3.4 1(b,d).

The relation R of (b) is antisymmetric. This follows directly form the definition of antisymmetric.

The relation R of (d) is not antisymmetric because $(1 / 2,1) \in R$ and $(1,1 / 2) \in \mathbb{R}$.

3.4 3(b).

Theorem: Let R be a relation on the set A that satisfies
(i) R is antisymmetric, (ii) R is symmetric, and (iii) $\operatorname{Dom}(R)=A$.

Then $R=I_{A}$.
Proof. Let $(x, y) \in R$.
Then $x \in A$ and $y \in A$.
Since R is symmetric we have $(y, x) \in R$.
Since R is antisymmetric, we must have $x=y$.
Therefore $(x, y)=(x, x) \in I_{A}$.
This proves that $R \subset I_{A}$.
Now let $(x, y) \in I_{A}$.
By definition of I_{A} we have $x \in A$ and $y=x$.
Since $x \in A=\operatorname{Dom}(R)$, we can choose $z \in A$ such that $(x, z) \in R$.
Since R is symmetric, we also have $(z, x) \in R$.
Since R is antisymmetric we must have $z=x$.
It follows that $(x, y)=(x, x)=(x, z) \in R$.
This proves $I_{A} \subset R$.

3.46.

Set $P=\mathbb{R} \times \mathbb{R}$.
Define $R=\{((a, b),(x, y)) \in P \times P \mid a \leq x$ and $b \leq y\}$
Theorem: R is a partial order on P.
Proof. We must show that R is reflexive, antisymmetric, and transitive.
This is the following three claims.
Claim 1: $\forall p \in P:(p, p) \in R$.
Let $p \in P$. Choose $x, y \in \mathbb{R}$ such that $p=(x, y)$.
Since $x \leq x$ and $y \leq y$, we have $(p, p)=((x, y),(x, y)) \in R$.
Claim 2: $\forall p, q \in P:((p, q) \in R$ and $(q, p) \in R) \Rightarrow p=q$
Let $p, q \in P$.
Assume that $(p, q) \in R$ and $(q, p) \in R$.
Choose $a, b \in \mathbb{R}$ such that $p=(a, b)$.
Choose $x, y \in \mathbb{R}$ such that $q=(x, y)$.
Since $(p, q) \in R$ we have $a \leq x$ and $b \leq y$.
Since $(q, p) \in R$ we have $x \leq a$ and $y \leq b$.
This implies that $a=x$ and $b=y$.
Therefore $p=q$.
Claim 3: $\forall p, q, r \in P:((p, q) \in R$ and $(q, r) \in R) \Rightarrow(p, r) \in R$
Let $p, q, r \in P$.
Assume that $(p, q) \in R$ and $(q, r) \in R$.
Choose $a, b \in \mathbb{R}$ such that $p=(a, b)$.
Choose $c, d \in \mathbb{R}$ such that $q=(c, d)$.
Choose $e, f \in \mathbb{R}$ such that $r=(e, f)$.

Since $(p, q) \in R$ we have $a \leq c$ and $b \leq d$.
Since $(q, r) \in R$ we have $c \leq e$ and $d \leq f$.
This implies that $a \leq e$ and $b \leq f$.
Therefore $(p, r) \in R$.

3.4 12(b).

Let A be a non-empty set.
The inclusion relation on the power set $\mathcal{P}(A)$ is defined by
$R=\{(S, T) \in \mathcal{P}(A) \times \mathcal{P}(A) \mid S \subset T\}$
I will not prove that R is a partial order on $\mathcal{P}(A)$.
Theorem:
$\forall B \in \mathcal{P}(A) \forall x \in A: x \notin B \Rightarrow(B$ is an immediate predecessor of $B \cup\{x\})$
Proof. Let $B \in \mathcal{P}(A)$ and let $x \in A$.
Assume that $x \notin B$.
Set $D=B \cup\{x\}$.
We must show that B is an immediate predecessor of D.
This is equivalent to the following three claims.
Claim 1: $B \neq D$.
This is true because $x \notin B$ and $x \in D$.
Claim 2: $(B, D) \in R$.
This is true because $B \subset D$.
Claim 3: $\forall C \in \mathcal{P}(A):((B, C) \in R$ and $(C, D) \in R) \Rightarrow(C=B$ or $C=D)$
Let $C \in \mathcal{P}(A)$.
Assume that $(B, C) \in R$ and $(C, D) \in R$.
Then $B \subset C$ and $C \subset D$.
Case 1: Assume that $x \in C$.
Since $C \subset D$ and $D=B \cup\{x\} \subset C \cup\{x\}=C$, it follows that $C=D$.
Case 2: Assume that $x \notin C$. I will show that $C=B$.
Let $y \in C$.
Since $C \subset D=B \cup\{x\}$, we must have $y \in B \cup\{x\}$.
This implies that $y \in B$ or $y \in\{x\}$.
Since $y \in C$ and $x \notin C$, we have $y \neq x$, hence $y \notin\{x\}$.
Therefore $y \in B$.
This proves that $C \subset B$
Since we also have $B \subset C$ by assumption, we obtain $C=B$.
We conclude that ($C=B$ or $C=D$) is true.
3.4 13(a,d). Let R be a rectangle with horizontal and vertical sides of positive lengths.

