,, in which case 2 N ¢.€23 is a semi-transversal intersection whenever
g belongs to this orbit. Any semi-transversal intersection of €; and 29 is a G-
translate of any other. Notice that 21 N {2 may be a semi-transversal intersection
even though €27 and 2 fail to meet semi-transversally. The condition that 2, and
Q5 meet semi-transversally is stronger because it concerns the relative position of
the two varieties and not just their intersection. When the group G is not clear
from the context, we will write “G-semi-transversal” to clarify the action.

Example 2.3. (a) Let G act trivially on X. Then ©; meets Q5 semi-transversally
if and only if Q1 N Qs # 0, in which case Q1 N 5 is the only semi-transversal
intersection.

(b) Let GL(3) act on P2. Then a line and a conic meet semi-transversally if and
only if they have two points in common.

(c) Let GL(4) act on P3. Now a line and an irreducible curve of degree two meet
semi-transversally if and only if their intersection is a single reduced point.

(d) Let G = PGL(2) x PGL(2) x Sy be the automorphism group of X = P! x P!,
and set L = P! x {0}. Then G|, is connected while G(L, L) is disconnected, so
no semi-transversal intersection exists of L with itself. However, if we restrict the
action to the identity component G° = PGL(2) x PGL(2), then L meets itself
semi-transversally.

(e) Let PGL(n + 1) act on P™, let H C P™ be a hyperplane, and let S C P™ be any
hypersurface with finite automorphism group. Then the dimension of Gy x Gg is
smaller than the dimension of G(H, S) = G, so no semi-transversal intersection of H
and S exists. In particular, transversal intersections may fail to be semi-transversal.
(f) The maximal orthogonal Grassmannian X = OG(4,8) is one component of the
variety of maximal isotropic subspaces in an orthogonal vector space V of dimension
8. This space X is a flag variety of both SO(8) and its subgroup SO(7). A Schubert
line in X corresponds to a 2-dimensional isotropic subspace £ C V. Two Schubert
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lines given by E; and Fy meet SO(8)-semi-transversally if and only if E; + Es is
a point of X, whereas they meet SO(7)-semi-transversally ounly if E; + F is an
isotropic subspace of dimension 3. It is therefore impossible for two Schubert lines
to meet semi-transversally for both groups at the same time.

(g) The projective space P?"~1 is a flag variety of both SL(2n) and its subgroup
Sp(2n) of elements preserving a symplectic form on a vector space V of dimension
2n. A Schubert line for the action of Sp(2n) is given by a 2-dimensional isotropic
subspace £ C V. Two Schubert lines given by isotropic subspaces F; and FEs
meet SL(2n)-semi-transversally if and only if dim(E; + E;) = 3, whereas they
meet Sp(2n)-semi-transversally if and only if dim(E; + E3) = 3 and E; + Es is not
isotropic. Two Schubert lines can therefore meet SL(2n)-semi-transversally without
meeting Sp(2n)-semi-transversally.

2.3. Semi-transversal intersections of Schubert varieties. We are mostly
interested in semi-transversal intersections of Schubert varieties in a flag variety,
so assume again that X is a flag variety of a connected linear algebraic group G.
Our first result shows that a semi-transversal intersection of two Schubert varieties
exists and is a Richardson variety. Notice that X, N wy.X, is a semi-transversal
intersection of X, and X, whenever this intersection is not empty; this happens
exactly when k = wy in the following result.

Theorem 2.4. Let u,v € WX, and set k = u-wo x - v~ '. Then G(X,, X,) =
BkB, wokv € WX, and X, N k. X, = Xy Nwo-Xuwgro as (reduced and irreducible)
subschemes of X. In particular, the Richardson variety X, N wo.Xworo S @ semi-
transversal intersection of X, and X,,.

Proof. Let p: G x X, — X be the map defined by u(h, z) = h.z. If we let G act on
the left factor of G x X, then p is G-equivariant, so u is a locally trivial fibration
by [BCMP13, Prop. 2.3]. It follows that 4~ (X,) C G x X, is a closed irreducible
subvariety. Let p : G x X, — G be the first projection and let B x B act on
G x X, by (b1,b2).(h,z) = (b1 hb;l, bs.x). Then p is proper and B x B-equivariant,
and since p~1(g) N ™1 (Xy) = {9} x (971X, N X,) = X, N g.X,, it follows that
G(Xu, X,) = p(p~1(X,)) C G is closed, irreducible, and B x B-stable. Since kv <
uwg, x by Lemma 2.1, we obtain kv.Px € X, Nk.X, # 0, so BB C G(X,, Xy,).
On the other hand, if w € W is any element such that X, Nw.X, # (), then let
v'.Px € w'.X, N X, be any T-fixed point, with v € WX. Then ¢ < v and
wv’ < uwg,x, which implies w = (wv’)(v/)~! < (wv') - (V)7 < wwpx -v7! = k.
This shows that G(X,, X,) = BkB.

Since p : 71 (X,) = G(Xy, X,) is B x B-equivariant, this map is locally trivial
over the open orbit BkB. In particular, the intersection X, N x.X, is reduced.
Since (kv) = £(k) — £(v) by Lemma 2.1, we have ¢(wokv) = L(wok) + £(v). Tt
follows that wok.X, C Xyyuw, so we have X, N k.X, C X, Nwo.Xygno- Using
that 1 : G x X, — X is locally trivial, we get dim(p~!(X,)) = dim(Px) + £(u) +
{(v), and since p : p~H(X,) = G(X,,X,) is locally trivial over BxB, we obtain
dim (X, Nk.Xy) = £(u) + £(wo,x) + £(v) — £(k). On the other hand, the dimension
of the Richardson variety X, N wg.Xyyro i bounded by dim(X, N wo.Xygro) <
L(u) +£(wokv) —dim(X) = £(u)+€(wo,x ) +{(v)—£€(k). We deduce that X,,Nk.X, =
X Nwg. Xy ro and that dim(Xy,x,) = L(worv), so that wokv € W, O

The following corollary gives a geometric characterization of the weak left Bruhat
order that we have not seen before.
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Corollary 2.5. Let u,v € WX. The following are equivalent. (1) There exist.
g € G such that X, N g.X, is a single point. (2) The product u - wo x - v~ ! is

reduced. (3) We have u <p, v".

Proof. Set k = u - wo x -v~ L It follows from Theorem 2.4 that X, N x.X, is a
point if and only if worv = ¥ = wouwo x, or k = uwg xv~!, so (1) and (2) are
equivalent. Conditions (2) and (3) are equivalent because we have ¢(vwg xu~!) =
L(vwp x) + £(u) if and only if L(vVu~1) = £(vY) — £(u). O

Remark 2.6. Using the Stein factorization of the map p: p=1(X,) — G(X4, X,),
it follows that X, N ¢.X, is connected for all g € G(X,, X,). However, the inter-
section X,, N g.X, is not always irreducible, and Jesper Thomsen has shown us an
example where X, N g.X, fails to be reduced [Tho]. For example, the intersection
of two Schubert divisors in the Grassmannian Gr(2,4) may be a union of two pro-
jective planes, and two Schubert divisors in the quadric hypersurface Q3 C P* can
meet in a double line.

Remark 2.7. If X is a flag variety of two different groups G and H, and Q1,Qs C
X are Schubert varieties with respect to both groups, then one can show that
any semi-transversal intersection of 1 and €y for the action of H is also a semi-
transversal intersection for the action of G, up to translation by an automorphism
of X. In fact, there are only three families of flag varieties of groups of distinct
Lie types, namely odd-dimensional projective spaces P?"~1 = Ay, /P, = C, /Py,
maximal orthogonal Grassmannians OG(n,2n) = D,,/P, = B,_1/P,—1, and the
5-dimensional quadric Q° = Bs/P; = Ga/P,. The first two families consist of
(co)minuscule flag varieties, in which case the claim follows from Proposition 4.5.
The last case B3/P; = G3/P» has been checked from Theorem 2.4 with help from
a computer. We will not need this fact in the following.

2.4. Fibers of Schubert varieties. Let Y = G/Py be an additional flag variety
of G such that Px C Py, and let 7 : X — Y be the projection. Then F =
7 Y(1.Py) = Py /Px is a flag variety of Py. The Schubert varieties in F are the
B-orbit closures F,, = X,, for w € Wy, as well as their Py-translates. Similarly,
any fiber 771(g.Py) = g.F for g € G is a flag variety of gPyg~'. Given a subvariety
Q) C X, the fibers of the restricted map 7 :  — 7(€2) will be called fibers of Q. Our
next result shows that, if  is a Schubert variety in X, then any fiber Q N 71 (y)
with y € 7(Q) is a Schubert variety in 7= 1(y).

Theorem 2.8. Any intersection X, N7~ (y) defined by u € WX andy € n(X,) is
a (reduced) Schubert variety in 71 (y). Let u = u¥ uy be the parabolic factorization
with respect to Py. Any fiber X, N7~ 1(y) given by y € io’u is a translate of X, N
u.F =uY.F,,.

Proof. We may assume that G is reductive. Let L C Py be the Levi subgroup
containing 7" and set By, = BN L. We then have F,, = Bpw.Px for each w € Wy-.
Since 7 is B-equivariant, we may assume that y = v.Py € w(X,) is a T-fixed
point, given by an element v € WY. Then v < u. Since v € WY we have
v.a > 0 for each positive root a of L, and this implies that vBrv~! C B and
therefore By, C v~'BvN L. Since v~'Bv N L is a Borel subgroup of L, we obtain
B, = v™'Bvn L. It follows that v='.X, N F is a closed Bp-stable subset of
F', so this set is a union of Bp-stable Schubert varieties in F. The set of T-
fixed points in v=1. X, N F is {2.Px | 2 € Wy and vz < uwg x}. It follows from
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[KLS14, Prop. 2.1] that the set {z € Wy | vz < wwg x} has a unique maximal
element, say 2z’ € Wy. This implies that v=1.X, N F = F, (as sets), hence
X, Na~Y(v.Py) = v.F,/ is a translate of this Schubert variety. Notice also that, if
y € lO/u, then v = uY, 2/ = uywg x, and F,, = F,,.. To see that X, N7~ (v.Py)
is reduced, set Z = X, N7 1(Y,). Since Z is an intersection of B-stable Schubert
varieties, it follows that Z is a reduced union of Schubert varieties in X, see [BK05,
§2]. Since the map 7 : Z — Y, has irreducible fibers by the above argument, it
follows that Y, is dominated by a unique irreducible component Z’ of Z, and Z' C X
is a B-stable Schubert variety. Since 7 : Z' — Y,, is B-equivariant, it is locally trivial
over the open cell ﬁ) CY,. We conclude that X, N7~ (v.Py) = Z' N7~ (v.Py) is
reduced. (I

Remark 2.9. The parabolic factorization of u € WX commutes with dualization
in the sense that wouwg, x = (wou¥ wo,y ) (wo,yuywo x). It follows that the general
fibers of the projection 7 : X* — 7(X%) are translates of the Schubert variety F'*Y .

2.5. Fibers of Richardson varieties. We finally consider the fibers R N 71 (y)
of a Richardson variety R C X under the projection of flag varieties 7 : X — Y.
While the fibers of a Richardson variety may fail to be irreducible [BR12, Ex. 3.1],
we will show that RN 7~ !(y) is a Richardson variety in 7= (y) for all points y in a
dense open subset of m(R). Some very special cases of this were proved in [BR12].
The projection 7 : R — 7(R) was also studied in [BC12, KLS14], were it was proved
that this map is cohomologically trivial and that the projected Richardson variety
m(R) is Cohen-Macaulay with rational singularities.

Theorem 2.10. Let R = X, Nwy.X, be a Richardson variety in X, with u,v €
WX, Let w =uYuy and v = v¥vy be the parabolic factorizations with respect to
Py. Then for all points y in a dense open subset of m(R), the fiber RN7~1(y) is a
G-translate of a semi-transversal intersection of Fy, and F,, in F =7 1(1.Py).

Proof. Usmg [Spr98, Lemma 8.3.6] we may choose two morphisms ¢; : Y, -+ B
and ¢2 » — B such that ¢1(y)u.Py =y for all y € Y and ¢o(y)v.Py =y for all
Y€ Y. For each element w € W we choose a fixed representative w € Ng(T'). Set
m(R)° = m(R) NY, Nwp.Y, and define ¢ : 7(R)° — G by

V() = (@) 61(y) " o pauig ') 07

Since 1igpa (g Ly)0Y Py =y = ¢1(y)u . Py, we have 1(y) € Py for all y € n(R)°.
Theorem 2.8 implies that X, N7 1(y) = ¢1(y)u¥ .F,y, and we.X, N7 (y) =
w0¢2(w51.y)vY.F It follows that translation by ¢;(y)uY maps the triple of
varieties (Fl, , ¥ (y). Fvy,F) (X N7 y), wo. X, N7 1 (y), 7~ (y)). We deduce
that F,, NY(y).Fuy, # 0 for all y € m(R)°, hence ¢(y) € Py(Fy,,Fy, ). Since
Theorem 2.4 shows that Fy, N g.F,, is a semi-transversal intersection in F' for
all elements ¢ in a dense open subset of Py (F, , Fy, ), it is enough to show that
X, N~ Hy) meets wo.X, N7~ 1(y) semi-transversally in 7~ !(y) for at least one
point y € 7(R)°.

Fix any point 3 = g.Py € 7w(R)". Then 7~ 1(y’) = g.F is a flag variety of the
group gPyg~!, and the set H = (gPyg~1)(X, N g.F,wo.X, N g.F) of §2.2 is an
irreducible closed subvariety of gPyg~! by Theorem 2.4. This theorem also implies
that X, N ¢g.F meets hwy.X, N g.F semi-transversally in ¢g.F for all elements h
in a dense open subset HY C H. Since BB~ is a dense open subset of G and
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1 € BB~ N H, it follows that BB~ N H is another dense open subset of H. Let
U~ C B~ be the unipotent radical, let p : BB~ = B x U~ — B be the first
projection, and define f : BB~ — Y by f(h) = p(h)"'.y/. For h € BB~ we
have p(h)~'h € U~, which implies that X, Nw.X, N7~ (f(h)) = p(h)~1.(X, N
hwo. X, N7~ 1(y")). It follows that f restricts to a morphism f: BB~ NH — m(R).
Since f(1) = v’ € ©(R)?, it follows that f~!(7(R)°) is a dense open subset of H.
Finally, let h € f~(7(R)?) N H be any element and set y = f(h). Then we have
y € 7(R)Y, and X,, N7 1(y) meets wo.X, N7~ !(y) semi-transversally in 7= 1(y), as
required. (Il

Corollary 2.11. The general fibers of a projection 7 : R — w(R) from a Richardson
variety are Richardson varieties.

The following result was proved in [KLS14, Cor. 3.4] with a different but equiv-
alent definition of the Px-Bruhat order <x.

Corollary 2.12. Let u,v € WX. The projection 7 : X? — 7(X") is a birational
map of non-empty varieties if and only if v <y u.

Proof. This follows from Theorem 2.10, Corollary 2.5, and Remark 2.9. g
For later use we state the following result, which was proved in [BC12, KLS14].

Theorem 2.13. Let m: X — Y be a projection of flag varieties and let R C X be
a Richardson variety.

(a) The image w(R) is Cohen-Macaulay and has rational singularities.

emapm:R—=>m 15 cohomologically triveal, that is, m.(Or) = Or(r) an
b) Th R R) is cohomologically trivial, that i @ Or(r) and
Rim,Op =0 for j > 0.

3. PROJECTED RICHARDSON VARIETIES

We need some additional results about projections of Richardson varieties that
were proved in [KLS14]. In this expository section we give short proofs of these
results. The statements of some results deviate slightly from the original versions,
for example the bounds on «’ and v’ in Theorem 3.5 are important for our appli-
cations but not immediately clear from [KLS14, Prop. 3.3 and Prop. 3.6]. Another
difference is our simpler but equivalent definition of the Px-Bruhat order from
Section 2.1: for u,v € W we have v <x wu if and only if v < wu and ux < vx.

We work over any algebraically closed field. Let E = G/B be the variety of
complete flags, let X = G/Px be any flag variety of G, and let 7 : E — X be
the projection. Given v,u € W with v < u, the images in X of the corresponding
Richardson variety and Richardson cell in E are denoted by II(X) = w(EY) and

I3, (X) = ().

Lemma 3.1. Let u,v € W satisfy v < u, and let s € Wx be a simple reflection
such that u < us and v < vs. Then the following hold.

() IT(X) = TI23(X) = I3, (X).

(b) TI5(x) = f125(X).

(¢) I, (X) = I (X) UL (X).

(d) 7 EO'E — IEIZ(X) is an isomorphism of varieties if and only if 7 : Eo’};ﬁ — 19[5?; (X)
is an isomorphism of varieties.
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Proof. We may assume that Px is the minimal parabolic subgroup defined by
Wx = {1,s}. We then have u,v € WX. Part (a) follows from 7(E?) = 7(E, N
7 1X")) = n(E,) N XY = X? and symmetric identities. We also have W(EOZS) C
XY = 7(E) N XY = n(E, N7 X)) = (B, N (EY UEY)) = n(EY) Un(EY®).
Given z € )2'5, the fiber 771(z) = P! is contained in 7r*1()o(5) = E‘ZS U Eo}j U
Eofi; u Eo’ff Since r is injective on E, and on EvS, 7 Hz) N (l%fj u 1375; u l%}f)
is finite, so 7~ 1(z) N L%st # (. This proves (c). A symmetric argument gives
)O(}j = ﬂ'(Eofj;) U ﬂ'(EO'}js). Again using that 7 is injective on E, and on Ev°, part (b)
follows because 77(1%‘5) = )0(3 - ﬁ(f%{js) = Tr(l%;ji) Finally, both maps in part (d)
are isomorphisms because 7 : Eo'u — )O(u and 7 : BV — X5 are isomorphisms by
[Spr98, Lemma 8.3.6]. O

Proposition 3.2. Let u,v € W satisfy v < u. The following are equivalent.
(a) We have v <x u.

(b) The dimension of TI(X) is £(u) — £(v).

(¢) The map T : EOJZ — IEIZ(X) is an isomorphism of varieties.

Proof. 1f u € WX then (a) holds by definition of <x, and (b) and (c) hold because

m: E, — X, is an isomorphism. Otherwise let s € Wx be a simple reflection
such that us < w. If v < ws, then v £x wu, and Lemma 3.1(a) implies that
dimITY(X) < dim EY. On the other hand, if vs < v, then vs <x wus holds if
and only if v <x wu, so the result follows from Lemma 3.1(b,d) by induction on

If part (c) of Proposition 3.2 is replaced with the requirement that = : EY —
w(E?) is birational, then this theorem holds when F is an arbitrary flag variety and

u,v € WE. However, the following example shows that 7 : Eo}j — ’/T(EOZ) may fail
to be injective when E # G/B and v <x u in WE.

Example 3.3. Let G = GL(5), let B C G be the subgroup of upper triangular
matrices, and let B C Px C Py C G be the parabolic subgroups such that Wy is
generated by s4 and Wy is generated by s1, s3,s4. Then X = G/Px = F1(1,2,3;5)
and Y = G/Py = Gr(2,5). Let 7 : X — Y be the projection and set v = s3 and
U = 3895184838253 = 45213. Since uy = vy = s3, it follows from Proposition 3.2
or Corollary 2.12 that 7 : X! — w(X?") is birational. Let E = G/B = FIl(5) and
v’ = 8354, and consider the composition of projections

EV — XU I m(XY).
Since u € WX, the map l%u — )Z'u is an isomorphism of affine spaces, so the first
projection is injective. However, since uy £, vy, it follows from Proposition 3.2
that the composed projection is not injective. We conclude that 7 : )%;; — 71'()%5)
is not injective.

Let ~x denote the equivalence relation on the set {(v,u) € W x W | v < u}
generated by (v,u) ~x (v,us) ~x (vs,us) whenever s € Wx is a simple reflection
such that v < us and v < vs.

Theorem 3.4. Let u,v,u’,v' € W satisfy v < u and v' < u'.
(a) IFIIL(X) = 1% (X) and u,u’ € WX, then u =’ and v ='.
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(b) We have TI%(X) = T1%.(X) if and only if (v,u) ~x (v',u').
(c) If v <x u and v' <x v/, then either IOIZ(X) = IQIZ,,(X) or IEIZ(X) ﬁlglz/,(X) = {.

Proof. Tt follows from Lemma 3.1(a) that (v,u) ~x (v',u) implies II%(X) =
I1%,(X). Assume that u,u’ € WX and IEIZ(X) N IEIZ/,(X) £ 0. Then X, N X, # 0,
which implies © = u’. Since 7 is injective on l(:?u, we deduce that v = v/ as well.
This proves (a), and also establishes (b) and (c) when u,u € WX. Assume next
that u ¢ WX. Choose a simple reflection s € Wx such that & = us < u, and set
¥ = (v-s)s. Then we have (v,u) ~x (0,u), II(X) = I(X), and Uy < ux, SO
part (b) follows by induction on f(ux) + ¢(u’y). If v <x wu, then we must have
v=wvs <vand ¥ <x u. Since Lemma 3.1(b) shows that IEIZ(X) = lglg(X), part (c)
also follows by induction on £(ux) + ¢(uy). O

Theorem 3.5. Let u,v € W satisfy v < u.
(a) The set IEIZ(X) is the disjoint union of some of the sets IEIZ/, (X) for which
v<v <xu <u.
(b) We have IIy(X) = | )  II(X).
v<v' <xu'<u

(c) There exists u',v' € W such that v < v <x ' <wu and II%(X) = I1¥,(X).

Proof. We first prove part (a). If u € WX, then v <x u and the result is clear.
Otherwise let s € Wx be a simple reflection such that us < u. If v < vs, then
Lemma 3.1(c) shows that IQIZ (X) = ﬁZQ(X) U IEIZ?; (X), so the result follows by in-
duction on ¢(ux). The obtained union is automatically disjoint by Theorem 3.4(c).
Assume that vs < v. Then Lemma 3.1(b) gives IOIZ(X) = lelfg(X), and by in-
duction on f(ux) we can express IEIZ(X ) as a union of sets IQIZ/, (X) for which
vs < v <x v < us. Any such set IEIZ/,(X) for which v < v’ satisfies the re-
quirements of part (a), so assume that vs < v/ <x v’ < us and v £ v'. Then we
must have v' < v's. Since v/ <x u', we also obtain v’ < u's, so Lemma 3.1(b)
shows that IQIZ/, (X) = IEIZI/Z (X). Since v < v's <x u's < u, this set has the required
form. This completes the proof of (a). Part (b) follows from (a) because EY is the
union of all sets l??fji for which v < v/ < 4/ < w, and (c¢) follows because lglz,,(X)

must be dense in IEIZ(X) for some v/, v" € W with v <v' <x v/ <. O

Corollary 3.6. If v <wu in WX, then X! =11%(X) and )%5 =1 (X).

Uwo, x

Proof. The first equality is true because X! = 7(E,) N X? = m(E, N7 }(X?)) =
IT;,(X). For the second, notice first that I},  (X) C m(Euw, ) N 7(EY) = X;.

We also have )O(}j = X, n W(L%U) = 7r(7r_1()o(u) N E‘”) = Urews IEIZI(X) Since
Lemma 3.1(c) implies that lglfm (X)C I (X), we deduce that )O(fj c I (X).

Uwo, X UwWo, x

4. COMINUSCULE FLAG VARIETIES

4.1. Schubert varieties. In the remainder of this paper we let X = G/Px be a
cominuscule flag variety defined over C. This means that Px is a maximal parabolic
subgroup of G, and the unique simple root v in A \ Ax is cominuscule, that is,
when the highest root of ® is expressed as a linear combination of simple roots,
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the coefficient of v is one. If in addition the root system ® is simply laced, then
X is also called minuscule. It was proved by Proctor that the Bruhat order on
W is a distributive lattice that agrees with the left weak Bruhat order [Pro84].
Stembridge has proved that all elements of W are fully commutative, which means
that any reduced expression of an element of WX can be obtained from any other
by interchanging commuting simple reflections [Ste96]. We proceed to summarize
the facts we need in more detail, following the notation from [BCMP18a]. Proofs
of our claims can be found in [Pro84, Ste96, Per07, BS16].

The root lattice Spany(A) has a partial order defined by o < « if and only if
a — o' is a sum of positive roots. Set Px = {a € ® | @ > v}, with the induced
partial order. For any element u € W we let I(u) = {a € ®T | u.aw < 0} denote the
inversion set. We then have £(u) = |I(u)|, and u € WX if and only if I(u) C Px.
Moreover, the assignment u — I(u) restricts to a bijection between the elements of
WX and the (lower) order ideals of Px. This bijection is an order isomorphism in
the sense that v < w if and only if I(v) C I(u). The order ideals in Px generalize
the Young diagrams known from the Schubert calculus of classical Grassmannians.
For this reason the roots in Px will sometimes be called bozes. An order ideal in
Px will be called a straight shape, and a difference between order ideals is called a
skew shape.

Given a straight shape A C Px, let A = {aj,a9,... 7oz|>\|} be any increasing
ordering of its elements, i.e. a; < «; implies ¢ < j. Then the element of wX
corresponding to A is the product of reflections wy = 84,54, - - - CIN (see e.g. [BS16,
Thm. 2.4]). Given v,u € W¥ with v < u, we will use the notation u/v = uv=1 € W.
Since the Bruhat order on W agrees with the left weak Bruhat order [Pro84] (see
also [Ste96, Thm. 7.1]), we have {(u/v) = l(u) — £(v).

For any root @ € Px, consider the shape A(a) = {a¢’ € Px | ¢ < a}, and set
§(a) = wy(a).c. Then s5,) = Wx(a)Saly () = Wx(a)U{a}/Wr(a) has length one. It
follows that § : Px — A is a labeling of the boxes in Px by simple roots. Examples
of this labeling are provided in Table 1.

The element u/v depends only on the skew shape I(u) \ I(v). If I(u) \ I(v) =
{a1,as,..., a0} is any increasing ordering, then u/v = S5(a,) """ 55(as)S6(ay) 18 @
reduced expression for u/v. In the special case v = 1, every reduced expression
for u can be obtained in this way. We will say that u/v is a rook strip if this
element of W is a product of commuting simple reflections. Equivalently, no pair
of roots in I(u) \ I(v) are comparable by the partial order < on Px. We call u/v a
short rook strip if it is a product of commuting reflections defined by short simple
roots. Notice that if the root system & is simply laced, then all roots are long by
convention, so u,/v is a short rook strip if and only if u = v.

The following result holds for any (reduced and crystallographic) root system ®.

Lemma 4.1. Let ® be a root system with associated Weyl group W, let w € W,
and let o/ <« be a covering relation in I(w). Then a — o' € ®T.

Proof. We can write o = o’ + 1 + -+ - + B, with 3; € &+ and 8, + 3; ¢ @ for all
and j. By [GP20, Thm. 2.4] we may assume o/ + 31 +---+ f,_1 € ®T, and [GP20,
Thm. 2.5] implies that o’ + 8 € ®*. Using that w.o/ and w.a are negative roots,
it follows that o’ + 81 + - -+ Bx—1 or o’ + Bi belongs to I(w). In both cases, since
o’ < a is a covering relation, we deduce that k = 1. (I
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TABLE 1. Partially ordered sets Px of cominuscule varieties with
I(z1) highlighted (see Definition 5.2). In each case the partial order
is given by o/ < « if and only if o’ is weakly north-west of a.

Grassmannian Gr(3,7) of type A | Max. orthog. Grassmannian OG(6, 12)
1 2 3 4 5 6 1 2 3 4 5
O O ® O O O
6
3141516 64321
2131415 514132
1121314 643
54
6]
Lagrangian Grassmannian LG(6,12) Cayley Plane Eg/Ps
1 2 3 4 5 6 1 3 4 5 6
O O O O O J O O O O ]
[6]5/4[3[2]1 5o
6(5|4(3|2
65|43 l6]5]4]2
6|54 3(14]5]6
6|5 113[4]5
16 2]4]3]1]
Even quadric Q'° c P! Freudenthal variety E7 /Pr
1 2 3 4 _R5 3 4 5 8 i
6 l
2
|1]2]3]4]5
2143
542
0dd quadric Q' c P2 615141371
1 2 3 4 5 6 716]5]4)3
® O O O O O 214
5
[[2[3T4[sT6 514 3T2]1] 6
7

Lemma 4.2. Let u,v € WX satisfy v < u.

(a) The action of v defines an order isomorphism v : I(u) \ I(v) — I(u/v).

(b) Let « € ®. Then « is a minimal box of Px ~ I(v) if and only if & > v and
v.ae € AL In this case we have v.a = 6(a).

Proof. We have v.(I(u) N\ I(v)) C I(u/v) by definition of the inversion sets, and
both sets have the same cardinality. The map a — v.a is order-preserving on
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all of Px since v.3 > 0 for all 3 € A ~ {y}. To prove that v=! : I(u/v) —
I(u) ~ I(v) also preserves the order, let o/ < a be a covering relation in I(u/v).
Then v ta—v7l.a =v71(a—a') € ®isaroot by Lemma4.1,s0 v~ 1.’ and v~ 1.av
are comparable elements in Px. Since v is order-preserving and o’ < «, we deduce
that v=1.o/ < v~ l.a. This proves (a). If a is a minimal box of Px ~\ I(v), then
AMa) C I(v), and any box o € I(v) \ A(«) is incomparable to «, hence s,.ac = «
by [BS16, Lemma 2.2]. This implies that v.a = wy).a = d(a) € A. On the
other hand, the conditions a@ > v and v.a € A imply that o € Px \ I(v). Let
o' € Px ~ I(v) be any minimal box such that o/ < a. Since 0 < v.o/ <v.a € A,

we must have o/ = a, which proves (b). O

Remark 4.3. (a) If a; # as € Px are incomparable boxes, then Lemma 4.2(b)
implies that §(a) = wy.op # wx.a2 = (a2) where A = AMaq) UA(a2). In addition,
we have (§(a1),d(a2)) = (a1, a2) = 0 by [BS16, Lemma 2.2].

(b) If @1 < e is a covering relation in Px, then (aj,as) > 0. In fact, since
a1 is a maximal box of A(ag), we obtain (a1, a2) = (Wx(ay)-Q1, Wr(ay)-2) =
(=0(1),6(az)) > 0. If (a1, 2) = 0, then s504,) and s5(4,) are commuting simple
reflections. Set A = A(az) \ {a1}. Since S5a,)Ss(as)wa € WX is a reduced prod-
uct, it follows that sg(a,)wx € WX and A C I(ss(ay)wa) € AU {1, a2}. But then
I(85(as)wr) = AU {1}, a contradiction.

Lemma 4.4. (a) The action wo x : Px — Px 1is an order-reversing involution,
and (wo x.c) = —wp.0() is the Cartan involution of é(c) for each o € Px.

(b) The Poincaré dual element of u € WX is determined by I(u") = I(wouwo, x) =
Px ~ wo,x.I(u).

Proof. The action of wy x is an order-reversing involution on Px since it does not
change the coefficient of v, and wg_x .8 < 0 for each 3 € A~ {y}. For u € WX and
a € ¢t we deduce that wouwg x. < 0 holds if and only if wy x.a € Px ~\ I(u),
which proves (b). Since wo x.o is a maximal box of Px \ wo x.A(«), it follows
from Lemma 4.2(b) that 6 (wo,x.a) = —wx(a).(woﬁx.a) = —WoW)(a)-a = —wo.0(a),
which completes the proof of (a). O

The Bruhat order on WX is a distributive lattice, with join and meet operations
defined by I'(uUv) = I(u)UI(v) and I(uNv) = I(u)NI(v). Notice that (uUv)/v =
u/(uNw). It follows that u/(u Nwv) and v/(u Nv) are commuting elements of W,
as their product in either order is (v Uwv)/(uNv). We also have (unv)Y =u" UvY
and (uUv)Y =u’ NoY.

Proposition 4.5. Let u,v € WX. The Richardson variety X' is a semi-
transversal intersection of X, and XV in X.

Proof. Set z = v¥ = wovwy x and kK = u - wo, x - z~1. It follows from Theorem 2.4
that X, N wo.-Xwgre = Xu ©* is a semi-transversal intersection of X, and X?.
We must therefore show that, for all v,z € WX we have

(u-wox -2z Hzwox =unz’.

Set v/ = unzY. Since zVwg x2~! = wp is a reduced product and v’ <j 2V, it

follows that u' - wo x - 27! = w'wg x27! is also a reduced product, so we obtain
(v wo x-27Hzwe,x = v =unzY. Let a € I(u)~1(z") and set 8 = §(«x). It suffices

to show that sg - (u/wo x271) = wwy xz~!. We may assume that sgu'wg x >
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u'wp x, in which case sgu’ € WX. We then have I(sgu’) = I(u') U {a'} for some
root o with 6(a/) = v’.a’ = . Since sgu’ £ z¥ we have o ¢ I(zV). It follows
that (u'wo,xz"1)"1.8 = zwp x.0' = wpz".o/ < 0, and hence sp - (W'wp, xz"1) =
w'wo x 27, as required. ]

4.2. Cohomology of negative line bundles on Richardson varieties. Let
K7(X) denote the T-equivariant K-theory ring of X, see e.g. [BCMP18a, §2.1]
and the references therein. Pullback along the structure morphism X — {point}
makes Kr(X) an algebra over the ring Kr(point) of virtual representations of T
Let x, : Kr(X) — Kr(point) be the pushforward along the structure morphism.
The Schubert classes in K7 (X) are denoted by OV = [Ox+] and O,, = [Ox,]. Let
J C Ox be the ideal sheaf of the Schubert divisor X*v. Then J~! is the ample
generator of Pic(X). In addition, J inherits a structure of T-equivariant line bundle
from Ox. An equivalent definition is J = (Gx?C,,,)®C_,,_, see BCMP18a, §4.1].
Let J, denote the restriction of J to the T-fixed point v.Px.

Given any integer p € Z, we set p’ = p — % The half-integers %Z is then the set
of primed and unprimed integers.

Definition 4.6. Let S C Px be a skew shape. A decreasing primed tableau of
shape S is a labeling 7 : § — 17 such that (i) o/ < « in S implies T (/) > T (c),
and (ii) 7 («) € Z for all long boxes a € S.

Given any labeling ’f :Px — %Z of Px, such that 7@(04) € Z for each long box
a € Px, define the weight

AT) =) T(@) (wy,a)d().
a€Px
Here w. denotes the fundamental weight corresponding to the cominuscule sim-
ple root 7. Notice that, if 7A'(0<) is not an integer, then « is a short root, hence
(wy, V) =2.

Let u,v € WX satisfy v < u, let m € Z, and let a € %Z. Given a decreasing
primed tableau T of shape I(u) \ I(v), let T[m] : Px — 37Z denote the extension
of T that maps all boxes of I(v) to m and maps all boxes of Px \ I(u) to 0, see
Example 4.11. Using this notation, we define a representation of T" by

Cl o) = P ConiTimy »
T

where the sum is over all decreasing primed tableaux 7 of shape I(u) \ I(v) with
labels in [a,m), i.e. a < T (a) < m for all & € I(u) \ I(v).

Lemma 4.7. Letu,v € WX, m,p € Z anda € %Z, and assume that v < u, a < m,
and p > 0. Then

vamin = D Clom ©c Clam) -

weWX:v<w<u

Proof. Given a decreasing primed tableau 7 of shape I(u) \ I(v) with labels in
[a,m + p), let T” be the tableau consisting of the boxes with labels smaller than
m, and let 7/ be the tableau obtained by subtracting m from all boxes with labels
greater than or equal to m. Then 7' has shape I(w) \ I(v) and 7" has shape
I(u) \ I(w) for a unique element w € WX with v < w < u, 7' has labels in [0, p),
T” has labels in [a,m), and we have T[m + p] = T'[p| + T"'[m] with pointwise
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addition. The assumption a < m ensures that the assignment 7 + (77, 7") has a
well defined inverse map. The lemma follows from this. ([

The following identities generalize Theorems 3.6 and 3.7 from [BCMP18a|. A
more general Chevalley formula that holds in the K-theory of arbitrary flag varieties
was proved in [LP07, Thm. 13.1].

Proposition 4.8. (a) For v € WX and m > 0 we have in K7(X) that

re-ov = Y (FD) I )] 0"

ueWX:v<u
(b) For v <w in WX and m > 1 we have in Kr(point) that

XD = () e, .

v

Proof. Part (a) is clear for m = 0 and is equivalent to [BCMP18a, Thm. 3.6] for
m = 1. For m > 2 it follows by induction using Lemma 4.7. Let Z% € Kp(X)
be dual to Oy, i.e. Xy (On - I?) = §y. for u € WX, By [BCMP18a, Lemma 3.5
we have Z%¥ = Y (=1)/®/®)O% the sum over all u > w for which u/w is a rook
strip. Using that C:j,[O,m) =0, ng[;m)’ with the sum over all w € WX for which
v <w < wuand u/w is a rook strip, it follows that part (a) for m > 1 is equivalent
to the identity

[J]m 0" = Z (_1)€(w/v) [Ci’f[%7m)]lw :
weW X w<w
Part (b) follows by multiplying both sides by O, and applying x . O

Theorem 4.9. Let u,v € WX satisfy v < u and let m > 1. Then H'(X?,J™) =0
for all 0 < i < dim(X?) = £(u/v). Moreover, we have H*“/V) (XY, Jm) = ;*[; m)

{3
as representations of T .

Proof. To prove the vanishing of cohomology groups, we may assume that X =
G/ Px is defined over an algebraically closed field of positive characteristic [BKO05,
§1.6]. Then [BKO05, Thm. 2.3.1] together with [BK05, Lemma 1.1.8] applied to the
projection G/B — X shows that X? is Frobenius split. Since J~! is ample and
X7 is Cohen-Macaulay and irreducible, the Kodaira vanishing theorem for split
varieties [BK05, Thm. 1.2.9] implies that H*(X?,J™) = 0 for i < dim(XY). We
therefore have y (X2, J™) = (—1) @/ [HX/?)(X?, J™)], so the result follows from
Proposition 4.8. (Il

Remark 4.10. Using standard monomial theory, it is possible to compute the co-
homology groups of the restriction of any ample line bundle on G/P to a Richardson
variety; see [BL03, Thm. 3] or [LL03, Thm. 20]. However, we have not seen the
computation of the (top) cohomology of negative line bundles in the literature, and
this cannot be deduced using Serre duality since the canonical sheaf of a Richardson
variety is not a line bundle in general.

Example 4.11. Let X = LG(3,6) = C3/P; be the Lagrangian Grassmannian of
maximal isotropic subspaces in a complex symplectic vector space of dimension 6.
Let A = {f1, B2, B3} be the set of simple roots, where v = (3 is the long root. The
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labeling § : Px — A is given by the following diagram, where the upper-left box
represents v and the bottom-right box represents the highest root of ®.

EAEAE
Bs| B2
B3]

Set v = s983 and u = $353515283. Then we have

H3(X57 J®2) = C:f,[%g) = C*251*552*353 @ (C*351*5ﬁ2*3ﬁ3 .

The extensions 7[2] of the decreasing primed tableaux 7 corresponding to the
summands are displayed below. The coefficient of the simple root §; in the weight
obtained from of each tableau is the (negative) sum of the half-integers in the i-th
diagonal, multiplied by 2 if 3; is short.

(2 2]1 (2 2]
[1]v (1]
L9] L9}

An algebraic variety D is called cohomologically trivial if H°(D,Op) = C and
HY(D,0p) =0 for i > 0.

Corollary 4.12. Let D C X" be an effective Cartier divisor of class [D] =
m[X*]|x». Then D is cohomologically trivial if and only if there are no decreasing
primed tableauz of shape I(u) \ I(v) with labels in [5,m) N 3Z.

Proof. The Richardson variety X is cohomologically trivial, as it is rational with
rational singularities. The long exact sequence of cohomology groups derived from
0— Jm| xv — Ox» — Op — 0 then shows that D is cohomologically trivial if and
only if H (XY, J™) = 0 for all i. The result therefore follows from Theorem 4.9. [

Example 4.13. Let X be a Richardson variety of positive dimension and let
D c X} be a Cartier divisor. If [D] = [X*7]|xu, then D is cohomologically trivial
if and only if u/v is not a short rook strip. In particular, D is cohomologically trivial
if X is minuscule. If [D] = 2[X*"]|x» and X is minuscule, then D is cohomologically
trivial if and only if u/v is not a rook strip.

If X =X; x--- x X} is a product of cominuscule flag varieties, then the Schu-
bert varieties in X are given by sequences (Aq,..., ) of order ideals \; C Pyx,.
Such a sequence can be identified with an order ideal in the disjoint union Px =
Px, 11+ 11Px,- We will consider a point as a product of (zero) cominuscule vari-
eties with associated set Ppoint) = (). The results in this section hold for products
of cominuscule varieties with minor modifications. In Lemma 4.2(b), the condition
«a >« can be replaced with a@ € Px. In the results of Section 4.2, J should be the
ideal sheaf of the union of the Schubert divisors X v for 1 < i < k.

5. THE QUANTUM TO CLASSICAL PRINCIPLE

5.1. Introduction. The quantum to classical principle allows Gromov-Witten in-
variants of certain flag varieties to be computed as classical intersection numbers on
related flag varieties. The goal in this section is to derive the quantum-to-classical
theorem with as little type-by-type checking as possible. In addition we will develop
the associated combinatorics and geometry in order to support the main results of
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this paper. We will restrict our discussion to Gromov-Witten invariants of cominus-
cule flag varieties of small degrees. Here a degree d is considered small if ¢¢ occurs
in a product of two Schubert classes in the small quantum cohomology ring QH(X).
Equivalently, d is less than or equal to the diameter dx(2) defined in Section 5.2.
Our main references include [Buc03, BKT03, CMP08, BKT09, BM11, CP11].