Let H be the set of all rectangles with horizontal and vertical sides of positive lengths that are contained in R.

Consider the partial order \subset on H given by inclusion of rectangles.
Theorem 1: $\forall S \in \mathcal{P}(H): R$ is an upper bound of S.
This is true because for each rectangle $Q \in H$ we have $Q \subset R$.
Theorem 2: $\exists S \in \mathcal{P}(H): S$ does not have a smallest upper bound.
Take $S=\emptyset$.
Then every rectangle $Q \in H$ is an upper bound for S.
Assume that Q_{0} is a smallest upper bound for S.

Then Q_{0} is a smallest element of H.
Therefore $Q_{0} \subset \bigcap_{Q \in H} Q=\emptyset$.
It follows that $Q_{0}=\emptyset \notin H$, a contradiction.
Theorem 2a: $\forall S \in \mathcal{P}(H): S \neq \emptyset \Rightarrow S$ has a smallest upper bound.
This is a consequence of the fact that any non-empty bounded subset A of the real numbers \mathbb{R} has a smallest upper bound $\sup A$ and a greatest lower bound inf A.

Assume that R is placed in a coordinate system (with horizontal x-axis and vertical y-axis).

For any rectangle $Q \in H$ we denote the lower-left corner of Q by $\left(x_{1}(Q), y_{1}(Q)\right)$ and we denote the upper-right corner of Q by $\left(x_{2}(Q), y_{2}(Q)\right)$.

Given two rectangles $Q, Q^{\prime} \in H$ we then have $Q \subset Q^{\prime}$ if and only if
$\left(x_{1}(Q) \geq x_{1}\left(Q^{\prime}\right)\right.$ and $y_{1}(Q) \geq y_{1}\left(Q^{\prime}\right)$ and $x_{2}(Q) \leq x_{2}\left(Q^{\prime}\right)$ and $\left.y_{2}(Q) \leq y_{2}\left(Q^{\prime}\right)\right)$.
Let $S \in H$ and assume $S \neq \emptyset$.
Then the smallest upper bound for S is the unique rectangle Q^{\prime} satisfying:
$x_{1}\left(Q^{\prime}\right)=\inf \left\{x_{1}(Q) \mid Q \in S\right\}$
$y_{1}\left(Q^{\prime}\right)=\inf \left\{y_{1}(Q) \mid Q \in S\right\}$
$x_{2}\left(Q^{\prime}\right)=\sup \left\{x_{2}(Q) \mid Q \in S\right\}$
$y_{2}\left(Q^{\prime}\right)=\sup \left\{y_{2}(Q) \mid Q \in S\right\}$
Since Theorem 2 a is strictly speaking not necessary in order to answer problem $3.3(\mathrm{a})$, I will not prove this. However this is not hard, one simply have to work systematically with the definitions.
Theorem 3: $\exists S \in \mathcal{P}(H): S$ does not have a smallest element.
Let $Q_{1}, Q_{2} \in H$ be rectangles contained in R such that $Q_{1} \not \subset Q_{2}$ and $Q_{2} \not \subset Q_{1}$.
Take $S=\left\{Q_{1}, Q_{2}\right\}$.
Since no element of S is a lower bound for S, S has no smallest element.

4.1 1(b,c,d,e).

(b) The set is not a function because 1 is paired with more than one integer.
(c) The relation is a function with domain $\{1,2\}$ and range $\{1,2\}$. Another possible codomain is \mathbb{Z}.
(d) The relation is not a function because it contains $(0,0)$ and $(0, \pi)$.
(e) The relation is not a function because it contains $(1,1)$ and $(1,2)$.
4.1 3(b). Let $f=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y=x^{2}+5\right\}$.
$\operatorname{Dom}(f)=\{x \in \mathbb{R} \mid \exists y \in \mathbb{R}:(x, y) \in f\}=\left\{x \in \mathbb{R} \mid \exists y \in \mathbb{R}: y=x^{2}+5\right\}=\mathbb{R}$.
$\operatorname{Rng}(f)=\left\{y \in \mathbb{R} \mid \exists x \in \mathbb{R}: y=x^{2}+5\right\}=\{y \in \mathbb{R} \mid y \geq 5\}$.
The set \mathbb{R} is an alternative codomain.
4.113.

Theorem: \emptyset is a function with domain \emptyset.
Proof. I will show that \emptyset is a function from \emptyset to \emptyset.
This means that:
$\forall x \in \emptyset \exists y \in \emptyset:(x, y) \in \emptyset$.
This is true because every statement of the form $\forall x \in \emptyset: P(x)$ is true.
Theorem: Let A and B be sets and let $f: A \rightarrow B$ be a function. Then the following are equivalent:
(1) $A=\emptyset$
(2) $f=\emptyset$.
(3) $\operatorname{Rng}(f)=\emptyset$

Proof. (1) \Rightarrow (2): Assume $A=\emptyset$.
Since $f \subset A \times B=\emptyset$, it follows that $f=\emptyset$.
$(2) \Rightarrow(3)$: Assume $f=\emptyset$.
Then $\operatorname{Rng}(f)=\{y \in B \mid \exists x \in A:(x, y) \in f\}=\emptyset$.
$(3) \Rightarrow(1)$: Assume $A \neq \emptyset$.
Choose $x \in A$.
Since f is a function we can choose $y \in B$ such that $(x, y) \in f$.
But then $y \in \operatorname{Rng}(f)$, so $\operatorname{Rng}(f) \neq \emptyset$.

4.2 5(b).

Consider the function $f=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y=2 x^{2}+1\right\}$.
The inverse relation is $f^{-1}=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x=2 y^{2}+1\right\}$.
This is not a function because $(3,-1) \in f^{-1}$ and $(3,1) \in f^{-1}$, but $-1 \neq 1$.

$4.25(\mathrm{~g})$.

Set $A=\mathbb{R}-\{1\}$ and $B=\mathbb{R}-\{0\}$.
Consider the relation $f=\left\{(x, y) \in A \times B \left\lvert\, y=\frac{1}{1-x}\right.\right\}$.
Then f is a function $f: A \rightarrow B$.
(I will not prove this and we do not need to know that f is a function.)
The inverse relation is given by:
$f^{-1}=\left\{(x, y) \in B \times A \left\lvert\, x=\frac{1}{1-y}\right.\right\}=\{(x, y) \in B \times A \mid x(1-y)=1\}$
$=\left\{(x, y) \in B \times A \mid 1-y=x^{-1}\right\}=\left\{(x, y) \in B \times A \mid y=1-x^{-1}\right\}$.
Claim: $f^{-1}: B \rightarrow A$ is a function.
Must show: $\forall x \in B \exists!y \in A:(x, y) \in f$.
Let $x \in B$.
Since $x \in \mathbb{R}$ and $x \neq 0$, it follows that $x^{-1} \in \mathbb{R}$.
It follows that $1-x^{-1} \in \mathbb{R}$.
Notice also that $1-x^{-1} \neq 1$, hence $1-x^{-1} \in A$.
Since $\left(x, 1-x^{-1}\right) \in f$, we have shown: $\exists y \in A:(x, y) \in f$.
Let $y_{1}, y_{2} \in A$. Assume $\left(x, y_{1}\right) \in f$ and $\left(x, y_{2}\right) \in f$.
Then we have $y_{1}=1-x^{-1}$ and $y_{2}=1-x^{-1}$, hence $y_{1}=y_{2}$.
This finishes the proof that f^{-1} is a function.
Finally, for $x \in B$ we have $f^{-1}(x)=1-x^{-1}$.

4.215.

Let $f: A \rightarrow B$ and $g: C \rightarrow D$ be functions.
Define $f \times g=\{((a, c),(b, d)) \mid(a, b) \in f$ and $(c, d) \in g\}$.
(a) Claim: $f \times g: A \times C \rightarrow B \times D$ is a function.