The first version of the quantum-to-classical theorem applied to the enumer-
ative (cohomological) Gromov-Witten invariants of classical Grassmannians. Let
X = Gr(m,n) be the Grassmannians of m-dimensional vector subspaces of C". A
rational curve C' C X has a kernel and a span defined by [Buc03]

Ker(C) = ﬂ 14 ; Span(C) = Z V.

veC veC

If C is a general curve of small degree d, then one can show that dim Ker(C) = m—d
and dim Span(C) = m + d, which means that (Ker(C), Span(C)) is a point in the
two-step flag variety Yy = Fl(m — d,m + d;n). Given three Schubert varieties
Q1,Q,Q3 C X in general position, the Gromov-Witten invariant ([Q;], [Qs2], [Q2s3]),
is the number of rational curves of degree d meeting these Schubert varieties (as-
suming that this number is finite). The quantum-to-classical theorem states that
the map C' — (Ker(C), Span(C)) gives a bijection between the counted curves and
the intersection of three Schubert varieties in Yy. As a consequence, the Gromov-
Witten invariant ([Q4], [Q2], [Q3]), is equal to a classical Schubert structure constant
of H*(Yy) [BKTO03].

Subsequent work [CMPO08] demonstrated that the quantum-to-classical theorem
can be understood in a type-independent way if the points (K, S) of Yy are replaced
with the corresponding subvarieties of X defined by Gr(d,S/K) ={V € X | K C
V' C S}. Indeed, these subvarieties of X are non-singular Schubert varieties, and
also cominuscule flag varieties themselves. They can also be described as unions of
rational curves of degree d that pass through two given points in X. Such Schubert
varieties will be called primitive cominuscule varieties in this paper, see Section 5.4.

The quantum-to-classical theorem was extended to non-enumerative (equivariant
and K-theoretic) Gromov-Witten invariants in [BM11] by showing that the moduli
space M 3(X,d) of stable maps to X is birational to the space {(K, S, V4, Vs, V3)}
of kernel-span pairs (K, S) € Y, together with 3 additional points V; € Gr(d, S/K).
Indeed, given a general 5-tuple of this type, there exists a unique rational curve
C C Gr(d,S/K) C X of degree d which contains the three points V7, Vo, V5.

While we only discuss Gromov-Witten invariants of small degrees d < dx(2), the
definition of the quantum K-theory ring QK(X) also depends on Gromov-Witten
invariants of higher degrees. Such Gromov-Witten invariants can be computed with
similar methods, granted that certain Gromov-Witten varieties of large degrees are
rational; this was proved in [BM11] for Grassmannians of type A and in [CP11] for
cominuscule varieties of other Lie types (see also [BCMP13, Remark 3.4]).

5.2. Curve neighborhoods. Let X = G/Px be a cominuscule flag variety defined
over C. For any non-negative integer d > 0 we let My = My 3(X,d) denote the
Kontsevich moduli space of 3-pointed stable maps to X of degree d and genus
zero [FP97]. The evaluation map ev; : My — X, defined for 1 < i < 3, sends
a stable map to the image of the i-th marked point in its domain. Given classes
01,009,053 € H*(X;Z), the corresponding cohomological Gromov-Witten invariant
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of X of degree d is defined by

(01,0, Q) = / evi () - evi(a) - evi(s).

Mg
More generally, three K-theory classes Fi, Fa, F3 € K7 (X) define the K-theoretic
Gromov-Witten invariant

1a(F1, Fay F3) = Xy, (eVi(F1) - ev(F2) - ev(F3)) -

Given subvarieties Q1,0 C X, let My(Qq,Q0) = evl_l(Ql) N evgl(Qg) denote
the Gromouv-Witten variety of stable maps that send the first two marked points to
the given subvarieties. Let I'y(£21,Q2) = evs(M4(21,22)) be the union of all stable
curves of degree d in X that connect 1 and 5. We also consider the special cases
My() = evi (1) and Tg(Q1) = evs(My()).

Define the degree distance dist(x,y) between two points xz,y € X to be the
smallest degree of a rational curve C' C X with x,y € C. This is the minimal
degree d for which I'y(z,y) # 0. We need the following key result from [CMPO0S].
A type-independent proof based on properties satisfied by all flag manifolds was
given in [BM15, §5.4].

Theorem 5.1. Let u € WX. Then dist(1.Px,u.Px) is the number of occurrences
of sy in any reduced expression for u.

Equivalently, dist(1.Px,u.Px) is the number of boxes o € I'(u) with label §(a) =
v. Define the diameter of X to be the integer dx(2) = dist(1.Px,wy.Px). The
subset of boxes in Px labeled by ~ is totally ordered by Remark 4.3(a). We denote
these boxes by
5_1(’7) = {&1 <apg << &dX(Q)}.

Definition 5.2. For 0 < d < dx(2) we define elements kg and z4 in WX by
I(kg) ={aePx|a<ag} and I(zq) ={a€Px|a P agi1}.
We set kg = 20 = 1 and zg,(2) = wS(.

Example 5.3. Let X = Gr(4,9) be the Grassmannian of 4-planes in C?. Then the
elements ko and zo are given by the following shapes:

I(k2) = and I(z) =

The shapes I(z1) for a representative selection of cominuscule flag varieties are
displayed in Table 1.

Lemma 5.4. We have /@31 = Ka, (zqwo,x)"' = zawox, and 2)zq = wi. In
addition, T4(1.Px) = X,,.

Proof. It follows from Theorem 5.1 that x4 and zqwg x are the unique mini-
mal and maximal elements of the set {w € W | dist(1.Px,w.Px) = d}. Since
dist(1.Px,w.Px) = dist(1.Px,w™.Px) for any element w € W, we deduce that
kq and zqwg, x are self-inverse. We then obtain

v -1 X
Z4Zd = WoZqWo,x 2d = Wo(2qWo,x)  2d = WoWo,x = W{ -

The identity I'4(1.Px) = X, follows from Theorem 5.1 since I'4(1. Px ) is a Schubert
variety by [BCMP13, Cor. 3.3(a)]. O
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Remark 5.5. We have WxkgWx = {u € W | dist(1.Px,u.Px) = d}.

Lemma 5.6. The orbits of the diagonal action of G on X x X are given by 2021’2 =
{(z1,22) € X x X | dist(z1,22) =d}, for 0 < d < dx(2).

Proof. Each set Zod72 is stable under the action of G. Given (x1,z3) € éd,g, we can
choose g € G such that g.z1 = 1.Px, and then choose b € B such that bg.xs = u.Px
is a T-fixed point, with u € W*. Since dist(1.Px,u.Px) = d, Theorem 5.1 implies
that u/kq € Wx. The lemma follows from this because (u/kq) 1bg.(x1,72) =
(1.PX7K,d.Px).

Lemma 5.7. We have (a,7Y) = 1 for a € I(z1) ~ {7}, and (a,7Y) = 0 for
a € Px N I(z).

Proof. Notice that (a,vY) > 0 for every a € Py, since otherwise the coefficient of
7 in the root s,.ac = o — (@, ")y is at least 2. In addition, if o/,a € Px satisfy
o < a, then (/,7Y) > (a,7Y), as @ — o' is a non-negative linear combination
of A\ {~}. Finally, since 7 is a long root, we have (a,7") < 1 for any root
a # . Tt is therefore enough to show that (a,~Y) # 0 for a € I(21) and that
(a2,7Y) = 0. If @ € I(21) U{as} is any root with o # =, then we have §(a) =
ysy.a = y.(a — (o,7")y) € A for some y € Wx. Since the action of y does not
change the coefficient of 7, we deduce that (o,7") = 0 if and only if §(c) = v, as
required. ([l

Corollary 5.8. We have [y c1(Tx) = {(21) + 1.

Proof. By [FW04, Lemma 3.5] we have sz c1(Tx) = Y qep, (,7Y), so the corol-

lary follows from Lemma 5.7. g

Proposition 5.9. (a) The map zq : Px ~ I(zq) — I(z)]) defined by o — zq.v is
an order isomorphism, and §(z4.ct) = 6() for each o € Px ~\ I(zq).

(b) The map —kq : I(kq) — I(kq) defined by a — —kq.« is an order-reversing
involution, and 6(—kq4.a) = 6() for each a € I(kq).

Proof. Since z} = wg /zq by Lemma 5.4, it follows from Lemma 4.2(a) that z4 :
Px N I(zq) — I(2Y) is an order-preserving bijection. Since z;' = wq xz4wo, x,
the inverse bijection is also order-preserving. Let o« € Px \ I(z4) and set A =
Aa) U I(zq). Since o is a minimal box of Px \ A, we have d(a) = wy.a. Write

A= I(zq) [[{a1,aa,...,a¢}, where the roots are listed in increasing order. Then
WX = ZdSay San ** * Sap- Using that zg is an order isomorphism, we obtain A(z4.c0) =
{zq.01, zq.q2, . . ., zg.au }, with the roots listed in increasing order, hence

w)\(zd.a)zd = Szg.a158zq.00 " " Szg.00”d = ZdSa;San * Sa;gzglzd = Wx,
and 6(2q.0t) = Wy (z,.0)-(24-00) = wx.ac = §(r). This proves part (a).

For a € I(kq) we have —kq.a € @ and kg.(—kg.) = —a < 0, hence —kq.a0 €
I(kq). The map —kq : I(kq) — I(kq) is order-reversing because rq.5 > 0 for
8 € A~ {v}. Given any element u < kg we have I(urq) = —kq.(I(kq) ~ I(u)); in
fact, the containment O follows from the definition of inversion sets, and both sides
have the same cardinality because (ukg)~! = kq/u. Now choose u < kg such that
« is a minimal box of I(kg) ~ I(u). Then —kg4.«0 is a maximal box of I(ukg), so
it follows from Lemma 4.2(b) that 6(—kg4.t) = —urg.(—Kq.ct) = u.cc = §(). This
proves part (b). O
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Proposition 5.10. The element z15, = z1 /K1 permutes Px and satisfies

wo, x (218)Wo,x = (zlsv)’l. The action of z15, on Px has the following properties.
(a) 218y : Px N 1(z1) = I(2Y) is an order isomorphism, and 6(z1s,.c) = §(ax) for
all a € Px \I(z1).

(b) z18y 1 I(2z1) N {7} = wo,x.(I(z1) ~ {7}) is an order isomorphism.

(c) We have z15.00q = aqg—1 for 2 < d < dx(2), and z15,.7 = wo, x .7y is the highest
root of ®T.

Proof. Since z1s5, € Wx we have z15,.Px = Px, and Lemma 5.7 implies

2. if « € Px \I(21);
218y.00= ¢ z1.0 — 21y if e € I(z1) N {v};
—z1. ifa=7vy

for any a € Px. Part (a) therefore follows from Proposition 5.9(a). In particular,
we have z15,.0,qg = @g—1 for d > 2. Since z15,.a0 < 2154y for every a € I(z1) ~ {7},
we deduce that z1s,.7 = wo x.v is the maximal box of Px, which proves part
(¢). Using Lemma 5.4 we also obtain 2184W0, X = 21W0,X Swo,x .y = 1110,)(,217152,1,7 =
wo, x (218,) 1. Finally, z1s, is order preserving on I(z1) \ {7y} because 2z1.8 > 0
for each 8 € A \ {7}, and the identity (z15,) 7' = wo x (215, )wo,x shows that the
inverse map is also order preserving. This proves part (b). (I

Corollary 5.11. We have (215,)%.ac = z4.c0 for each a € Px ~ I(zq).

Proof. Noting that Px \ I(zq) = {& € Px | dat1 < o < wg x.a1} and I(z)) =
{a € Px | &1 < a < wy x.Q41}, it follows from Proposition 5.10 that (zlsfy)d :
Px N I(zq) — I(z)) is an order isomorphism that preserves the labeling §. The
result therefore follows from Proposition 5.9(a) and Remark 4.3(a). O

Remark 5.12. We will show in Corollary 7.19 that zq/kq = (21/k1)? = (218,)%.
Together with Corollary 5.11, this implies that kq.cc = « for all & € Px ~\ I(zq).
Proposition 6.2 implies that zq/kq : I(zq) ~ I(ka) — I(k)) ~ I(z)) is an order
isomorphism, which generalizes Proposition 5.10(b). Using Proposition 5.9(b), it
follows that zq/kq : I(kq) = wo,x.I(kq) is an order isomorphism. These remarks
will not be used in the following.

For 1 < d < dx(2) we define Sq = (I(zq) ™ I(zq—1)) U (I(kq) ~ I(Kq—1))-

Proposition 5.13. We have Sq = {o € Px | (o, &q) > 0} for 1 < d < dx(2), and
2184.8q = Sg—1 for 2 < d < dx(2).

Proof. The second identity follows from the first identity together with Proposi-
tion 5.10(c). We must therefore show that (o, @g) > 0 if and only if a € Sy, for any
«a € Px. If a and @4 are not comparable in the partial order on Py, then (o, g) =0
and a ¢ Sy. If @ > g, then Proposition 5.9(a) shows that z4_1.c4 = 7, and also
that o € Sy if and only if z4_1.a € I(z1), so the claim follows from Lemma 5.7,
noting that (a, @q) = (24—1.a,y). Finally, if a« < a4, then Proposition 5.9(b) shows
that —k4.aq4 = 7, and also that o € Sy if and only if —kg4.c0 € I(21), so the claim
again follows from Lemma 5.7, this time noting that (a, @q) = (—Kq., 7). O

Corollary 5.14. Let 0 < d < dx(2).
(a) We have dim My = dim(X) + £(zq) + £(kq).
(b) The variety My(1.Px, kq.Px) is irreducible of dimension ¢(kq).
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Proof. Since £(zq) + 4(ka) — £(z4—1) — l(k4—1) = #Sq + 1 for d > 1, it follows from
Proposition 5.13 and Corollary 5.8 that £(zq) + ¢(kq) = de7 c1(Tx). This proves
part (a). Since evy : My — X is a locally trivial fibration, it follows that M4(1.Px)
is irreducible of dimension ¢(z4) + ¢(kq). Part (b) follows from this, using that
evy 1 My(1.Px) — X,, is a locally trivial fibration over a dense open subset of
X, = Pxkq.Px that contains kq.Px. (I

5.3. Incidence varieties. Given any flag variety Y = G/ Py, the incidence variety
of X and Y is the flag variety Z = G/Py defined by Pz = PxNPy. Letp: Z — X
and ¢ : Z — Y be the projections and set F = p~*(1.Px) = Px/Pz and I =
¢ Y(1.Py) = Py /Pyz. For example, if X = Gr(m,n) and Y = Fl(m — d,m + d;n),
then Z = Fl(m—d, m, m+d;n), T’ = Gr(d, 2d), and F = Gr(m—d,m)xGr(d,n—m).
For w € Y we write I', = p(¢~1(w)) € X. We identify Z with the subvariety
{(w,z) e Y x X | z € T,} of Y x X. The restricted maps p : I' — p(I") and
q : F' — ¢(F) are isomorphisms, hence p(I') C X and ¢(F) C Y are non-singular
Schubert varieties. More precisely we have F' = Zu,({x and ¢(F) = Yw({x7 and also

I' =7, and p(T') = X, where k = w({y. In our applications of this construction
we have k = kg for some degree d, see Corollary 5.20 (but  is not related to
Theorem 2.4).

If v ¢ Ay, then Py C Px and T is a point. Assume that v € Ay. Since Ay ~\
Az = {7} consists of a cominuscule simple root, it follows that I" is a cominuscule
flag variety. The corresponding partially ordered set is given by Pr = I(k) =
<I>;; NPz = Px N dy. The labeling Pr — Ay is the restriction of the labeling
6 :Px — A, and a curve C C T" has the same degree in I as in X. The variety
I' = Py/(Py N Px) depends only on the connected component of (the Dynkin
diagram of) Ay that contains 7.

If S C A is any subset that is connected in the Dynkin diagram of ®, then the
sum of all simple roots in S is a root in ®. Given 8 € A, let [y, 5] denote the
smallest connected subset of A that contains v and 5. A simple root 5 € A\ Ay
is an essential excluded root of Y if [y, 8] C Ay U {B}, i.e. B is connected to the
component of v in Ay . The group Py is contained in the stabilizer of X, in G, and
is equal to this stabilizer if and only if all roots in A \. Ay are essential excluded
roots of Y.

Remark 5.15. Assume that Py is the stabilizer of X, in G. Then Ay = {3 €
A | (kwy,BY) < 0}. In fact, if 8 € A and (k.w,,8Y) > 0, then o = k~1.3 must
be a minimal box of Px \ I(x) by Lemma 4.2(b), which implies that § € A\ Ay-.
On the other hand, if 8 € A ~\ Ay, then let a be the sum of the simple roots
in the interval [y, 5]. Then « is a minimal box of Px \ I(k), (wy, ") > 0, and
Lemma 4.2(b) implies that § = k.a.

5.4. Primitive cominuscule varieties. The cominuscule flag variety X will be
called primitive if the excluded cominuscule simple root 7y is invariant under the
Cartan involution, that is, v = —wg.y. The list of all primitive cominuscule varieties
is contained in Table 2.

Proposition 5.16. Let X be a cominuscule flag variety of diameter d = dx(2),
and let p € ®T be the highest root. The following conditions are equivalent and
hold if and only if X is primitive. (1) v = —wp.7y. (2) d(p) = . (3) kg = z4. (4)
(w)™t = wgk. (5) dim(My) = 3dim(X).
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TABLE 2. Primitive cominuscule varieties.

X dx(2)
Gr(d,2d) | d
LG(d,2d) | d
0G(2d,4d) | d

2
3

QN
E7 /Py

Proof. Condition (1) is our definition of primitive. Lemma 4.4 shows that §(p) =
0(wo,x.v) = —wp.0(y) = —wo.7, so (1) is equivalent to (2). The implication (2) =
(3) is clear from the definitions, (3) = (4) holds because r; ! = x4 and z4 = wg, and
(4) = (2) holds because (4) implies that (w{)~! € WX. Finally, (5) is equivalent
to (3) by Corollary 5.14(a). O

The following identity is a consequence of the structure theorems for quantum co-
homology proved in [Ber97, BKT03, KT03, KT04, CMPO08]. It can also be checked
by constructing the unique rational curve through three general points in each case.
We sketch how this is done in the proof.

Theorem 5.17. Let X be a primitive cominuscule variety of diameter d = dx(2).
Then (point, point, point),; = 1.

Proof. Assume first that V, V’, V" C C?? are three general points in the primitive
Grassmannian Gr(d,2d) of type A. Choose any basis {v1,...,vq} of V, and write
v; = v, + v for each i, with v; € V' and v} € V”. Then the only rational curve
of degree d through V, V', V" is C = {(sv] + tv},...,sv, +tv}]) | (s : t) € P},
see [BKTO03, Prop. 1] for details. The same construction works for the Lagrangian
Grassmannian LG(d, 2d) and the maximal orthogonal Grassmannian OG(2d, 4d),
see [BKTO03, Prop. 2 and Prop. 4]. If V,V’, V" ¢ CN*2 are general points in the
quadric @V = OG(1, N +2), then E = V@ V'@ V" is an orthogonal vector space of
dimension 3, and the unique curve of degree 2 through V, V', V" is C = P(E)NQ".
A similar construction of the unique cubic curve through three general points of
the Freudenthal variety Er/P; can be found in [CMP08, Lemma 5]. O

Lemma 5.18. Let X be a primitive cominuscule variety. For 0 < d < dx(2) we
have Kk = Zqy (2)—d-

Proof. This follows from Lemma 4.4, noting that wo x.0lq = Qay (2)—d1- O

In the following we will consider a single point to be a primitive cominuscule flag
variety of diameter zero.

Proposition 5.19. Let X be any cominuscule variety and 0 < d < dx(2). There
exists a unique largest parabolic subgroup Py, C G containing B such that I'q =
Py,/(Px N Py,) is a primitive cominuscule variety of diameter d. In addition,
Fy = Px/(Px N Py,) is a product of cominuscule varieties.