We must show: $\forall x \in A \times C \exists!y \in B \times D:(x, y) \in f \times g$.
Let $x \in A \times C$.
Choose $a \in A$ and $c \in C$ such that $x=(a, c)$.
Set $b=f(a), d=g(c)$, and $y=(b, d)$.
Since $(a, b) \in f$ and $(c, d) \in g$, we have $(x, y) \in f \times g$.
Let $y_{1}, y_{2} \in B \times D$.
Assume $\left(x, y_{1}\right) \in f \times g$ and $\left(x, y_{2}\right) \in f \times g$.
Choose $b_{1}, b_{2} \in B$ and $d_{1}, d_{2} \in D$ such that $y_{1}=\left(b_{1}, d_{1}\right)$ and $y_{2}=\left(b_{2}, d_{2}\right)$.
Since $\left(x, y_{1}\right) \in f \times g$, we have $\left(a, b_{1}\right) \in f$ and $\left(c, d_{1}\right) \in g$.
Since $\left(x, y_{2}\right) \in f \times g$, we have $\left(a, b_{2}\right) \in f$ and $\left(c, d_{2}\right) \in g$.

Since $\left(a, b_{1}\right) \in f$ and $\left(a, b_{2}\right) \in f$ and f is a function, it follows that $b_{1}=b_{2}$. Since $\left(c, d_{1}\right) \in g$ and $\left(c, d_{2}\right) \in g$ and g is a function, it follows that $d_{1}=d_{2}$.
Therefore $y_{1}=\left(b_{1}, d_{1}\right)=\left(b_{2}, d_{2}\right)=y_{2}$.
(b) Let $(a, c) \in A \times C$.

Claim: $(f \times g)(a, c)=(f(a), g(c))$.
Set $b=f(a)$ and $d=g(c)$.
Since $(a, b) \in f$ and $(c, d) \in g$, we have $((a, c),(b, d)) \in f \times g$.
It follows that $(f \times g)(a, c)=(b, d)=(f(a), g(c))$.

4.3 (d).

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{3}$.
Claim: f is onto \mathbb{R}.
Must show: $\forall y \in \mathbb{R} \exists x \in \mathbb{R}: f(x)=y$.
Let $y \in \mathbb{R}$.
Set $c=|y|+1$.
Then $c^{3}=|y|^{3}+3|y|^{2}+3|y|+1>|y|$.
It follows that $f(-c)<y<f(c)$.
Notice that f is continuous on the closed interval $[-c, c]$.
The intermediate value theorem therefore implies that:
$\exists x \in \mathbb{R}: f(x)=y$.
This is what we had to prove.

4.3 1 (g).

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\sin (x)$.
Since we have $-1 \leq \sin (x) \leq 1$ for all $x \in \mathbb{R}$, it follows that $2 \notin \operatorname{Rng}(f)$.
Therefore f is not onto \mathbb{R}.

4.3 (h).

Let $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x, y)=x-y$.
Claim: f is onto \mathbb{R}.
Must show: $\forall z \in \mathbb{R} \exists a \in \mathbb{R} \times \mathbb{R}: f(a)=z$.
Let $z \in \mathbb{R}$.
Set $a=(z, 0) \in \mathbb{R} \times \mathbb{R}$.
Then $f(a)=f(z, 0)=z$.

4.310.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an increasing function.
This means: $\forall x_{1}, x_{2} \in \mathbb{R}: x_{1}<x_{2} \Rightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$.
Claim: f is one-to-one.
We must show: $\forall x_{1}, x_{2} \in \mathbb{R}: f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
I will prove the equivalent statement: $\forall x_{1}, x_{2} \in \mathbb{R}: x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Let $x_{1}, x_{2} \in \mathbb{R}$.
Assume $x_{1} \neq x_{2}$.
Case 1: Assume $x_{1}<x_{2}$.
Then $f\left(x_{1}\right)<f\left(x_{2}\right)$, hence $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Case 2: Assume $x_{2}<x_{1}$.
Then $f\left(x_{2}\right)<f\left(x_{1}\right)$, hence $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

$4.43(\mathrm{~d})$.

Define $G:(3, \infty) \rightarrow(5, \infty)$ by $G(x)=\frac{5 x-5}{x-3}$.
Define $F:(5, \infty) \rightarrow(3, \infty)$ by $F(x)=\frac{3 x-5}{x-5}$.
Claim: $F \circ G=I_{(3, \infty)}$ and $G \circ F=I_{(5, \infty)}$.
Let $x \in(3, \infty)$.
Set $y=G(x)$. Then we have:
$y=\frac{5 x-5}{x-3}$.
$x y-3 y=5 x-5$
$x y-5 x=3 y-5$
$x=\frac{3 y-5}{y-5}$.
It follows that $(F \circ G)(x)=F(G(x))=F(y)=x$.
Let $x \in(5, \infty)$.
Set $y=F(x)$. Then we have:
$y=\frac{3 x-5}{x-5}$
$x y-5 y=3 x-5$
$x y-3 x=5 y-5$
$x=\frac{5 y-5}{y-3}$.
It follows that $(G \circ F)(x)=G(F(x))=G(y)=x$.