Proof. This must be checked from the classification of cominuscule flag varieties,
but only the associated Dynkin diagrams need to be considered. For d = 0 we
have Yy = X and 'y = Fy = {point}. If X is a primitive cominuscule variety and
d = dx(2), then Yy = Fy = {point} and I'y = X. The choice of Py, in all other
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cases is indicated in Table 3, where the roots of A \ Ay, are colored gray and -y is
colored black. (]

Let X be a cominuscule variety. For 0 < d < dx(2) we define Yy = G/Py,
by the parabolic subgroup of Proposition 5.19, and we let Z; = G/Pz, be the
incidence variety defined by Pz, = Py, N Px. Let pq : Zqg — X and qq : Zg — Yy
denote the projections, with fibers Fy = Px/Pz, and I'y = Py, /Pz,. For any point
w € Yy we will use the notation I'y, = pdqgl(w) C X. We identify Z; with its
image by the map g4 X pq, that is Zg = {(w,z) € Yy x X |z € T,,}. We will also
frequently identify I'y with py(T'q) = I'1.p, . Since Py, is the stabilizer of I'y y, by
the maximality condition of Proposition 5.19, the following result shows that the
assignment w +— I',, is a bijection from Y, to the set of all translates of X, in X.
Recall that T'4(x,y) is the union of all stable curves of degree d through z and vy,

and Zq5 = {(z,y) € X x X | dist(z,y) = d}.

Corollary 5.20. (a) We have X, =Ty =T4(1.Px, kq4.Px).

(b) Let z,y € X. We have dist(x,y) < d if and only if xz,y € T, for some w € Yy.
The element w is unique if dist(z,y) = d.

(¢) The function ¢ : éd’g — Yq defined by Uy, = Ta(z,y) is a morphism of
varieties.

Proof. Since Iy is a primitive cominuscule variety of diameter d, it follows that ay is
the largest root in Pr,, hence Pr, = I(k4) and 'y = X,;,. Corollary 5.14(b) implies
that T'y(1.Px, kq.Px) = ev3(My(1.Px, kq.Px)) is an irreducible subvariety of X of
dimension at most ¢(k4), and Theorem 5.17 shows that X, C T'4(1.Px, kq.Px).
This proves part (a). For part (b) we may assume that z = 1.Px and y = ka.Px
by Lemma 5.6, where d' = dist(z, y). If dist(z,y) < d, then z,y € I'1 p, by part
(a). On the other hand, since the diameter of T, is d for each w € Yy, we have
dist(x,y) < d whenever x,y € T',. Finally, if z,y € T',, and dist(x, y) = d, then The-
orem 5.17 applied to T'y, shows that T, C Tg(z,y) = I'1 py,, hence w = 1.Py,. Part
(b) follows from this. Choose splittings s; : X! = B~ and So : )O(Zd — Bsothatx =
s1(x).Px forall z € )2'1, and y = sa(y)zq.Px for ally € )%Zd. For all points (z,y) in
a dense open subset of Zodg we have (x,y) = s1(2)s2(s1(x) " .y)zaka.(1.Px, ka-Px),
so ¢ is defined by op(x,y) = s1(x)s2(s1(x) ~1.y)24kq. Py, on this subset. This proves
part (c). O

5.5. A blow-up of the Kontsevich moduli space. Let 0 < d < dx(2). The map
qd : Zq — Yy is alocally trivial fibration with fibers 'y, = X,.,, w € Y. Define a new
family B¢y — Y, by replacing each fiber I'y, with the moduli space Mg 3(Ty, d).
Since T, is a subvariety of X, we have My 3(T,,d) C My, and these inclusions
define a morphism 7 : B¢y — M. Equivalently, we have Bf; = G x'a m()}g (T4, d).
We will identify Bf; with its image in Yy x My, that is
Bly = {(w, f) € Ya x Mgy | Image(f) C I'w}.
We also define the space
ZK(IS) = Zd Xy, Zd Xy, Zd = {(w,xl,xg,xg) S Yd X X3 | xr1,T2,T3 € Fw}.

Define a morphism ¢ : By — Z(g?’) by ¢(w, ) = (w,evi(f),eva(f),evs(f)), and let
€ : Zég) — Zg denote the i-th projection. We obtain the following commutative
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TABLE 3. The quantum-to-classical construction.

Grassmannian X = Gr(m,n + 1) of type A,
dx(2) = min(m,n+1—m)
1

m-d m m+d n
O O O L O O O O

Yq =Fl(m—d,m+d;n+1) ; Ty=Gr(d,2d) ;
F; = Gr(m—d,m) x Gr(d,n+1—m)

Lagrangian Grassmannian X = LG(n, 2n) of type C,
dx (2) =n 1 n-d n
O0—O0——0—0—=0 Oo—=<—9

Yqs =SG(n—d,2n) ; T'y=LG(d,2d) ; F;= Gr(n—d,n)

Max. orthogonal Grassmannian X = OG(n,2n) of type D,

dx(2) = [n/2) 10w <
n

Yqs=0G(n—2d,2n) ; Tgy=0G(2d,4d) ; Fy= Gr(n—2d,n)

Even quadric X = Q2" 2 of type D,,

dx(2) =2 1 2
e—0—0—O0
n

Y; =0G(2,2n) ; Ty =P ; [ =@

0dd quadric X = Q2" ! of type B,

dx(2) =2 1 2 n
® O O O @ O
Y; = 0G(2,2n+1) ; Ty =P ; [ =Q*" 3
Cayley plane X = Eg/Ps
_ 1 3 4 5 6
dx(2) =2 o—O0—0——0—=e
Yi:EG/Pg, y F1:]P>1 3 F1:OG(5,10) l
2
1 3 4 5 6
O O O O @
Yo=E/Py ; To=Q% ; Fo=Q"8 lZ
Freudenthal variety X = E7/Ps 3 4 . 6 .
dx(2) =3 O—O0—0—0—0—=o
Yi=E;/Ps ; T1=P' ; Fi =Eg/Ps l
2
1 3 4 5 6 7
O O O O O ®
Yo=FE;/Py ; T2=Q" ; F,=Es/P, 12
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diagram from [BM11]:

(3) Bly— "~ M,

Yy

Proposition 5.21. The maps 7 : Bly — My and ¢ : By — Z(gg) are birational.

Proof. Tt follows from Theorem 5.17 that ¢ is birational. Since the image of the
map evy X eve : My — X x X is contained in Zgo = {(x1,22) | dist(z1,22) < d},
it follows that U = (evy x evy)~!(Z42) is a dense open subset of My. Given any
stable map f € U, we have dist(evy(f),eva(f)) = d, so Corollary 5.20 implies

that the image of f is contained in Iy, for a unique point w € Yy. It follows that
7 Y f) = (w, f), so 7 is birational. -

The (three point, genus zero) Gromov-Witten invariants of small degrees of a
cominuscule flag variety are given by the following result. Generalizations to larger
degrees can be found in [BM11, CP11, BCMP18b].

Corollary 5.22. Let X be cominuscule and 0 < d < dx(2).
(a) For Q4,Q9,Q3 € H3(X;Z) we have

<QI7Q2793>d = / qd*pZ(Ql) : qd*pZ(QQ) ) Qd*p2(93) .
Ya

(b) For Fi,Fs, F3 € Kr(X) we have
La(Fy, Fa, F3) = Xy, (0a:P5(F1) - qa.0i(F2) - qa.0a(Fs)) -

Proof. Since all varieties in the diagram (3) have rational singularities, it follows
from Proposition 5.21 that 7.[Ops,] = [Owm,] and ¢.[Opy,] = [0 ,s)]. We obtain
d

Xar, (VT (F1) - ev3(F2) - ev3(F3)) = X, (1Pa(F1) - e2pa(F2) - €3p3(F3))
d

= Xy, (94.03(F1) - 4a.0a(F2) - 4a.Pa(F3)) ,

where the first identity follows from the projection formula (twice) together with
commutativity of the diagram (3), and the second follows from [BM11, Lemma 3.5].
This proves part (b). Part (a) is proved by repeating the same argument with
cohomology classes, or by extracting the initial terms of both sides in part (b), see
[BM11, §4.1]. O

For any subvarieties Q1,2 C X and 0 < d < dx(2) we define

Ya(Q, Q) = qa(py " (1)) Naalpy ' (22))
={weYy|T,nQ #0and T, NQs # 0},
Za(, Q) = q; (Ya(Q1,9Q2)) .

We also define the special cases Yy(1) = gap; (1) and Zg(Q1) = q; ' (Ya(1)).
Notice that for w € Yy we have T', N Q; # 0 if and only if w € Yy(Q4).
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Corollary 5.23. We have T'3(Q1,Q2) = pa(Za(Q1,Q2)). As a special case we
obtain T (1) = pa(Za()) = pady  qapy " ().

Proof. Since the diagram (3) is commutative and the maps 7 and ¢ are surjective,
we obtain

La(Q,Q2) = evym ((evim) (1) N (evam) ™1 (Q2))

= paes ((pae1) () N (pae2) "1 ()
= pa ({(w,23) € Za | T N # 0 and T, N Qy # 0})

as required. (Il

6. FIBERS OF THE QUANTUM-TO-CLASSICAL CONSTRUCTION

In this section we obtain explicit descriptions of the general fibers of several
maps related to the quantum-to-classical construction. These results are required
for determining the powers of ¢ that occur in quantum products, as well as for our
proof that the structure constants of quantum K-theory have alternating signs.

6.1. Bijections between order ideals.

Lemma 6.1. For 0 < d < dx(2) we have the identities kg = wg‘i,d, Zqg =

Z
Wo,x Wo,Yy Zd/fid = wo&, and Wo,y,; = RdWo,z, = Wo,z,Kd-

Proof. Since the projection py : q;l(l.Pyd) — X, is an isomorphism, it follows
that ¢; ' (1.Py,) = (Za)w, and wOZ‘i,d = rq. We also obtain p;'(1.Px) = (Z4) 2z,
, Wo,x

and Yd(l.Px) = (Yd) z, , and therefore Zd(l.Px) = (Zd) zy z4 . Since we have
Wo, x Wo,x Wo,v,

dist(z,1.Px) = d for all points z in a dense open subset of Fé(l.Px), it follows
from Corollary 5.20 and Corollary 5.23 that pg : Z4(1.Px) — Tq(1.Px) = X,,

. . . Zq Zq _ Zg __ 3
is birational. We deduce that wy%wgs, = 24, hence wg% = zd/kq. Finally, we

1 Z,
have rqwo,z, = woy, = Wy, = Wo,z,Kd; and z4 = ’wofxlid = Wo,xW0,7,Kd =
Wo, x Wo,v,, which completes the proof. O

The variety F; = p;'(1.Px) = Px/Pz, is a product of cominuscule varieties by
Proposition 5.19, and the Schubert varieties in this space (which are products of
Schubert varieties in the factors of Fy) are indexed by elements of the set W¥e C
Wx of minimal representatives of the cosets in Wx /Wyz,. The maximal element
in WFa is w({ % = zq/Kq, so the elements of W¥a correspond to order ideals in
Pr, = I(24/kq). This subset of ®* is always disjoint from Px (see Example 6.3).
Notice that if F,; has more than one cominuscule factor, then Pr, is a disjoint union
of the corresponding partially ordered sets. For n € Pg, we set X' (n) = {n’ € Pg, |
17’ < n}. Then the labeling ¢’ : Pr, — Ax is given by &'(n) = wi\,(n).n, where
wf\,(n) is the product of the reflections s,/ for " € X'(n), in increasing order.

Proposition 6.2. The following order isomorphisms are obtained by restricting
the actions of Weyl group elements.
(a) Kq:Pp, = I(zq) N I(kq) is an order isomorphism, and 6(kq.n) = &' (n) for
each n € Pr,.
(b) za: Pr, — I(k)) N 1(2)) is an order isomorphism, and §(zq.n) = wik.6'(n)
for each n € Pr,.
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Proof. Tt follows from Lemma 4.2(a) that kg : I(zq4) ~ I(kq) — Pr, is an order-
preserving bijection, and since k4.8 > 0 for each 8 € A\ {~}, the inverse bijection
Ky = kq is also order-preserving. Given 1 € P, the set = I(r4) Urqa.N () is a
straight shape in Px such that k4. is a minimal box of Px ~\ u, hence §(kq.n) =
wy-(Kq.n). Using that wy, = w),, K4, we obtain 6(ka.n) = w),,.n = 0'(n). This
proves part (a). Lemma 4.4(a) applied to Fy shows that wg z, : Pr, — P, is an

order-reversing involution such that §'(wg z,.n) = —wo, x.d6'(n). Part (b) therefore
follows from Lemma 4.4(a), part (a), and the identities zq4 = wo, xKqwo,z, and

— X O
WoWp,x = Wy -

Example 6.3. Consider X = Gr(7,17) and d = 4, so that I'y = Gr(4,8) and
Fy=Gr(3,7) x Gr(4,10). Let &+ = {e; —e; | 1 < i < j < 17} be the set of positive
roots of type Ais. We identify each root e; — e; with the box in row 17 — ¢ and
column j—1 of a triangular diagram of boxes. Proposition 6.2 shows that P, can be
identified with kq.Pr, = I(z4) \ I(kq), and also with z4.Pp, = I(k}) ~I(zy). This
gives two dissections of Px. Notice that Pr, = I(kq), and Pp, can be identified
with the disjoint union of Pq,(37) and Pgr(4,10)-

Prd Iid.'PFd
Px =
/‘5d~PFd Px\](zd)
Pr,
~
I(z)) 24-Pr,
Px Px =
,PFd Zd.PFd Px \I(n(\i/)

Example 6.4. Let X = LG(8,16) and d = 5. Then Proposition 6.2 provides the
following dissections of Px.

Y
1(=Y) z2q. P
Prd l{d.PFd LL‘d d-"Fa

Px = = Px~I(kY)

Px~1(zq)

4
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6.2. Fibers of the quantum-classical diagram.

Definition 6.5. Given u,v € WX and 0 < d < dx(2), define the Weyl group
elements

u(d) = (uNzi)za, TGa=(unr))/(wnzy), ua=(wg) " dawy,
v(=d) = (vUzq)/z4, and v = (vNzg)/(vNKg).

It was proved in [BCMP18a] that X4 = I'¢(X,) and XD = Ty(X?). We
will reprove these statements in Corollary 6.9 below, together with similar geometric
interpretations of ug and v?. In particular, u(d) and v(—d) belong to W*. The
shape I(v(—d)) is obtained from I(v) by removing the boxes in I(vNz4) and moving
the remaining boxes north-west until they fit in the upper-left corner of Px (see
[BCMP18a, §3.2]). Similarly, I(u(d)) is obtained by attaching the shape I(u) to the
south-east border of I(z4) and discarding any boxes that do not fit within Px. More
precisely, the following identities follow from Proposition 5.9(a) and Corollary 5.11.

Lemma 6.6. We have I(u(—d)) = (z15,)%.(I(u) \ I(z4)) and I(u(d)) = I(zq4) U
(5) (T (0) N ().

Our next result shows that ug and v¢ belong to WFe = Wx N W44, and the
shapes of these elements in Pp, are determined by zq.I(uq) = I(u) N 24.Pr, and
ka-I(v?) = I(v) N kq.Pr, (see Example 6.3, Example 6.4, and Example 6.8). Recall
from Section 2.1 that the parabolic factorization of v € W with respect to Py, is
denoted by v = v¥dvy,.

Proposition 6.7. Let u,v € WX and 0 < d < dx(2).

(a) We have vy, = vNkg and v¥¢ = (vVUkg)/kq, and the parabolic factorization
of v¥4 with respect to Px is v¥4 = v(—d)v?.

(b) We have uq,v® € WFa with shapes given by I(uq) = z;".I(u) N\ Pg, and
I(v?) = kg.I(v) N PF,.

(c) We have that u¥(—d) = u(d)" = wou(d)wo x is dual to u(d) in WX, and
(u¥)? = wo xuqwo z, is dual to ug in W,

Proof. The element g is by definition the product of the simple reflections ss(q)
for all boxes « in I(u) N (I(ky) ~ I(z))), in decreasing order. Proposition 6.2(b)
therefore shows that

ug = (wi)  Magwi = H 55/(n) »

n€z; . I(u)NPr,

the product in decreasing order. This shows that ug € W and I(ug) = z;l.l(u) N
Pr,. Proposition 6.2(a) similarly shows that v¢ € W4 and I(v?) = kq.I(v) N Pr,.
This proves part (b).

Since v U g € WX C W% the product of (v U kq)/kq With woy, = kqwo, z,
is reduced, hence (v U kg)/kg € WY, Since v N kg € Wy,, we deduce that the
parabolic factorization v = v¥4vy, is given by v¥¢ = (v U ky)/kq and vy, = v N Kgq.
Since u(d) <r, 2 24 = wi’, we have u(d) € W*. The dual element is wou(d)wo, x =
wo(un 2y )wo,xz;" = (u¥ Uz4)/2qa = u¥(—d). This implies that v(—d) € WX, and
since v¢ € Wy, it follows that v¥¢ = v(—d)v? is the parabolic factorization of v¥4
with respect to Px. This proves part (a).
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The element 7 = z)) /(uNz) ) commutes with i and satisfies Tu(d) = zY z4 = w§ .
This implies ug = (wf) *gwg = u(d)~Yugu(d), hence wou (—d)(u")%wo 7z, =
wo(u¥ Ukg)kqwo,z, = (uNky)zq = Uqu(d) = u(d)ug. This shows that u”(—d)(u")
is dual to u(d)ug in W#4. Since u"(—d) is dual to u(d) in WX, it follows that (u")?
is dual to ug in W%, see Remark 2.9. This completes the proof of part (c). ([

In examples we denote an element u € W by the partition A = (A1, Ao, ..., Ap)
for which A; is the number of boxes in the j-th row of I(u).

Example 6.8. Let X = LG(8,16), u = (8,6,2) € WX, v =u" = (7,5,4,3,1), and
set d = 5. The shape of ug = (5,4,1) is obtained by intersecting the shape of u
with 24.Pr,, and the shape of v¢ = (2,1,1,1) is obtained by intersecting the shape
of v with k4.PF,, see Example 6.4.

.

4

The elements uy and v¢ are dual to each other in W4, but the images z4.1(ug)
and kq.I(v?) of their shapes are represented in two different rectangles in Px. The
composed bijection z4/kq : k4. Pp, = Pr, = 24.Pr, is given by a transposition when
X is a Lagrangian Grassmannian. An expression of an element of W4 as a partition
therefore depends on how the rectangle Pg, is oriented. Opposite conventions are
used in the expressions ug = (5,4,1) and v? = (2,1,1,1) given above. We also have
u(d) = wg and v(—d) = 1. Other shifts of u include u(—2) = (2), u(-1) = (6,2),
u(1) = (8,7,6,2), and u(2) = (8,7,6,5,2).
Corollary 6.9. Let u,v € WX and 0 < d < dx(2).
(a) The general fibers of the map qq : pgl(X”) — Ya(XV) are translates of
(Fd)vﬂnd‘
(b) We have Yg(X?) = (Yd)”(’d)“d, Ty(X?) = Xv4D and the general fibers
of the map pa : Za(X?) — Ta(X") are translates of (Fy)*" .
(c) We have Zg(Xu) = (Za)u(dyuq> La(Xu) = Xuay, and the general fibers of
the map pq : Zq(X.) = Ta(Xy) are translates of (Fg)u,-
(d) The general fibers of the map pq : Za(Xu, X?) = Ta(Xu, X?) are translates
of (Fa)ua”.

ug
Proof. Parts (a) and (b) follow from Theorem 2.8, Corollary 5.23, and Proposi-
tion 6.7(a), and Proposition 6.7(c) implies that part (c) is equivalent to part (b),
see Remark 2.9. Finally, part (d) follows from Theorem 2.10 and Proposition 4.5
together with parts (b) and (c). O

7. THE ¢-DEGREES IN QUANTUM COHOMOLOGY PRODUCTS

7.1. Quantum cohomology. Let X = G/Px be a cominuscule flag variety, and
let QH(X) be the (small) quantum cohomology ring of X. As an additive group,
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this ring is defined as QH(X) = H*(X;Z) ®z Z[q]. Multiplication is defined by

POl X = D (X (X (Xl g [X]
w,d>0

for u,v € WX. Let
(] * [X*Da = D (1Xu], [X7], [Xu])a [X "]

w

denote the coefficient of ¢% in this product. The goal of this section is to identify
the degrees d for which ([X,] * [X"])a # 0. In particular, we will show that these
degrees form an integer interval.

It follows from [FWO04, Thm. 9.1] that the smallest degree d for which ([X,] x
[X"])a # 0 is equal to the degree distance between X, and XV, defined as the
minimal d for which T'y(X,, X") # (. In particular, the quantum product of two
Schubert classes is never zero. Let dmin(u",v) and dpax(u",v) denote the minimal
and maximal degrees for which ([X,] * [X"])a # 0. We let dpax(v) denote the
(unique) number of occurrences of s, in a reduced expression for v. Notice that
d = dmax(v) is also determined by kg < v < z4. The following result implies that
dmax(v) is the only power of ¢ that occurs in the product [point] x [X?], that is
dimax (V) = dmin(W,v) = dpax(wi,v). More generally, it was proved in [Bel04,
CMP09)] that [point]  [X?] = g%==x(®) X% *] holds in QH(X).

Proposition 7.1. We have ([X,] * [X"])a # 0 if and only if dmin(u”,v) < d <
min(dmax (¥"), dmax(v)) and uqg < vl In this case we have ([X,] * [X"])q =
[Ca(Xu, X7)].

Proof. Using Corollary 5.22 and the projection formula we obtain

<[Xu]a [Xv]v [Xw]>d = /Xpd*Q; (Qd*pz[Xu] 'Qd*p:;[Xv]) . [Xw] )
which implies that
([Xu) % XN a = panq) (qa.05[Xu] - qa.05[X"]) .

Corollary 6.9(a) shows that g4,p5[X?] is equal to [ga(p; ' (X?))] for d < dpmax(v)
and is zero otherwise. It follows that ([X,] * [X"])q is non-zero only if d <
min(dmax (¢"), dmax(v)), in which case

(Xul x [X*])a = pe[Za(Xu, X°)] -
The proposition therefore follows from Corollary 6.9(d). O

The main technical result of this section is the following lemma, which we will
prove after discussing its consequences. Notice that Proposition 6.2(a) shows that
wkg € WX and I(wky) = I(kg) U kg.I(w) for each w € WFa.

Lemma 7.2. Let u,v € WX,
(a) For 0 < d < dpmax(uY) we have ug_1k4-1 = (ugkq)(—1).
(b) For 0 < d < duax(v) we have v4 kg1 = (v¥kg) Nzg_1.

Part (b) of the following lemma will be relevant for our study of quantum K-

theory in Section 8.

Lemma 7.3. Let u,v € WX and 0 < d < min(dmax (1), dmax (v)).
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(a) Assume that ug < v?. Then ug_; < vi1.

(b) If I(ug) ~ I(v?) is a non-empty rook strip in Pr,, then d = dyax(u",v) + 1.

Proof. The inequality ug < v¢ holds if and only if ugkg < v¥kg. Part (a) therefore
follows from Lemma 7.2, using that (ugkq)(—1) < ugrqg and (ugrq)(—1) < z4(—1) <
zg—1. If ug £ v?, then it follows from Proposition 7.1 and part (a) that d >
dmax(u",v). If I(ug)~ I(v?) is a rook strip, then (ugrq)(—1) < vkg, which implies
that ug_; <v?¥ ' and d — 1 < dpax(uY,v). This proves part (b). O

The following result was proved in [Pos05] for Grassmannians of type A.

Corollary 7.4. The g-degrees appearing in a quantum product [X,|*[X"] form an
interval, that is ([Xy] * [X¥])a # 0 if and only if dmin(u”,v) < d < dyax(u”,v).

Proof. This follows from Proposition 7.1 and Lemma 7.3. (I

The equivariant (small) quantum cohomology ring QH,(X) = Hf(X;Z) ®z Z[q]
is defined like QH(X), except that equivariant Gromov-Witten invariants are used
to define the quantum product [X,]7 * [X"]r, see [Kim95]. Proposition 7.1 is true
also for the equivariant quantum product, with the same proof.

Corollary 7.5. The equivariant quantum product [X,|r * [X"]r in QHp(X) con-
tains the same powers of q as the non-equivariant product [X,] * [X"].

Remark 7.6. It is natural to ask whether the powers of ¢ appearing in an equi-
variant quantum product of Schubert classes defined by the same Borel subgroup
form an interval. Based on substantial computer evidence we conjecture that ¢¢
occurs in the product [X*]r x [X"]r in QH,(X) if and only if 0 < d < dpax(u,v).

7.2. The minimal and maximal degrees. We next give a type-uniform descrip-
tion of the minimal and maximal powers of ¢ in the quantum product [X,]x[X "] that
generalizes the description for Grassmannians of type A proved in [FW04, Pos05].
The minimal degree dpi, (1", v) is the smallest integer d for which T'q(X,, XV) # 0.
Since T'q(Xy, X?) is non-empty if and only if v < u(d), the degree dpyin(u",v) can
be interpreted as the number of steps the shape I(u) must be shifted in order to
contain I(v). This recovers Fulton and Woodward’s description in type A [FWO04].
Postnikov gave a similar description [Pos05] of the maximal degree dpax(u",v) in
type A, as the number of steps I(u) can be shifted before it no longer fits inside a
shape. These descriptions of the powers of ¢ in a quantum product are generalized
in Theorem 7.8 and Theorem 7.13. The maximal degree for arbitrary cominuscule
varieties is given by the following formula from [CMP07, Thm. 1.2].

Theorem 7.7. We have dmax(u",v) = dmax (V) — dmin (Wi v)Y, u).

Let B = {¢%[X"] : u € WX ,d € Z} denote the natural Z-basis of the localized
quantum cohomology ring QH(X), = QH(X) ®zy Z[q,q"']. We define a partial
order on B by

XY < ¢UXY = To (X, X")#0 = X, T (X,).
Here the sets T'g— (X, X¥) and T'y_.(X,) can be non-empty only if d > e. Notice
that if ¢/[X*] < ¢°[X"] < ¢?[X"], then X, C Pe—y(X,) C Feoy(Ta—e(Xu)) C
[4—(X,) shows that ¢/[X"] < ¢?[X"]. The order on B extends the Bruhat order
on WX, and [FW04, Thm. 9.1] implies that ¢°[X?] < ¢¢[X*] holds if and only
if ¢*[X*] occurs with non-zero coefficient in the expansion of ¢¢[X?] * ¢* [X*] in
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QH(X),, for some w € WX and d’ > 0 2. Notice that [point]x[X "] = qdmax(“)[X“’g(“]
is an element of B, as proved in [Bel04, CMP09].

Theorem 7.8. Let u,v € WX and d € Z. The power q¢ occurs in [X,] * [X"] if
and only [X?] < ¢?[X¥] < [point] x [X"].

Proof. The smallest degree d for which [X V] < ¢4[X"] is din(u",v) by definition of
the partial order on B, and the largest degree d for which ¢¢[X %] < ¢%max(")[X wg Y]
is dpax (v, v) by Theorem 7.7. O

Our next goal is to show that B is a distributive lattice. In the remainder of this
section we extend earlier definitions by setting u(d) = z4 = w{ and u(—d) = 1 for
d>dx(2) and u € WX,

Lemma 7.9. Let u,v € WX, d € Z, and e € N. The following identities hold.
(v Uv)(d) = u(d) Uv(d) (uNv)(d) = u(d) Nv(d)
(wUwv(d))(e) =ule) Uv(d+e) (u(d) Nv)(—e) = u(d — e) Nv(—e)

Proof. The identities (uUv)(d) = u(d)Uv(d) and (uNv)(d) = u(d)Nv(d) follow from
Lemma 6.6, which also implies that u(—e)(e) = u U z.. We claim that u(d)(e) =
u(d+e)Uz.. For d > 0 it follows from Theorem 5.1 that I'c(T'¢(X4)) = Taye(Xu),
which implies u(d)(e) = u(d+e) = u(d+e)Uz, by Corollary 6.9(c). A dual argument
shows that u(—d)(—e) = u(—d —e) for d > 0. For ¢’ > 0 we obtain u(—e —¢€’)(e) =
u(—e')(—e)(e) = u(—e') U z. and u(—e)(e +€') = u(—e)(e)(e’) = (uU z.)(€¢)
u(€’) U zerer. This proves all cases of u(d)(e) = u(d+ e) U z.. Using that z. < u(e
we obtain u(e) Uv(d + €) = u(e) U ze Uv(d + e) = ule) Uv(d)(e) = (v U v(d))(
The last identity of the lemma follows from this, using that u(d)Y = uY(—d)
Proposition 6.7(c).

@

o<

Proposition 7.10. The partially ordered set B = {q?[X"] : uw € WX, d € Z} is a
distributive lattice with meet and join operations given by

qd[Xu] N qe[X'u} _ qe[Xu(d—e)ﬂv] and qd[Xu] U qe[Xv] _ qd[Xv(e—d)Uu]
foru,v € WX and e < d.

Proof. In this proof we denote ¢?[X"] by [d,u] for brevity. Let u,v,w € WX and
d,e, f € Z. The partial order on B =Z x WX is defined by

le,v] <[d,u] & (e<dandv<u(d—e)) & (e<dandv(e—d)<u).

We first show that [e,u(d — e) N v] is the greatest lower bound of [d,u] and [e, ]
when e < d. The relations [e, u(d —e)Nv] < [d, u] and [e, u(d —e) Nv] < [e, v] follow
from the definition. If [f, w] < [d,u] and [f, w] < [e, v], then
w<u(d—f)Nvle—f) = (uld—e)Nv)(e—f),

hence [f, w] < [e,u(d — e) Nv]. This proves [d,u] N [e,v] = [e,u(d — e) Nv]. Noting
that the map [d, u] — [—d,u"] is an order-reversing involution of B, the expression
[d,u] U [e,v] = [d,u Uwv(e — d)] for the least upper bound is equivalent to the
expression for the greatest lower bound. This shows that B is a lattice. To prove
distributivity, assume again that e < d, and set n = max(e, f) and m = max(d, f).

20ur construction defines a partial order on B = {q?[M¥] : w € WM d € Ho(M,Z)} for any
flag variety M, with the same interpretation in terms of quantum multiplication.
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Notice that u(d — m)(m —n) = u(d — n), as we have either m =d or m = f = n.
Using Lemma 7.9 we obtain
([d, u]

[
= [n, (u(d —m)
= [n, (u(d —m)(m —n) Uw(f —n)) N (v(e —n) Uw(f —n))]
= [n, (u(d —n) Uw(f —n)) N (v(e —n) Uw(f —n))]
= [n, (u(d —n)No(e —n)) Uw(f —n)]
= [n,(u(d —e)Nv)(e = n) Uw(f —n)]
= [e,u(d —e) No]U[f,w]

= ([d,u]N[e,v]) U[f w].
Since this identity is formally equivalent to
([d,u] U [e,v]) N [f,w] = ([d,w] N [f,w]) U ([e,v] 0 [f,w]),
this completes the proof. O
Definition 7.11. An element & € B is called join-irreducible if @ = @1 Udais implies

Q = Q3 or @ = Qa, for aj,as € B. Let Py C B denote the subset of join-irreducible
elements. Given ¢?[X%] € B, set

Ig'X") = {@ e Py | @ < (X))
For a € Py, define () € N, £(a) € WX, and 7(a) € B by
d(a) =min{d >0 (218,) L € Px N I(2))},
I(¢(a)) ={d € Px |a' <a},and
7(a) = q—a(a)[Xf(B)] . where 8= (2187)_8(()‘).&.
The integer 9(«) exists by Proposition 5.10(a). For example, we have
(4) T(y) = ¢ @ [XFax@]  and  7(p) = [point],

where p € ®* denotes the highest root. For any box o € Px, we will show in
Theorem 7.13 that [X¢(®] = 7(a) U 1 holds in B, and [X4(*)] is join-irreducible if
and only if & € Px \ I(z)). This motivates the definition of 7(«).

Lemma 7.12. Let a € Px and ¢?[X"] € B. We have 7(a) < ¢?[X¥] in B if and
only if a € I(u(d)).

Proof. Set e = d(a) and B = (215,) ., so that 7(a) = ¢¢[X¢(P)]. We then have
7(a) < ¢¥[X¥] if and only if —e < d and £(8) < u(d + e), or equivalently, d +e > 0
and 3 € I(u(d + e€))). Since 8 € Px ~\ I(2y), the condition d + e > 0 follows from
B € I(u(d + ¢)). Using that

I(u(d +¢€)) UI(ze) = I(u(d)(e)) = (z15y) " (I(u(d)) N I(z)) UI(z)
by Lemma 7.9 and Lemma 6.6, and that 8 ¢ I(z.) and a € I(zY), we deduce that

€

B € I(u(d + e)) is equivalent to « € I(u(d)), as required. O

Part (d) of the following result is essentially a consequence of Birkhoff’s repre-
sentation theorem [Bir37] together with Proposition 7.10; we supply a proof since

Px is an infinite set.
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Theorem 7.13. (a) We have [X¢(®] = 7(a) U1 in B for each o € Px.

(b) We have Px = {¢[X¢@]:a € Px ~I(z)), de€ Z} U{q" : d € Z.}.

(¢) The map 7 : Px — 7(Px) is an order isomorphism onto an interval in Px.
(d) The map ¢?[X¥] w I(¢%[X¥]) is an_order isomorphism of B with the set of
non-empty, proper, lower order ideals in Px, ordered by inclusion.

Proof. 1f ¢* = ¢°[XV]Uq?[X¥], then e < d and v(e —d)Uu = 1, hence ¢¢[X"] = ¢<.
This shows that ¢? is join-irreducible. Let ¢?[X%] € B satisfy u # 1. If ¢¢[X"] is
join-irreducible, then u is join-irreducible in WX, so u = £(a) for some o € Px.
If @ € I(zY), then 8 = (218y) '.a € Px by Proposition 5.10(a), and it follows
from Lemma 6.6 that u = £(3)(—1). But then ¢?[X"] = ¢? U ¢ '[X¢®)] is not
join-irreducible, a contradiction. On the other hand, assume that u = {(a) where
o€ Px ~I(2)). If ¢4[X¥] = ¢°[X"] U ¢?[X*] with e < d, then u = v(e —d) Un/.
Since a ¢ I(v(e — d)), we have a € I(u), so v/ = u. This proves part (b).

Let o/,a € Px, and set u = &((218,)%¥.a). Using that u(—9(a)) = &(a)
by Lemma 6.6, it follows from Lemma 7.12 that 7(a’) < 7(«) holds if and only if
o € I(&(a)), which is equivalent to o < a. This shows that 7 : Px — 7(Px)
is an order isomorphism. To see that 7(Px) is an interval in 73X, assume that
7(7) < ¢4 X)) < 7(p), where a € Px \ I(2)) and d € Z. By Lemma 7.12 and
(4), this is equivalent to 1 — dx(2) < d < 0 and I(£(a)(d)) # 0. We deduce that
(218,)%. € Px \ I(21) for 0 < e < —d, and ¢?[X¢(¥] = 7((z15,)"%a) € 7(Px).
This proves part (c).

Given a € Px, Proposition 7.10 implies that 7(a) U1 = [X“] for some u €
WX, Since 7(a’) £ 1 for each o € Px by Lemma 7.12, another application of
Lemma 7.12 shows that o € I(u) holds if and only if 7(a/) < 7(), so it follows
from part (c) that u = (). This proves part (a).

Let I C 7/5)( be any non-empty, proper, lower order ideal. Since I has finitely
many maximal elements, say Qy, ..., Qy, it follows from Proposition 7.10 that I has
a well-defined least upper bound ¢¢[X%] = @; U---Ua, in B. For any element

Be I(g?[X"“]), we obtain
B=Bng'[X"]=(Bna)u---U(Bnay).
Since B is join-irreducible, this implies B = B N @; for some 7, so B € I. We deduce

that I = I(¢?[X"]). Part (d) follows from this, noting that any element ¢¢[X*] € B
is the least upper bound of the finite set {¢?}U{q?7(a) | « € I(u)} by part (a). O

Remark 7.14. By Theorem 7.13(c), we may identify Px with the subset 7(Px)
of ﬁX. Lemma 7.12 shows that the shift operations on W can be expressed as
I(u(d)) = I(¢°[X"]) N Px = ¢"I([X"]) N Px

for all u € WX and d € Z. Theorem 7.8 and Theorem 7.13(d) show that ¢? occurs
in [X,]x[X"] if and only if the order ideal of ¢?[X "] lies between the order ideals of
[X*] and [point] * [X"]. When X is a Grassmannian of type A, Px is Postnikov’s
cylinder from [Pos05, §3]. The analogue of Postnikov’s torus is the quotient of 7/5X
by the group {[point]? | d € Z} of powers of a point. Pictures of Py for cominuscule
varieties of types other than A can be found in Example 7.15 and Figure 1.

The partially ordered sets 73X are isomorphic to certain full heaps of affine
Dynkin diagrams that were defined in [Grel3, Ch. 6] based on a type-by-type
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construction, and used to study minuscule representations. Postnikov’s cylinder
was constructed in [Hag04, §8] from a similar viewpoint.

Example 7.15. Let X = LG(4,8) be the Lagrangian Grassmannian of maximal
isotropic subspaces in an 8-dimensional symplectic vector space, and define u,v €
WX by the shapes I(u) =D and I(v) = HH We have

(X % [X*] = (X H + (X T+ ¢°

in QH(X), s0 dmin(u”,v) = 2 and dmax(u’,v) = 3. The following picture shows a
section of the partially ordered set Px, with the boxes of Px colored gray.

|

|

The south-east borders of the order ideals of [X"] and [point] x [X"] are colored
black, and the south-east border of the order ideal of [X*] is colored red. The order
ideal of [point] * [X?] is obtained by reflecting I(v) in a diagonal line and attaching
the result to the right side of Px; this follows from [BS16, Lemma 2.9], by observing
that multiplication by a point preserves the partial order on B. Notice that the red
border will fit between the two black borders if it is shifted south-east by 2 or 3
steps.

F1GURE 1. The partially ordered sets 73X for a collection of comi-
nuscule flag varieties, with the boxes of Px colored gray.

L

Eg/Ps
0G(6,12) E7 /Py
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Remark 7.16. Let oy be the added simple root of the affine root system corre-
sponding to G. For any affine root 8 = ngayg +Z/36A ngfB, let A(8) = ny—nyp. Since
7 is cominuscule, we have A\(f) € {—1,0,1}. We plan to prove in a follow-up paper
with Nicolas Ressayre that 73X is isomorphic to the partially ordered set of affine
roots @ for which A(f) = 1, where the order on this set is defined by the covering

relation 0, < 05 if and only if 65 — 6, is a positive affine root.

7.3. Proof of the main lemma. Our proof of Lemma 7.2 utilizes a relationship
between all the cominuscule flag varieties F' = G/Pp of the same group G. Let
Wweemin — I denote the set of representatives of single points in these varieties,
together with the identity element:

weemin. — Lyl | Fis a cominuscule flag variety of G } U {1}.

For each cominuscule root v € A we let F, = G/P, denote the corresponding
cominuscule flag variety. The following result was used to determine the Seidel
representation on the quantum cohomology ring of any flag variety in [CMP09], see
also [Bou81, Prop. VI.2.6].

Proposition 7.17. The set W™ js o subgroup of W isomorphic to the coweight
lattice of ® modulo the coroot lattice. The isomorphism maps wé?” to the class of
the fundamental coweight wx corresponding to 7.

We mostly need this result when G has Lie type A. Let wg’r(d’n) € S, denote

the permutation representing the point class on Gr(d,n). This permutation is

determined by wi™“™ (p) = p—d (mod n) for p € [1,n]. The following consequence

of Proposition 7.17 is also immediate from this description.

Corollary 7.18. The assignment d — w(()}r(d’n) defines an isomorphism of groups

Z/nZ. — Somin,
Corollary 7.19. For 0 < d < dx(2) we have zq4/kq = (21/k1)% = (zlsv)d.

Proof. Since z4/kq = wOZ‘é( represents a point in Fy = Px/Pz, by Lemma 6.1,
we can prove the identity7 by applying Proposition 7.17 to the Weyl group Wx of
Px. If X is a Grassmannian of type A, a Lagrangian Grassmannian, or a maximal
orthogonal Grassmannian, then the Levi subgroup of Px is a group of type A (or
a product of two such groups), and the identity follows from Corollary 7.18 and
Table 3. If X is a quadric hypersurface, then F} is also a quadric, F5 is a point, and
the identity follows from Proposition 5.16(4) because F7 is primitive. Finally, if X is
the Cayley plane Fg/Ps or the Freudenthal variety Er /Py, the identity follows from
Table 3 together with the isomorphisms W™ = 7,/47 and W™ = 7,/37. 0

Lemma 7.20. For 1 < d < dx(2) we have (218,)  .(I(zq) ~ I(24-1)) = I(z1 N
zy_1) and I(kq) Uwo xz18y.1(z1 Nzy_y) = I(z1 UKq).

Proof. Recall the definition of the set Sy before Proposition 5.13. Noting that
I(za) N~ I(za—1) = Sa N (Px N~ I(z4-1)) and I(z1 Nz ;) = S1 N I(z)_,), the first
identity of the lemma follows from Proposition 5.13, Proposition 5.9(a), and Corol-
lary 5.11. Proposition 5.10 implies that

wo, x 218, 1(21 N 2y_1) = wox218.1(21) N (218,) two x.I(2)_1)

I(z1) N (2189) "I (2a-1)
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so the second identity is equivalent to
I(Zl) n (2157)71.1(2’61_1) C I(Kjd) .