4.46.

Let $F: A \rightarrow B$ and $G: B \rightarrow A$ be functions.
Claim:
$\left(G \circ F=I_{A}\right.$ and $\left.F \circ G=I_{B}\right) \Rightarrow(F$ is 1-1 and onto B, and G is 1-1 and onto $A)$
Proof: Assume that $G \circ F=I_{A}$ and $F \circ G=I_{B}$.
Then Theorem 4.4.4(a) implies that $G=F^{-1}$.
Since F^{-1} is a function, it follows from Theorem 4.4.2(a) that F is one-to-one.
Since $\operatorname{Rng}(F)=\operatorname{Dom}\left(F^{-1}\right)=\operatorname{Dom}(G)=B$, it follows that F is onto B.
A similar argument shows that G is 1-1 and onto A.
Note: To get the most out of the solutions to section 4.6, you need to figure out what was on my scratch paper when I did the problems.

$4.65(\mathrm{~b})$.

Let $\left(x_{n}\right)$ be the sequence defined by $x_{n}=\frac{n+1}{n}$.
Claim: $x_{n} \rightarrow 1$ as $n \rightarrow \infty$.
Must show: $\forall \epsilon>0 \exists N \in \mathbb{N} \forall n \in \mathbb{N}: n>N \Rightarrow\left|x_{n}-1\right|<\epsilon$.
Let $\epsilon>0$.
Choose $N \in \mathbb{N}$ so large that $N>\frac{1}{\epsilon}$.
Will show: $\forall n \in \mathbb{N}: n>N \Rightarrow\left|x_{n}-1\right|<\epsilon$.
Let $n \in \mathbb{N}$.
Assume $n>N$.
Then $\left|x_{n}-1\right|=\left|\frac{n+1}{n}-1\right|=\frac{1}{n}<\frac{1}{N}<\epsilon$.

4.6 5(c).

Define $\left(x_{n}\right)$ by $x_{n}=n^{2}$.
Claim: The sequence (x_{n}) diverges.
Must show: $\sim\left(\exists L \in \mathbb{R} \forall \epsilon>0 \exists N \in \mathbb{N} \forall n \in \mathbb{N}: n>N \Rightarrow\left|x_{n}-L\right|<\epsilon\right)$
Equivalently: $\forall L \in \mathbb{R} \exists \epsilon>0 \forall N \in \mathbb{N} \exists n \in \mathbb{N}: n>N \wedge\left|x_{n}-L\right| \geq \epsilon$
Let $L \in \mathbb{R}$.

Set $\epsilon=1$.
I will show: $\forall N \in \mathbb{N} \exists n \in \mathbb{N}: n>N \wedge\left|x_{n}-L\right| \geq \epsilon$
Let $N \in \mathbb{N}$.
Choose $n \in \mathbb{N}$ so large that $n>\max (N, L+1)$.
Then $n^{2} \geq n>L+1$.
It follows that $\left|x_{n}-L\right|=n^{2}-L \geq n-L>1=\epsilon$.

$4.65(\mathrm{f})$.

Define $\left(x_{n}\right)$ by $x_{n}=\sqrt{n+1}-\sqrt{n}$.
Claim: $x_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Must show: $\forall \epsilon>0 \exists N \in \mathbb{N} \forall n \in \mathbb{N}: n>N \Rightarrow\left|x_{n}-0\right|<\epsilon$
Let $\epsilon>0$.
Choose $N \in \mathbb{N}$ so large that $N>\frac{1}{\epsilon^{2}}$.
Will show: $\forall n \in \mathbb{N}: n>N \Rightarrow\left|x_{n}-0\right|<\epsilon$
Let $n \in \mathbb{N}$.
Assume $n>N$.
Then $1<\epsilon^{2} N<4 \epsilon^{2} n$.
It follows that $1<2 \epsilon \sqrt{n}$.
Therefore $n+1<n+2 \epsilon \sqrt{n}<n+2 \epsilon \sqrt{n}+\epsilon^{2}=(\sqrt{n}+\epsilon)^{2}$.
We deduce that $\sqrt{n+1}<\sqrt{n}+\epsilon$.
Finally, we obtain $\left|x_{n}-0\right|=\sqrt{n+1}-\sqrt{n}<\epsilon$.