Since (218y) ' I(24-1) = UZ 5 Se by Proposition 5.13, it suffices to show that
I(z1) N Sq C I(ka) for d > 2. This follows from the definition of Sy, as I(z1) N
) =

I(
(I(za) ~ I(za-1) O

Proof of Lemma 7.2. The definition of v is equivalent to v?k4 = (vNz4)Ukg, which
specializes to v¥kg = vNz4 for d < dpax(v). Part (b) follows from this. For part (a),
let v = u¥ be dual to u in WX. Then Proposition 6.7(c) shows that u, is dual to v®
in WFe, and ug_, is dual to v¥1 in W¥a-1. Since Corollary 7.19 and Lemma 6.1
show that wO)X(zlsW)d = Wo,z, = KdWo,z,Kd, it follows from Proposition 6.2(a)
that

wo,x (2154)%.(I(24) ~ I(vk4)) = Kawo z,ka-(I(z4) ~ T(vk4))
= kawo.z,-(Pr, ~ 1(v?) = ka1 (uq)
= I(ud/id) AN I(md) 5

and part (b) implies that

I(zg—1) ~ T(v¥ Yhg_1) = (I(zq) ~ I(v%kq)) N I (2q—1)
= (I(zq) ~ I(v%q)) ~ (I(zq) ~ I(zq_1)) -

By combining these identities and using Lemma 7.20 and Lemma 6.6, we obtain

T(ug—164-1) N~ I(Kkg—1) = w07X(zlsv) I(zd_l) ~ I(vdilnd_l))
= z15,w0,x (2154) (I (24) ~ T(vekq)) ~ (I(24) ~ I(z4-1)))
= 218y. ((I(ugka) ~ I(ka)) N wo,x218y.1(21 N 24_1))
= 218y. (I(ugkq) ~ I(z1 U Kq))
= 218y (I(uaka) ~ I(21)) \ 218+ (I(Ka) \ 1(21))

= I((uara)(=1)) ~ I(Ka-1) -

This proves part (a). O

Example 7.21. Let X = LG(8,16), u = (8,6,2) € W, and set d = 5. Then
ug = (5,4,1) is obtained by intersecting I(u) with the rectangle z;.Pp,, see Ex-
ample 6.4 and Example 6.8. The following pictures illustrate how the skew shape
I(ug—1K4—1) N I(kq—1) is obtained from I(ugkq) ~ I(rq). Notice that, since the bi-
jection 24.Pr, = kq.PF, is given by a transposition, the partition of u4 is conjugated
when we form I(ugkq) ~ I(Kq)-
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I(zq) ~ I(v%kgq)

Example 7.22. Let X = Gr(7,17), u = (10,8,5,5,4,1,0) € WX, and d = 4.
Then F; = Gr(3,7) x Gr(4,10), so elements of W4 can be represented by pairs of
partitions. We find ug = ((4,2,0), (5,4,1,0)) by intersecting I(u) with z4.PF,, see
Example 6.3. The skew shape I(ug—1k4—1) ~ I(kq—1) is obtained from I(ugrq) ~
I(kq4) with the following steps.

NU_INNL NN NN NN N

8. RESULTS ABOUT QUANTUM K-THEORY

8.1. The small quantum K-theory ring. Let X = G/Px be a cominuscule
flag variety. The (small) quantum K-theory ring QK(X) of Givental and Lee
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[Giv00, Lee01] is an algebra over the ring Z[q] of formal power series in a single
variable ¢ called the deformation parameter. As a Z[q]-module we have QK(X) =
K(X) ® Z[q]. The associative product * of QK(X) is defined in terms of K-
theoretic Gromov-Witten invariants. We recall a construction of this product from
[BCMP18a).

Let ¢ : K(X) — K(X) be the linear map defined by ¢(0O%) = O*(=1). This
map can also be defined by ¢ = (evs).(evy)*, where evy and evs are the evaluation
maps from My 2(X,1). Corollary 5.23 implies that ¢ = (p1)«(q1)*(q1)«(p1)*. Given
u,v € WX and d > 1, we define the class

(5) (Oux0”)q = [Or,x..x0)] = V([Or,_, (xu,x)])

in K(X). Let (O, xO%)g = O, - OV be the product in the K-theory ring. It then
follows from [BCMP18a, Prop. 3.2] that Givental’s product in QK(X) is given by

(6) Ou*0” = > (0, %0")aq’.

d>0
The proof in [BCMP18a] showing that (6) agrees with Givental’s definition relies on
a version of the quantum-to-classical principle for large degrees that was established
in [BM11, CP11, BCMP18b].

The definition (5) implies that (O, *O")4 = 0 for all sufficiently large degrees d,
since eventually we have I'y_1 (X, X¥) = X. As a consequence, the product O, +O"
contains only finitely many non-zero terms. A similar finiteness result is known for
the quantum K-theory of arbitrary flag varieties BCMP13, BCMP16, Kat, ACT22].
In the cominuscule case we have (O, * O?)4 = 0 whenever d > dx(2) by [BCMP13,
Thm. 1]. Using this explicit bound, we can focus on the terms (O, x O")4 of small
degrees, which will be studied using the tools developed in the previous sections.

The Schubert structure constants of QK(X) are the integers N;”ﬂ defined by

(7) 0" x0" = Y Nutgtov.
w,d>0

Equivalently, we have (O, x O%)q = >, N;”v’i'lv@“’ for each degree d. These struc-

ture constants are expected to have alternating signs in the following sense [LMOG,
BM11].

Conjecture 8.1. We have (—1)““”“’>+deg(qd)N§jf > 0.

Here deg(q?) = d [\, c1(Tx) = d({(z1) + 1) denotes the degree of ¢* in the
Sy

quantum cohomology ring QH(X). This conjecture generalizes the fact that the
structure constants ijj;? of the ordinary K-theory ring of X have alternating signs
[Buc02, Bri02]. A more general version of Conjecture 8.1 for the equivariant quan-
tum K-theory of arbitrary flag varieties is discussed in [BCMP18a, §2.4].

Recall from Corollary 6.9(d) that the general fibers of the map pg : Z4(Xy, X¥) —
L4(X,, X") are translates of (Fd)ﬁjm”d. The quotient (ug U v?)/v? of Weyl group
elements will be called a short rook strip if it is a product of commuting reflections
associated to short simple roots of ®. We emphasize that the lengths of the simple
roots should be measured relative to the root system ® of G, as opposed to the
root system @ x of the group Px acting on Fy. For example, when X = LG(n,2n)
is a Lagrangian Grassmannian, ®x is a root system of type A, but its roots are
considered short since they are short in ®.
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Definition 8.2. Let u,v € WX. An integer d is an exceptional degree of the
product O, x OV if d < min(dmax(u"), dmax(v)) and (ug Uv?)/v? is a non-empty
short rook strip.

Notice that exceptional degrees do not occur when X is minuscule, as all roots
of a simply laced root system are considered long. In addition, most products
O, * 0¥ on odd quadrics Q?"~! and Lagrangian Grassmannians LG(n,2n) have
no exceptional degrees, see Example 8.5 and Table 4. Notice also that, if d is
an exceptional degree of O, x OV, then we must have d = dpax(u”,v) + 1 by
Lemma 7.3(b). We proceed to state our main results about quantum K-theory of
cominuscule flag varieties.

Theorem 8.3. Let u,v € WX. The quantum K -theory product O, O in QK(X)
contains the same powers of q as the quantum cohomology product [X,] * [X"] in
QH(X), with the exception that ¢ may also occur in Oy, x O if d = dyax(u”,v) +1
is an exceptional degree. In particular, the powers q@ occurring in O, x OV form an
integer interval.

We conjecture that (O, x O)4 # 0 whenever d is an exceptional degree. This
is true for quadrics and has been verified for Lagrangian Grassmannians LG(n, 2n)
with n < 6. See Conjecture 8.28 for a more detailed statement.

Theorem 8.4. Conjecture 8.1 is true whenever X is minuscule or any quadric
hypersurface. It is also true whenever d is not an exceptional degree of the product
Ouv * 0.

Example 8.5. Let X = Q*"~! = OG(1,2n + 1) be a quadric hypersurface of type
B,,. We have dx(2) = 2, deg(q) =2n — 1, and

Px=|1|2 | |n1|l n |n-1|---| 2|1

All boxes of Px are long except the middle box. Notice that k1. Pr, = 21.Pr
consists of the middle 2n—3 boxes of Px. It follows that O, xO" has an exceptional
degree if and only if I(u) \ I(v) consists of the middle box. In other words, the
only exceptional product is O~ 1xO"~1 = O,, O™, here we denote each element
u € WX by its length £(u). Using the Chevalley formula from [BCMP18a] together
with the associativity of the quantum K-theory product, we obtain

On—l *On—l — On—l * (Ol)n—l — 20211—2 _ OZn—l —q 4 qol .

This product has alternating signs and exceptional degree 1. The corresponding
product in QH(X) is [X" ! x [X"71] = 2[X?"~2].

Example 8.6. Let T" = [Zyx«]| € K(X) denote the class of the ideal sheaf Zyxu« C
Oxw of the boundary 0X* = X" \ )%“, for u € WX, These classes are dual to
the Schubert structure sheaves in the sense that x, (O, - Z%) = 4, [Bri02, Cor. 2],
and the structure constants of K(X) with respect to the dual basis {Z*} have
alternating signs by [Bri02, Thm. 1] and [GKO08, Remark 3.7]. More precisely, if we
write 7% - 70 = Y C% T% in K(X), with u,v,w € WX, then (—1)“w)C¥ > 0.
An equivariant generalization can be found in [GKO08, Conj. 3.1] and [AGMI11,
Cor. 5.2]. However, this version of positivity does not extend to quantum K-theory.
In fact, the dual basis of K(P!) consists of the classes

7°=1- [Opoint] and I = [OPOint] ’



POSITIVITY OF MINUSCULE QUANTUM K-THEORY 47

TABLE 4. The number of products O, x OV with exceptional de-
grees on Lagrangian Grassmannians LG(n,2n).

n | Total products | Exceptional degrees
2 10 1 (10%)

3 36 3 (8.3%)

4 136 17 (12.5%)

5 528 70 (13.3%)

6 2080 313 (15.0%)

7 8256 1317 (16.0%)

8 32896 5590 (17.0%)

9 131328 23310 (17.7%)
10 524800 96932 (18.5%)

and in QK(P!) we have
I°%ZI° =1 —2[Opoint) +q=I° — ' + qZ° + ¢T".
8.2. A geometric construction of the quantum product. We give a geometric

construction of the classes (O, xOV)y € K(X) that is better suited for determining
the signs of the structure constants of QK(X).

Lemma 8.7. Let 1 < d < dx(2). The diagonal action of G on the set {(n,w) €
Yoo1 x Yy | Ty, C Ty} is transitive.

Proof. Let (n,w) € Y4_1 x Yy be such that I';, C I',,. We must show that (n,w) is in
the orbit G.(1.Py, ,,1.Py,). Since G acts transitively on Yy, we may assume that
w = 1.Py,. Choose z,y € I, such that dist(z,y) =d—1. Then I'y_:1(z,y) =T, by
Corollary 5.20, and Lemma 5.6 applied to I',, shows that we can find g € Py, such
that g.(z,y) = (1.Px, kq—1.Px). It follows that ¢.I'y = X, ,, as required. O

For 1 < d < dx(2) we set Yy_14 = G/(Py,_, N Py,). By Lemma 8.7 we can
make the identification

Ydfl,d = {(n,w) S Yd,1 X Yd | Fn C Fw}.

Let ¢g—1: Yg_1,0 = Yg—1 and ¢g4 : Yg_1,4 — Yy be the projections. Given u,v €
WX we define the varieties

Y11 (Xu, X¥) = ¢aldy", (Yao1(Xu, X))

={weYy|Ine Yy 1(Xy, X"): T, CT,},
Zg11(Xu, X¥) = q; ' (Ya_1.1(Xy, XV)), and
Fag—11(Xu, X¥) = pa(Za—1,1(Xu, X))

Notice that ¢;}1(Yd,1(Xu,X“)) is a Richardson variety and Yy_11(X,,X") is a
projected Richardson variety, so Theorem 2.13 implies that Y1 1(X,, X"?) has
rational singularities and [Oy, | | (x, x»)] = (¢a)«(¢a—1)*[Oy, ,(x,,x)]. Since the
map qq : Zg—1,1(Xu, X¥) = Ya_11(Xy, XV) is a locally trivial fibration with non-
singular fibers, it follows that Zg_1 1(X,, X¥) has rational singularities as well. On
the other hand, T'q_1 1 (X, X") is not in general a (projected) Richardson variety. It
would be interesting to understand the singularities of this variety. In Example 8.31
we give an example where I'y_q 1 (X, X") has rational singularities and fails to be
a projected Richardson variety.
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Question 8.8. Does I'q_1 1(X,, X") always have rational singularities?

The following lemma applied to Yg_1(Xy, X") shows that I'y_;1(X,, X") =
I (Tg—1(Xy, X?)), that is, Ty—1,1(Xy, X?) is the set of all points in X that are
connected by a line to a stable curve of degree d — 1 meeting X,, and X".
Lemma 8.9. For any subset QQ C Yy_1 we have
(®) Pady dads () =prar iy pa1a(Q).
Proof. A point z € X belongs to the left hand side of (8) if and only if there exists
n € Qand w € Yy such that z € Ty, and I';) C T,,. Since plql_lqlpl_l(x) =T (z) for
all z € X by Corollary 5.23, the point z € X belongs to the right hand side of (8) if
and only if there exists n € € such that I'; (z) N T, # 0. Assume that z belongs to
the left hand side of (8) and choose (7, w) € Q x Y, such that z € ', and T, C I,
Since T'1(2) N T, and T',, represent dual classes in H*(I',;;Z) by Lemma 5.18, we
have T'1(2) NI, # 0, so z belongs to the right hand side of (8). On the other hand,
if z belongs to the right hand side of (8), then choose (n,z) € Q x X such that
x € I'1(2) NT,,. Then choose y € I, such that dist(x,y) = d — 1. Since there exists
a (possibly reducible) rational curve of degree d through z, y, and z, it follows from
Proposition 5.21 that we may choose w € Yy such that z,y,z € T',,. Since z,y € [,
and dist(x,y) = d — 1, it follows from Corollary 5.20 that I';, = T'y_1(z,y) C Ty
This shows that z belongs to the left hand side of (8). O

Theorem 8.10. We have (O, * O¥)q = [Op,(x,, x*)] — (0a)«[Oz,_, . (x.,x7)]-

Proof. By equation (5) and Corollary 5.23 we have
(Ourx 0%)a = [Or,(x,,x0)] = (P1)+(q1)" (q1)«(p1)*[Or,_; (x,,x0)] -

It is therefore enough to show that

(Pa)+(qa)" (0a)«(Pa—1)"[Oy, ,(x..x*)] =
(pl)*((.71)*((]1)*(271)*(pdfl)*(Qdfl)*[OYd,l(Xu,Xv)} .

More generally, the linear operators

(Pa)«(qa)™ (¢a)(da—1)"  and  (p1)«(q1)"(q1)+(P1)" (Pa-1)+(ga—1)"

define the same map K (Y;—1) — K(X). In fact, using that K(Y;_1) has a basis of
Schubert classes [Ogq], this follows from Lemma 8.9. O

8.3. Proof of our main theorems. In [BCMP18b] we proved that I'g(X,,, X?)
has rational singularities and that

(Pa)«[Oz,(x..x»)] = [Or,(x,.x)] -

In fact, this follows from Corollary 5.23 and Theorem 2.13.

Let Q be an irreducible variety defined over C and let p : Q — Q be a resolu-
tion of singularities. Define the resolution class of Q to be the image p.[Og] =
> iso(=1)"[R'p.Og] in the Grothendieck group K () of coherent sheaves on €.
This class is independent of the chosen desingularization and will be denoted sim-
ply by [Og]. When Q C X is a closed subvariety, we also write [Og] for the image
of the resolution class in K (X). If 1 has rational singularities, then [Og] = [Oq].
We need the following result [Bri02, §4, Remark].
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Theorem 8.11 (Brion). Let M = G/Py be a flag variety over C and let @ C M
be an irreducible closed subvariety. Then the resolution class [Og] is an alternating
linear combination of Schubert classes, that is, we have

[Og]= ) cu(®)O"

weWM
in K(M), where (—1){@)=codim(@.M) ¢ () >0 for all w € WM.

Theorem 8.12. Let f : Q' — Q be a surjective morphism between complex pro-
jective varieties with rational singularities. Then f is cohomologically trivial if and
only if the general fibers of f are cohomologically trivial.

Proof. The implication ‘f’ follows from [Kol86, Thm 7.1] (see the proof of [BM11,
Thm. 3.2]), and ‘only if” follows from [Har77, I11.12.8 and II1.12.9]. O

We will use the following consequence of Theorem 8.12 when condition (b) is
satisfied. The condition that Q' has rational singularities is necessary in this case,
see Example 8.14.

Corollary 8.13. Let f : Q' — Q be a surjective morphism of irreducible projec-
tive varieties over C. Assume that either (a) the general fibers of f are rationally
connected, or (b) Q' has rational singularities and the general fibers of f are coho-
mologically trivial. Then, f.[Og,] = [Og].

Proof. Let Q be a desingularization of €2, and let Q' be a desingularization of the
unique irreducible component of ' X o 2 that maps birationally onto Q'. We obtain
a commutative diagram where the vertical maps are resolutions of singularities.

f

o120

4k

Q——0

Let U’ C € be a dense open subset such that 7’ : ﬂ’_l(U') — U’ is an isomorphism,
and set Z = QO ~ 7'~ (U'). Forz € Qwelet Q, c &, Q, c @, and Z, C Z denote
the fibers over z. Set r = dim(Q') — dim(£2). Choose a dense open subset U C 2
such that fr’: (fn')~1(U) — U is smooth, dim(Z,) < r for all x € U, and (2., is
rationally connected for « € U in case (a), or cohomologically trivial with rational
singularities in case (b). Here we use that the general fibers of f have rational
singularities when €’ has rational singularities by [Bri02, Lemma 3].

Let x € U. Then SNI; is a disjoint union of non-singular varieties of dimension r,
and €, is irreducible. Since 0, N7’ (U’) C €, is a dense open subset isomorphic
to Q. NU’, it follows that {2, is birational to ,. We deduce that €, is cohomolog-
ically trivial; this follows from [Deb01, Cor. 4.18(a)] if €2, is rationally connected,
and from the Leray spectral sequence if € is cohomologically trivial with ratio-
nal singularities. Theorem 8.12 now shows that fis cohomologically trivial, which
completes the proof. O

The alternating signs conjecture for QK(X) would be a consequence of the fol-
lowing two statements.
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TABLE 5. Divisors in Yg(X,, X?) and T'q(X,, X").

Range of degrees Yoo11(Xu, XV) | Tgo1 0 (X, X7)

1 <d < dpin(u”,v) =0 =0
Apmin(u",v) < d < dpax(u, v) (Xu, X?) | € Ta(Xy, XY)
Apmax (1Y, v) < d < min(dmax (1), dmax(v)) (X, X?) | = Ta(Xy, X7)
min(dpax (1Y), dmax(v)) < d < dx(2) Yo( Xy, X?) | = Ta(Xu, XY)

N 4N
S

(I) The general fibers of the map pg : Zg—1,1(Xy, X¥) = Tg_11(Xy, X?) are
cohomologically trivial.

(IT) The variety I'q_1,1(Xy, X?) is either equal to I'q(X,, X") or a divisor in

Ty( Xy, XV).

In fact, the class [Or,(x,, xv)] has alternating signs by Theorem 8.11, and these
signs are compatible with Conjecture 8.1 for dpmin(u¥,v) < d < dpax(u¥,v), as
Proposition 7.1 shows that codim(T'¢(X,, X?), X) = £(u") + £(v) — deg(q?). Prop-
erty (I) implies that (pa)«[Oz,_, ,(x,,xv)] is the resolution class of I'q_1,1 (X, X?)
by Corollary 8.13, which also has alternating signs by Theorem 8.11. The point of
(II) is that, if I'y_; 1 (X, XV) is a divisor in I'y(X,,, X"), then the alternating signs
of the two terms in Theorem 8.10 enhance each other to yield the alternating signs
of (O, * O")4. Properties (I) and (II) also imply that (O, * OV)4 is non-zero if
and only if T'g—11(Xy, X?) # La(Xyu, XV). This determines whether the power ¢¢
occurs in O, » OV. We will show that (II) is true in all cases, whereas (I) holds if
and only if d is not an exceptional degree of O, x OV. These results are sufficient
to establish Theorem 8.3 and Theorem 8.4. Table 4 illustrates that most products
O, x OV on Lagrangian Grassmannians are fully described by these results.

Proofs of Theorem 8.3 and Theorem 8.4. Table 5 shows the range of degrees where
Ya—11(Xy, XV) is a divisor in Y4(X,,, XV), and where I'y_1 1(X,, XV) is a divisor in
I'y(Xy,X"). The codimension of Y1 1(X,, X") is determined by Proposition 8.18
and Proposition 8.21, after which the codimension of I'y_1 1(X,,, XV) is determined
by Proposition 8.20 and Corollary 8.24. The results now follow from Corollary 8.25
using the strategy discussed above. O

Example 8.14. Let £ C P2 be an elliptic curve, let € C P3 be the cone over
E, set Q = Spec(C), and let f : @ — Q be the structure morphism. Using the
exact sequence 0 — Ops(—3) = Ops — Oqy — 0, it follows that the fibers of f are
cohomologically trivial. Let €’ be the blow-up of €’ at its vertex, and let g : Q — E
be the map induced by the projection ' --+ E. Since the fibers of g are projective
lines, it follows from Corollary 8.13(a) that g.[Og,] = [Of]. Since x(E,Og) = 0,
we deduce that f,[Og,] = 0 # [Oq]. This shows that Corollary 8.13(b) may fail
without the assumption that €’ has rational singularities.

Remark 8.15. The equivariant quantum K-theory ring QK (X) is defined by
(5) and (6), except that all structure sheaves are endowed with their natural T-
equivariant structure, see [BCMP18a] for details. Since Corollary 8.13 remains true
in equivariant K-theory, our results imply that the identity

Oy x 0" = [Or,(x,,xv] — O

Fd71,1(Xu,X“)}
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holds in QK,(X) whenever d is not an exceptional degree. In particular, Theo-
rem 8.3 holds for QK,(X).

Let N;‘f;,d € Kr(point), for u,v,w € WX, denote the structure constants describ-
ing the action of the B~-stable Schubert basis {0V} on the B-stable basis {O,} of
QKo (X):

O, x 0" = Z N[ﬁ;fl q* O,
w,d>0
If Theorem 8.11 is upgraded to the equivariant setting of [AGM11, Thm. 4.1], then
these constants would satisfy the positivity property

(—1)uvwrtdes@®) Nud ¢ N[[C_g]—1:8€A].

We thank D. Anderson [And] for sending us an outline of a proof of the equivariant
version of Theorem 8.11, with some details left to check. We hope to address this
elsewhere, and possibly prove a slight generalization of Theorem 8.11.

The classes O,v and O are distinct in K7 (X), so it is not clear how to apply
our results to products O x OV of two B~ -stable Schubert classes in QKp(X). A
positivity conjecture for the structure constants of such products is discussed in
[BCMP18a, Conj. 2.2], generalizing [GR04, Conj. 5.1] and [AGM11, Cor. 5.3].

Conjecture 8.16. The power g% occurs in the equivariant quantum product O% %
0¥ € QKp(X) if and only if 0 < d < dpax(u,v) or d = dpax(u,v) + 1 is an
ezxceptional degree of Oyv x OV.

8.4. Proofs and counterexamples to (I) and (II). Fix elements u,v € W
and a degree 1 < d < dx(2). We proceed to establish the required properties of
the map pg : Zg—1,1(Xy, X?) = Ty_1,1(Xy, X7). Notice that I'q(X,, X") is empty
for d < dmin(u”,v), and Tq_1 1 (X, X¥) is empty for d < dpin(u",v).

Ya—1,a _
Lemma 8.17. We have wyy, " = sg,-

Proof. The element w(l)i‘é,-’dl’d describes the fiber of the map ¢q4 : Y414 — Yy over
1.Py,, that is, ¢ ' (1.Py,) = (Ydfl,d)wyd—l,d‘ Since this fiber does not change if the

0,Yy4
cominuscule variety X is replaced with X, ,, we may assume that X is a primitive
cominuscule variety of diameter d. In this case Yy is a point and Yy 4 = Y41,
so Lemma 6.1 and Lemma 5.18 imply that wéi‘zl’d = wowo,y, , = WoWo,x2d—1 =

wé(zd_l = sg,, as required. O

We first consider degrees in the range dmin (¢, v) < d < min(dmax ("), dmax (v))-
In this case the maps g4 : p; ' (Xu) — Ya(Xu) and g4 : p; ' (XY) — Ya(X?) are
birational by Corollary 6.9(a). Since the fibers of p; : Zg — X and qq : Zg — Yy
are described by wOZ“j( = z4/Kkq and wOZ’%,d = kg by Lemma 6.1, we deduce that
uzgkqg = u(zq/kq) and vkg = v/kq belong to WY, and uzg € W%, With the
notation for projected Richardson varieties from Section 3, we obtain Yy (X, XV) =
(Yy)ora =TI (Yy) and Zg( Xy, X?) = (Z4)05e = 11054 (Zy).

UZgkd UZgKd uzq uzq
Proposition 8.18. Assume that dmin(u",v) < d < min(dmax(v), dmax(v)). Then
VKkasy <y, Uzakd, and Yg_11(Xy, XV) = L2000 (Ya) ds a divisor in Yq(X,, X?).

Proof. Define n € Wy, by syn = Kka/kaq—1. We have Yg_1(X?) = (Yd_l)”/”d—l =
(Yg—1)?"2%+" and Proposition 6.7(a) shows that vkgs,n = v/kq—1 € WYi-1. We
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also have kg/kq—1 € Wy, N WYd=1_hence uzgrgn € WYdi-1.4. Define
del,d = G/(Pyd_l ﬂPyd ﬂpx) = {(n,w,x) ceY; 1 xY;xX | S FU C Fw},
with projections p: Zg_1,4 = Zg and q: Zg_1,4 — Ya—1,4-

Pd—1 P Pd
X<~—74 1 <~— del,d — g —

lel iq iQd
ba—1 13

d
Yo 1<=—Yi10—>Yy
Using that kgw2s bt = w i bdyZi-td  — o 0 by Lemma 6.1 and Lemma 8.17
2 d%o,zy  — Yo,vy 0,Yg_1,4  “@afvd—1 y : il

. T L
we obtain wofzdl’d = KaSa,kd—1 = 1. This implies

G0 (Ya1(Xu)) = ap”"'pg " (Xu) = (Ya1.a)uzaran -
We obtain
Yao1,1(Xu, X°) = da(dyly (Ya1(Xu, X))
= ¢a (071 (Yao1(Xu)) Nyt (Yao1(XY)))
= g ((Yd—l,d)mdsw) — TIPRS(Yy) = T125457 (Yy)

UZgkdn UZgRAT UZdRd

where the last two equalities follow from Corollary 3.6 and Theorem 3.4(b), or
[KLS14, Prop. 3.3]. The inequality vkqsy <y, uzqkq holds because Yy_1 (X, X"?) #
0 and uzqrg € WY, Finally, it follows from Proposition 3.2 that Y1 1(Xy, X?)
is a divisor in Yg(X,, XV) =115 (Yy). O

UZdKd

Lemma 8.19. Assume that dmin(u’,v) < d < min(dpax(u"), dmax(v)). Then
Zg—11( Xy, XV)NIIY54(Zy) is a dense open subset of Zg_11(Xy, X?).

UzZq

Proof. By Proposition 8.18, Zg_1,1(Xy, X") is a divisor in Zg(X,, XV) = 1354 (Zy).
If the claim is false, then Theorem 3.5 implies that Z;—11(Xy, X?) = H%(Za),
where vkg < b <z, a < uzg. Since I8 (Yy) = 540 (Yy) by Proposition 8.18 and
uzgkg € WY, it follows from Theorem 3.4 that ¢ > uzgrg and b > VKdSy. Since
we also have £(a) — £(b) = l(uzq) — £(vKkqsy), it follows that a = uzq and b = vkgs,.
But Theorem 3.4 also implies that IT,55 " (Yy) = 125, (Yy), a contradiction. [0

Uzgkqg

Proposition 8.20. Assume that dmin(v”,v) < d < dpax(u”,v). Then the map
Dd: Za—11(Xu, X¥) = Ty_1,1(Xu, X?) is birational.

Proof. Since pg : Z4(Xy, X)) = Tg(X,, X") is birational by Proposition 7.1 and
Corollary 6.9(d), it follows from Proposition 3.2 that the restriction of p4 to the open

projected Richardson variety ﬁggg(zd) is injective. The result therefore follows

from Lemma 8.19. O
Our next result shows that Zy_1 1(Xy, X¥) = Zg(Xy, X¥) and Ty_1 1 (X, XY) =

[y(X,, X?) whenever d > min(dmax(u"), dmax (v)).

Proposition 8.21. Assume d > min(dmax (1" ), dmax(v)). Then, Yg_11(X,, X¥) =

Yi(Xy, XY).

Proof. Let w € Yg(X,,X") and assume that d > dpax(v). Then T'y, N XV has
positive dimension by Corollary 6.9(a). Choose any point € T',, N X,,. Then
Ty_1(x)NT, is a divisor in T, by Lemma 5.18. It follows that I'y_; (2)NT,NX"Y # 0.
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Choose any point y € T'y_1(x) N T, N X?. Since dist(z,y) < d — 1, there exists
n € Yg_1 such that z,y € I';, C T, by Corollary 5.20(b) applied to I'y,. This proves
that w € Yy—1,1(Xu, XV). A symmetric argument works if d > dyax(u"). O

We finally discuss the remaining range dmax (¢, v) < d < min(dpax(©"), dmax(v)).
For degrees in this range, the map py : Z4(Xu, X¥) — I'y(Xy, X?) has fibers of
positive dimension by Proposition 7.1 and Corollary 6.9(d).

Notation 8.22. Given a fixed cominuscule variety X, we let € denote the constant
defined by € = 1 if X is minuscule or an odd quadric of dimension at least five,
while ¢ = 2 if X is a Lagrangian Grassmannian. The three-dimensional quadric
Q3 = LG(2,4) is considered a Lagrangian Grassmannian.

The proof of the following result is postponed to Section 9, where we also justify
the definition of e. Let [0Yy] = ZﬂeA\Ayd [Y;?] denote the (ample) sum of the

Schubert divisors in Yj.

Proposition 8.23. Let dyax(vY,v) < d < min(dmax ("), dmax(v)). For all points
z in a dense open subset of Tq(X,,X"), the fiber D = p;'(2) N Zg—1,1(Xu, XV)
is a Cartier divisor of class €q;[0Yy] in the Richardson variety R = p;'(z) N
Za(Xu, XV).

Corollary 8.24. For d > dmax(u,v) we have T'y_1 1(X,, X?) = Tq(X,, X?).
Proof. This follows from Proposition 8.21 and Proposition 8.23. O

Corollary 8.25. Let dpin(u”,v) < d < dx(2). The general fibers of the map
Pd: Za—1,1(Xu, XV) = Ty_1.1(Xu, X?) are cohomologically trivial if and only if d
is not an exceptional degree of Oy x OV.

Proof. This follows from Proposition 8.20 if d < dpax(¢,v), and it follows from
Proposition 8.21 and Corollary 2.11 for d > min(dmax ("), dmax(v)). Assume that
Anax(©Y,v) < d < min(dmax(u), dmax(v)), and let R and D be as in Proposi-
tion 8.23. Then R is a translate of the Richardson variety (Fd)ijd, and we have
[D] = €[0Fy] in Pic(R). Notice that R has positive dimension by Proposition 7.1.
We use Corollary 4.12 to argue that D is cohomologically trivial if and only if
(uqg U v?)/v? is not a short rook strip. If X is minuscule, then Fj; is a product
of minuscule varieties, ¢ = 1, and D is cohomologically trivial because there are
no tableaux of shape I(ug) \ I(v?) with integer values from the interval [£,1). If
X = @?* ! is an odd quadric with n > 3, then € = 1, and the assumptions imply
that d = 1, hence F; = Q**~3. This time D is cohomologically trivial if and only if
there are no decreasing primed tableau of shape I(uq) ~ I(v?) using only the label
%, that is, (uq U v?)/vg is not a short rook strip. Finally, if X = LG(n,2n) is a
Lagrangian Grassmannian, then ¢ = 2, F,; = Gr(n—d, n) is a Grassmannian of type
A, and D is cohomologically trivial if and only if there are no decreasing primed
tableaux of shape I(ug) ~ I(v?) using only the label 1, that is, (uqUv?)/v¢ is not a
rook strip. In this case a rook strip is the same as a short rook strip, since all boxes
of Pr, are short by convention. The result follows from these observations. ]

Since the general fibers of pg : Zg—1,1(Xy, X¥) — T'q—1,1(Xy, X?) have rational
singularities by [Bri02, Lemma 3|, it follows from Corollary 8.25 that these fibers
are irreducible projective varieties of arithmetic genus zero for any non-exceptional
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degree in the range duyi,(u",v) < d < dx(2). The following result describes the
fibers for exceptional degrees.

Theorem 8.26. Let d = dyax(u’,v)+1 be an exceptional degree of O, *xOV. Then
the general fibers of pq : Zg—1,1(Xu, X?) = T'a(Xy, XV) have rational singularities
and arithmetic genus one. They are irreducible projective varieties if they have
positive dimension.

Proof. The general fibers D = Zy_11(X,, X¥) N p; ' (2) have rational singulari-
ties by [Bri02, Lemma 3], and it follows from Theorem 4.9 that D has arithmetic
genus one. In the positive dimensional case, the general fibers are connected by
Proposition 8.23 and the Fulton-Hansen theorem [FH79]. O

Remark 8.27. When d = dpyay(u",v) + 1 is an exceptional degree of O, x O, the
general fibers of pg : Zg—1,1(Xy, X¥) = I'q(Xy, XV) can be described more explic-
itly as follows. Since (uqUv?)/v? is a rook strip, it follows from Corollary 6.9(d) and
[BR12, Lemma 3.2(b)] that the Richardson variety R = Z4(X,, X¥) Np;'(2) is a
product of projective lines for general z € I'y(X,,, X"). Proposition 8.23 shows that
D = Z411(Xu, X?) Np;'(2) has multidegree (2,2,...,2) in R. The arithmetic
genus of D can also be computed from this description.

Given a non-zero K-theory class F € K(X), the initial term lead(F) is defined
as the homogeneous component of lowest degree in the Chern character ch(F) €
H*(X,Q). Equivalently, lead(F) is the leading term of F modulo the topological
filtration of K(X) (see [Ful98, Ex. 15.2.16]). Let codim(F) denote the complex
degree of lead(F), so that lead(F) € H?<dm(F) (X Z), and let

F= > cu(F)O”
weW X
be the expansion of F in the Schubert basis of K(X). Then codim(F) is the
minimal length ¢(w) for which ¢, (F) # 0. The class F has alternating signs if
(—1)tw)=codim(F)e (F) > 0 holds for all w € WX,
Part (a) of the following conjecture might point towards a generalization of
Brion’s positivity theorem. Parts (b) and (¢) imply that (O, * OV)4 # 0 whenever
d is an exceptional degree.

Conjecture 8.28. Assume that d = dpax(u”,v) + 1 is an exceptional degree of
O, *0".
(a) The class (pa)«[Oz, ,,(Xu, X"V)] € K(X) has alternating signs.
(b) If dimTy(X,, X)) £ dim Z4(X,, X") (mod 2), then the initial term of
(Pa)«[Oz,_,  (Xu, XV)] is equal to 2[T'3(Xy, XV)].
(¢) If dimT4(X,, X?) = dim Z4(X,, X") (mod 2), then the initial term of
(Pa)+[Oz,_, . (Xu, XV)] has complex degree codim(I'g(Xy, XV), X) + 1.

Example 8.29. Let X = Q2" ! be a quadric of odd dimension. By Example 8.5,
the only exceptional product in QK(X) is O,, x O™~ with corresponding excep-
tional degree d = 1. Since (O,, x O""1); = —1 + O, we obtain from Theorem 8.10
that T'1 (X, X" 1) = X and

(P1)+[0 201 (X, x7-1)) = [Or, (x,,x7-1)] = (O xO" 1)y =2 - 0O".
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The general fibers of p; : Z;(X,, X" ') — X are projective lines by Corol-
lary 6.9(d), and the general fibers of p; : Zp1(Xn, X" 1) — X consist of two
reduced points by Proposition 8.23. This proves Conjecture 8.28 for odd quadrics.

Example 8.30. Let X = LG(4,8) and define u,v € W¥ by I(u) = HHJ and
I(v) = EEP The corresponding products in QH(X) and QK(X) are given by
[Xu] % [XY] = 4[X @3D] 4 4g[X D] + 2[ X ®D)]
and
Ou %OV = 40(4,3,1) _ 40(4,3,2) + 0(4,3,2,1)

+ 40P 4202 — 460® — 110GV + 74062 1 740%Y
— 5042 _ 940621 4 q0(3) | 9,021 _ jo(43.1)
+q% — 2200 124202 — 200 _ 201 4 206D

The product O, x OV has exceptional degree d = 2, and we have T'3(X,, X")

Fy=Gr(2,4), uq = EP, and v¢ = 0. The general fibers of py : Z4—1.1(Xu, XV) —
are elliptic curves by Theorem 8.26. The identity

X,
X

Pa)«[0z, 1 1 (x0.x)] =1 = (04 *0")q =201 —20? + 0B) + 0D — OB
shows that Conjecture 8.28 holds for the product O, x OV.

In [BCMP18b, Ex. 5.4] we gave an example of a projected Richardson variety in
the Grassmannian Gr(2,6) that is not of the form T'y(X,, X"). On the other hand,
the following example shows that not all varieties of the form I'g_; 1(X,, X") are
projected Richardson varieties. The studied variety I'y—; 1(X,, X") has rational
singularities and satisfies (pa)«[Oz,_, ,(x.,.x*)] = [Or,_, i (x.,x)]-

Example 8.31. Let X = Gr(3,6) be the Grassmannian of 3-planes in C% and set
v = s28483 and w = v¥. Then v corresponds to the partition I(v) = (2,1) = EP
A calculation in QH(X) gives ([X,] * [X"])1 = 1, so we have I';(X,,X"?) = X,
and it follows from Proposition 8.20 that I'gq(X,,X") is a divisor in X. Let
{e1,ea,e3,¢4,€5,65} be the standard basis of C® and set A; = Span{ey, ez}, Ay =
Span{es,es}, and As = Span{es, e}. The Richardson variety X" is isomorphic to
P! x P! x P! and consists of all 3-planes V = Span{ay, as,asz} for which a; € A;.
The variety g1 (X,, X") = I'1(X7?) is the union of all lines through X. For any
point V' € X we have V' € T';(X?) if and only if there exists a point V' € X? such
that dim(V 4+ V’) < 4. Consider the open affine subset U C X corresponding to
matrices of the form:

1 11 0 I12 0 13
9) 0 x21 1 x92 0 mo3
0 231 0 x32 1 x33

The row space of such a matrix belongs to X if and only if has the form:

1t 0 0 0 0
(10) 00 1t 00
00 0 0 1 t
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The span of the 6 row vectors in (9) and (10) has rank 4 or less if and only if the
matrix

11 — 11 Z12 x13
21 Tz — t2 Z23
r31 Z32 T33 — t3

has rank at most one, which implies that 12793731 = T32721213. Since the divisor
defined by this equation is irreducible, it coincides with I'y (XY) N U.

Let pijr for 1 < i < j < k < 6 denote the Pliicker coordinates on X. Then
['1(X?) is defined by the equation pias pase = Pi124 P3se. It follows that Ty (X7Y) is
a divisor of degree 2 in X, so it is not a projected Richardson variety. In fact,
it follows from Theorem 3.4 that there are 6 projected Richardson divisors in X,
namely Hisw x (X) and Hf:é‘ (X) for 1 < k < 5, and since their union is anticanonical

by [KLS14, Lemma 5.4], each of these divisors has degree 1. Moreover, we obtain
[Or, (xu)] = 200 —_ o) . oM) = 901 _ 02 _ 0pL1) L »21)
Using the Pieri formula [BM11, Thm. 5.4] we obtain
(Ou*xO%)y =1—200 4 0@ L o _ 1)
Using Theorem 8.10, we obtain
(P1)+[0z, 1 (x.,x*)] = [Or, (x,,x*)] = (Ou* O")1 = [Or, (xp)] -

This identity also follows from Proposition 8.20, granted that I'1 (X?) has rational
singularities. In fact, Chenyang Xu has shown us a proof [Xu] that the local equa-
tion w19Te3x31 = T32221 213 is a canonical singularity, which implies that T'y (X2)NU
has rational singularities. One can check that the local neighborhood of T'; (X))
defined by the non-vanishing of any Pliicker coordinate p;;, is a deformation of
I (X2)NU. It therefore follows from [Kaw99] that I'; (X?) has canonical singu-
larities globally, or from [Elk78] that I'1(X?) has rational singularities globally.
As mentioned earlier, it would be interesting to know if all varieties of the form
I'y—1,1(X,, X"?) have rational singularities.

9. DIVISORS OF THE QUANTUM-TO-CLASSICAL CONSTRUCTION

Let X = G/Px be cominuscule and fix a degree 1 < d < dx(2). Define the
variety
Y = Zyxy, Zg = {(w,2,y) € Yax X2 |z,y €T},

with projections e; : ZC(IQ) — Zg for i = 1,2. Recall from Notation 8.22 that we set

e = 2 if X is a Lagrangian Grassmannian and ¢ = 1 otherwise. This means that
the roots of A \ Ay, are long if € = 1 and short if € = 2. In particular, we have
(@Y, wy) =€ for any a € Px satisfying d(a) € A\ Ay,.

7,

Proposition 9.1. The set D = {(w,z,y) € ZC(IQ) | dist(z,y) < d— 1} is a divisor

mn ZU(I2) with rational singularities. The class of D in Pic Z((iz) 18 given by
[D] = (pae1)*[X*"] + (pae2)" [X*"] — € (qae1)"[0Yd] -

Proof. The projection es : D — Z; is G-equivariant and therefore a locally trivial
fibration [BCMP13, Prop. 2.3], with fibers given by DNe; ' (w,z) = Ty_1(z) N T,

Lemma 5.18 and Lemma 5.4 therefore imply that D is a divisor in Z((f)

singularities.

with rational
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The group H 2(Zf); Z) is a free abelian group generated by the basis elements
(pae;)*[X 7] for i = 1,2 and (gge1)*[Y;”] for B € A\ Ay,. Set wg = 1.Py, € Yy
and o = 1.Px € X, and define an embedding ¢ : I',,, — Zf) by ((z) = (wo, z,xo).
Since ¢(T'w,) = €5 ' (wo, o), it follows from the local triviality of D that (~(D) is
reduced. The identity (*[D] = [['w, NTa—1(x0)] = (*(pae1)*[X®7] then implies that
the coefficient of (pge1)*[X*7] in [D] is one. A symmetric argument shows that the
coefficient of (pge2)*[X*7] in [D] is one.

Given € A\ Ay,, let o € Px be the minimal root for which d(«) = 8. This
root a can be constructed as the sum of all simple roots in the interval [, 5] from
v to B in the Dynkin diagram. Then I(xq) U {a} is a straight shape in Px, and
8 =6(a) = kq.a.. Let C C Zg be the T-stable curve through the points kq.(wo, zo)
and KqSq-(wo, o). Since /9;1 = Kq, we obtain sokq.20 = KqSg.To = Kq.Zo € L. It
follows that z¢ € T, for each w € ¢4(C), so C' = {(w, z,z0) | (w,z) € C} is a curve
in ZC(IQ). Since kq.x0 and Kg8q.To are points in I'y(zg) N T'y—1(x¢) by Theorem 5.1,
we obtain dist(x,z0) = d for all z € pg(C), hence C’'ND = () and [,[D] = 0.
Finally, since fC,(pdel)*[XSV] = (a¥,wy) = € and fC,(qdel)*[Yjﬁ] = (a",wp) =1,
we deduce that the coefficient of (gqe1)*[Y;”] in [D] is —e, as required. O

Given any closed subset {2 C X we set f‘d(Q) =T4(Q) N\ T4-1(Q2). We have
Ya(Q,14(9) = {w € Ya(Q) | T NTa() # 0}
For any point w € Y3(Q) we have T',,NQ # 0, and since T, has diameter d, we obtain
T, C T4(Q). Tt follows that Yy(, ['q()) = Ya(Q, X ~ Tq_1(R)). Since gq is an
open map, this shows that Y (2, lo“d(Q)) is a relatively open subset of Y;(€2). Notice
also that for v € WX, we have Yd(X”,f‘d(X”)) # () if and only if d < dpyax(v).

Proposition 9.2. Assume that Q) C X is a Schubert variety.
(a) For each w € Yd(Q,f‘d(Q)), T, NQ is a (reduced) single point.

(b) The map o : Yd(Q,f‘d(Q)) — Q defined by {o(w)} =T, NQ is a morphism
of varieties.

Proof. Given any point w € Yd(Q,fd(Q)), the intersection I'y, N Q is a Schubert
variety in ', by Theorem 2.8. If it has positive dimension, then it meets the
Schubert divisor I', NT'4_1(2) for every point z € I',, by Lemma 5.18. This implies
that T, C T'y_1(92), a contradiction. This proves part (a).

Since qq : pgl(Q) — Y4(Q) is a projective morphism, so is the restriction ¢4 :
P71 () N Za(T4(9)) — Ya(2,14()), and part (a) implies that this restricted map
is bijective. Since the target is normal, the map is an isomorphism by Zariski’s main
theorem. Part (b) follows from this because o is the composition of the inverse map
with Pa- O

Given u,v € WX we define the varieties

o

Vi(Xu, X7) = Ya(Xu, Ta(X0)) N Ya(X?,Tg(X?)), and
V11 (Xu, X¥) = Ya(Xu, X¥) 0 Ya_11(X0, X¥).

It follows from Kleiman’s transversality theorem [Kle74] that lo/d(Xu, X7) is a dense
open subset of Yy(X,, X") whenever d < min(dmax(u"), dmax(v)). By Proposi-
tion 9.2 there are morphisms o7 : Y(X,, X¥) — X, and o9 : Yy(X,, X") — XV
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defined by {o1(w)} =T, N X, and {o3(w)} = T, N X". By Corollary 5.20(b) we
have

(11) Yio11(Xu, X7) = {w € Ya(Xy, X¥) | dist(o1(w), 0a(w)) <d —1}.

Proposition 9.3. Assume 1 < d < min(dmax(v"), dmax(v)). Then }O/d,l,l(Xu, X")
is a Cartier divisor in }o/d(Xu, X"), with class in Pic }O/d(Xu, X"?) given by

Vio11(Xu, X9)] = of[X*] + 03[X*] — € [0V4].
Proof. Define the variety
Z8 (X0, XV) = o7 () Nz ' (D),

where ; = pgl(Xu) n Zd(fd(Xu)) and Qo = pgl(X“) N Zd(fd(X”)). Since
0 C pgl(Xu) and Qs C pgl(X”) are open subsets of opposite Schubert varieties
in Zg, it follows from Kleiman’s transversality theorem [Kle74] that Z C(IQ)(XM,X )
and DN 2((12)(XM7X”) are reduced, where D is the divisor of Proposition 9.1.
Proposition 9.2 shows that the map ¢ : )O/d(XmXU) — Zot(f) (X4, X?) defined by
o(w) = (w,01(w), 02(w)) is an isomorphism with inverse morphism gqe;, and (11)
shows that }o/d_Ll(Xu, X") = ¢ (D) holds as (reduced) subschemes of }o/d(Xu, X").
The result therefore follows from Proposition 9.1. g

Proposition 9.4. Let u € WX, 1 < d < dpax(uY), and z € )O(u(d). Then the
morphism o : Yq(Xy,2) = X, defined by {o(w)} = T, N X, is injective, and we
have o*[X*7] = €[0Yy] in Pic Yy(Xy, 2).

Proof. The assumptions imply that z € f‘d(Xu), so we must have dist(o(w),z) >
d for any point w € Yy(X,,z). We deduce from Corollary 5.20(b) that T',, =
T'y(o0(w), z). This shows that o is injective.

The projection qq : p; ' (2) — Ya(z) is an isomorphism, and the inverse image of
Ya(Xy, 2) is pgl(z) N Z4(X,), which is a translate of the Schubert variety (Fy).,
by Corollary 6.9(c). This shows that the restriction map Pic Yy(z) — Pic Yy(Xy, 2)
is surjective. Since the restriction map PicYy; — PicYy(z) is also surjective, it
follows that PicYy(X,, 2) is generated by (the restrictions of) the divisors [Y;”]
for B € A\ Ay,. The class [Y;”] is non-zero if and only if 3 € I(ug), which by
Proposition 6.7(b) is equivalent to z4.8 € I(u). Notice also that z4.8 is a minimal
box of I(k)) \ I(z)) by Proposition 6.2(b).

To compute o*[X*7], we may assume that z = u(d).Px, since the maps pq
and ¢q are equivariant. Let 8 € A~ Ay, and assume that o = z4.8 € I(u).
Set w = uNzy. Then u(d) = Uzq, Use € WX, and I(us,) = I(w) U {a}. We
claim that the points u(d).Py, and u(d)sg.Py, belong to Y4(X,, z). Indeed these
points are in Yy(z), since they are the images of u(d).Pz, and u(d)sg.Pz,. Since
ke Px € X., = pdqd_l(l.Pyd), we have 1.Py, € Yy(kq.Px), hence u(d).Py, €
Ya(uzgka.Px) = Y4(u.Px) and u(d)sg. Py, = Usqzq.Py, € Y4(uSq.Px). This proves
the claim, and also shows that o(u(d).Py,) = u.Px and o(u(d)sg.Py,) = USq.Px.
We deduce that Yy(X,, z) contains the T-stable curve C' C Y through u(d).Py, and
u(d)sg.Py,, and that ¢(C) C X, is the T-stable curve through @.Px and us,.Px.
This implies that 0.[(Ya)s,] = 0.[C] = [0(C)] = (a",wy)[Xs, ], so it follows from
Poincaré duality that the coefficient of [Y;”] in o*[X*] is equal to € = (a", w. ), as
required.
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Proof of Proposition 8.23. Let z € T'4(X,,X") be a general point, and set R =
Py (2)NZg(Xy, X¥) and D = p; ' (2)NZ4—1,1(Xu, X?). Then R is a Richardson va-
riety by Theorem 2.10, and g4 restricts to an isomorphism of R onto R’ = gap;; " (2)N
Ya(Xu, X?) = Yy(Xy,2) N Yy(XY, 2), under which D is pulled back from D’ =
R'NYy-1,1(Xy, X"). By the choice of z and the bound d < min(dmax (4" ), dmax(v)),
we may assume that z € )O(u(d) nXv-d ¢ IO‘(Xu) N Io‘(X”). This implies that R’
is contained in }O/d(Xu, X"), so it follows from Proposition 9.3 and Proposition 9.4
that D’ is a Cartier divisor in R’ of class [D'] = o[X 7]+ 05[X 7] —€[0Yy] = €[0Y4].
The result follows from this. O

Remark 9.5. We demonstrate in Example 9.6 that the identity o*[X*7] = ¢[0Y{]
may fail to hold in Pic Yy(X,, Io‘d(Xu)), with o as in Proposition 9.2. However, the
proof of Proposition 9.4 shows that this identity holds whenever A\ Ay, C I(uq),
as in this case we have Pic Yy(X,, z) = Pic Yy(X,, f‘d(Xu)) = PicY}.

Example 9.6. Let X = Gr(m,n) be a Grassmannian of diameter dx(2) > 3, and
set d =2 and u = s,. Let E, = (e1,e€2,...,e;) C C" be the subspace spanned by
the first k basis vectors, for 0 < k < n. Then X,, = P(Ep41/Em-1) ={V € X |
E,,1CVC Em+1}~ Set Ny = <6m+2,6m+3>, So = FE,, ® Ng, and let C C Yy =
Fl(m — 2,m + 2;n) be the curve given by C = {(K,S) | K € P(Ep—1/En—_3)}.
Since E,, € T, N X,, for each w € C, we have C C Yy4(X,). Define z : C — X by
z((K,Sp)) = K@Ny. ForV € X, and (K, Sp) € C we have VN(K @S Ny) = K. This
implies that dist(V, z(w)) = 2 for each V € X, and w € C, so z(w) € fd(Xu) NT,.
In particular, we have w € Yy4(X,, 2(w)) and C C Yy(X,, f‘d(Xu)). However, since
the restriction o : C — X, of the morphism of Proposition 9.2 is the constant
function o(w) = E,,, we obtain [, 0*[X*] =0# 1 = [,[0Y4]. More generally, our
construction shows that o*[X*7] = 0 € Pic Yy(X,, fd(Xu)) = PicYy.

Proposition 8.23 shows that the restriction of the divisor Zz_11(X,,X") to
R = Z4(Xu, X?)Np; ' (2) is a Cartier divisor that can be pulled back from Z,. The
following example shows that Z;_1.1(X,, X") may not itself be a Cartier divisor
pulled back from Zj.

Example 9.7. Let X = LG(3,6) and define u,v € WX by I(u) = (3,2) and
I(v) = (2,1). The corresponding products in QH(X) and QK(X) are given by
[(Xu] % [XY]=2[X3D]  and
Oy x 0" = 2001 — 062 4 40N — 4O,
Let d = 1. We have Y; = IG(2,6) = C3/P; and Yy(Xu, X?) = gap; ' (X5252%3) =
Y%, The general fibers of pg : Zg(Xy, X") — T'q(X,, X") are projective lines,
and pq : Zg—1,1(Xy, X") — I'y(X,, X"?) is a morphism of degree 2. We also have
Yoo1=X,Yy 10=24, and Yy_11(X,, X") = qdpgl(Xu N X"). It follows that
[Za—1,1(Xu, X*)] = (qa)"(qa)+ (pa) " ([Xu] - [X7]) = 2[Z5771°2].

Assume that Z;_q11(X,, X") is the intersection of Z4(X,,X") with an effective
Cartier divisor D C Z4. Then we must have [D] - [Z¢(Xy, X")] = [Z4—1,1(Xu, X7)]
in H*(Z4). But we have [Z4(X,,, X")] = [Z}?°*] and [D] = a[Z}?] + b[Z}?] for some
integers a and b. Now compute the products

[Z;z] . [23382] — [22‘33182] + [Z;’zsasz}
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and
[253] . [25352] — [Z;38253} + 2[2;25382]
It follows that the coefficient of [Z;**2**] in [D]-[Z4(Xy, X")] is b, and the coefficient

of [Z32°°2] is a+2b. Since these Schubert classes do not appear in [Zg_1 1 (Xy, X)),
we obtain a = b = 0, a contradiction.

10. FIBERS OF GROMOV-WITTEN VARIETIES

Let X be a cominuscule flag variety and fix u,v € WX and 1 < d < dx(2). We
finish this paper by proving that completions of the general fibers of the rational
maps Mg(X,, X?) -——» Zg(Xy, XV) and Mg_11(Xy, XV) = Zg_11(Xy, XV) are
cohomologically trivial. While this assertion from the introduction is not required
for the proofs of our main results, it provides additional details of the relationship
between the geometry of Gromov-Witten varieties and analogous varieties obtained
from the quantum-to-classical construction.

Recall the maps of the diagram (3), and define the varieties

Bly_11 =7 '(Mg_11) C By,
Bly( Xy, X?) = 7 H(Mg(Xy, X)), and
Blg—11(Xu, X”) = Blg(Xu, X")NBlg_11 .

Since the birational map My --+ Z; is defined as a morphism exactly on the
open subset of My over which 7 : Bf; — M, is an isomorphism, our assertion is
justified by the following result. (We consider a map between empty varieties to
have cohomologically trivial fibers.)

Theorem 10.1. The general fibers of the maps e3¢ : Bly( Xy, XV) = Zg(Xu, X?)
and ez : Bly_1,1(Xy, X") = Zg—1,1(Xy, XV) are cohomologically trivial.

The proof requires some additional results, starting with the following conse-
quence of Theorem 8.12.

Corollary 10.2. Let f : M — N and g : N — P be morphisms of complex
projective varieties with rational singularities. Assume that the general fibers of f
are cohomologically trivial. Then the general fibers of g are cohomologically trivial
if and only if the general fibers of gf are cohomologically trivial.

Proof. This follows from Theorem 8.12, as the Grothendieck spectral sequence
shows that R'g.On = R'(gf)«Oun. O

Lemma 10.3. Let f : M — N be a birational morphism of irreducible varieties,
with N normal. Let D C M be an irreducible subvariety of codimension 1, and
assume that f(D) has codimension 1 in N. Then the restricted map f: D — f(D)
is birational.

Proof. The assumptions imply that f(D) meets the non-singular locus of N, so we
may assume that N is non-singular. Let Z C N be the closed subset of points where
the rational map f~* is not defined as a morphism. Then f~*(Z) is a proper closed
subset of M, and the fibers of f~1(Z) — Z have positive dimension by [Sha94, 4.4,
Thm. 2]. It follows that Z has codimension at least 2 in N, so f~! is defined on a
dense open subset of f(D). O
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Recall the variety Yy_1,4 = G/(Py,_, N Py,) from Section 8.2 and define

Zd71,1 = Zqg Xy, Ya—1.4

= {(nw,z) €Yy1 xYyx X |T, CTy, and z € T, },
25321,1 = Zd-1 Xy, Zd-1 XYy, Zd—l,l

= {(nw,2,y,2) €Yy 1 xYgx X? |2,y e, CT, and z € .}, and
Zc(f_)m = {(w,z,y,2) € Zc(l?’) | dist(z,y) <d—1} C Zf’).

Lemma 10.4. The restricted morphism ¢ : Blg_11 — Zég_)l 1 and the projection

P 2551)171 — Zé?:)m are birational.

Proof. Let (w,z,y,z2) € Zés)l - By Corollary 5.20(b) there exists n € Y;3_1 such
that 2,y € I';, C I'y, and 7 is unique when dist(z,y) = d — 1. This shows that
p’ is birational. It follows from Lemma 5.18 that I';, N T'1(z) contains at least one
point t. There exists a stable curve in I';, of degree d — 1 through z, y, and ¢ by
Theorem 5.17, and ¢ is connected to z by a line. This shows that (w, x,y, z) belongs

0 ¢(Blg—1,1). Since ¢ : Bly — Zc(l?’) is birational by Proposition 5.21, it follows
from Proposition 9.1 and Lemma 10.3 that ¢ : Blg_11 — Zy, , is birational. [

The proof of Theorem 10.1 uses the following varieties:

= (paer) " (Xu) N (pae2) H(X?) € 21V,
3 v 3
zP(Xu, X)) 2P,

Py ( w) Xy, , Py 1(XU) Xy, Ld-1,1,
= 6421 (Ya-1(Xu, X7)), and
Y 1d(Xu,X )Xyd Zd.

The first three spaces are the subvarieties of Z((f) Zc(l?’)1 1 d 1 , defined by z € X,

and y € X". The last variety Zd_Ll(Xu, X") consists of all triples (1,w, z) € Zd_m
for which X, NT,, # 0 and X" NT,, # 0.

Proof of Theorem 10.1. It follows from Proposition 5.21 and Kleiman’s transver-
sality theorem [Kle74] that ¢ : Bg(X,, X") — ZC(IB) (Xu, X") is birational, and the
fiber of e : ZC(IB)(XM,XU) — Zg(Xy, X?) over (w, 2) is isomorphic to (T, N X,,) X
(T, N X?), which is a product of Schubert varieties by Theorem 2.8. Using that
Bly( Xy, XV), ZU(IS) (Xu, X?), and Z4(X,, X"?) have rational singularities, it follows
from Corollary 10.2 that the general fibers of eg¢ : Bg(X,, X?) — Z4(X,, XV) are
cohomologically trivial.
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Consider the commutative diagram:

~

(12) 2% (X, X?) p Bly11(Xy, X7)

zT}J/ \ leaﬂ
251?:)1,1(Xu, XV) —— Z\d—l,l(Xua X7) ng> Zg—1,1(Xy, X7) ——Za
\L le iq(z

Ya1,a(Xu, X°) o Ya11(Xy, X¥) —— Yy

Here p is the projection that forgets = and y, and ¢/, is the base change of ¢q4
along g4. It follows from [BCMP13, Thm. 2.5 and Prop. 3.7] together with The-
orem 2.13 and Proposition 9.1 that all varieties in the diagram (12) have ratio-
nal singularities. The maps p’ and ¢ with target Z(g?fl’l(Xu,X ) are birational
by Lemma 10.4 and Kleiman’s transversality theorem [Kle74]. The fiber of p over
(n,w,z) € Zz—m(Xu, X") is the product (I',,NX,,) x (I';; N X") of Schubert varieties
by Theorem 2.8. The fibers of ¢/, coincide with the fibers of ¢4, and the general such
fibers are Richardson varieties by Theorem 2.10. We deduce from Corollary 10.2
that the general fibers of the maps es3 and eg¢p with target Zg_11(X,,X") are
cohomologically trivial. This completes the proof. O

Corollary 10.5. The restricted maps es¢ : Bly(X,, XV) = Z4(Xy, X7) and e3¢ :
Blg—11(Xu, XV) = Zg—1.1(Xu, X?) are birational for d < min(dmax(u"), dmax(v)).

Proof. Tt follows from Corollary 5.14(a) and Lemma 6.1 that dim Bly(X,, XV) =
dim Zg(Xy, X¥) = l(u) —€(v)+ [, c1(Tx) (when these varieties are not empty), and
from Proposition 8.18 that dimBfl;_1 1(X,, X") = dim Zg_11(X,, XV) = l(u) —
L)+ [,e1(Tx) — 1. O

Remark 10.6. The proof of Theorem 10.1 shows more generally that the general
fibers of e3¢ : Bly(Xy, XY) — Zg(Xy, XY) are rational, and the general fibers
of es¢p : Bly_11(Xy, X") = Zg—1,1(X,, XV) are rationally connected. The last
statement uses [GHS03, Cor. 1.3].
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