$4.65(\mathrm{~h})$.

Define $\left(x_{n}\right)$ by $x_{n}=\frac{6}{2^{n}}$.
Claim: $x_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Must show: $\forall \epsilon>0 \exists N \in \mathbb{N} \forall n \in \mathbb{N}: n>N \Rightarrow\left|x_{n}-0\right|<\epsilon$
let $\epsilon>0$.
Choose $N \in \mathbb{N}$ so large that $N>\frac{6}{\epsilon}$.
Will show: $\forall n \in \mathbb{N}: n>N \Rightarrow\left|x_{n}-0\right|<\epsilon$
Let $n \in \mathbb{N}$.
Assume $n>N$.
Then $\left|x_{n}-0\right|=\frac{6}{2^{n}}<\frac{6}{n}<\frac{6}{N}<\epsilon$.

4.66.

Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences of real numbers, and let $L, M, r \in \mathbb{R}$.
Assume that $x_{n} \rightarrow L$ for $n \rightarrow \infty$, and that $y_{n} \rightarrow M$ for $n \rightarrow \infty$.
(b) Define $\left(z_{n}\right)$ by $z_{n}=x_{n}-y_{n}$.

Claim: $z_{n} \rightarrow L-M$ as $n \rightarrow \infty$.
Must show: $\forall \epsilon>0 \exists N \in \mathbb{N} \forall n \in \mathbb{N}: n>N \Rightarrow\left|z_{n}-(L-M)\right| \leq \epsilon$
Let $\epsilon>0$.
Since $x_{n} \rightarrow L$, I can choose $N_{1} \in \mathbb{N}$ such that: $\forall n \in \mathbb{N}: n>N_{1} \Rightarrow\left|x_{n}-L\right| \leq \frac{\epsilon}{2}$.
Since $y_{n} \rightarrow M$, I can choose $N_{2} \in \mathbb{N}$ such that: $\forall n \in \mathbb{N}: n>N_{2} \Rightarrow\left|y_{n}-M\right| \leq \frac{\epsilon}{2}$.
Set $N=\max \left(N_{1}, N_{2}\right)$.
Will show: $\forall n \in \mathbb{N}: n>N \Rightarrow\left|z_{n}-(L-M)\right|<\epsilon$.
Let $n \in \mathbb{N}$.
Assume $n>N$.
Then $n>N_{1}$ and $n>N_{2}$.
It follows that:
$\left|z_{n}-(L-M)\right|=\left|\left(x_{n}-L\right)+\left(M-y_{n}\right)\right| \leq\left|x_{n}-L\right|+\left|M-y_{n}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.
(e) Define $\left(z_{n}\right)$ by $z_{n}=x_{n} y_{n}$.

Claim: $z_{n} \rightarrow L M$ as $n \rightarrow \infty$.
Must show: $\forall \epsilon>0 \exists N \in \mathbb{N} \forall n \in \mathbb{N}: n>N \Rightarrow\left|z_{n}-L M\right| \leq \epsilon$
Let $\epsilon>0$.
Since $x_{n} \rightarrow L$, I can choose $N_{1} \in \mathbb{N}$ such that:
$\forall n \in \mathbb{N}: n>N_{1} \Rightarrow\left|x_{n}-L\right|<\min \left(1, \frac{\epsilon}{2(|M|+1)}\right)$.
Since $y_{n} \rightarrow M$, I can choose $N_{2} \in \mathbb{N}$ such that:
$\forall n \in \mathbb{N}: n>N_{2} \Rightarrow\left|y_{n}-M\right|<\frac{\epsilon}{2(|L|+1)}$
Set $N=\max \left(N_{1}, N_{2}\right)$.
Will show: $\forall n \in \mathbb{N}: n>N \Rightarrow\left|z_{n}-L M\right|<\epsilon$.
Let $n \in \mathbb{N}$.
Assume $n>N$.
Then we have $\left|x_{n}-L\right|<\min \left(1, \frac{\epsilon}{2(|M|+1)}\right)$ and $\left|y_{n}-M\right|<\frac{\epsilon}{2(|L|+1)}$.
It follows that $\left|x_{n}\right|=\left|L+x_{n}-L\right| \leq|L|+\left|x_{n}-L\right| \leq|L|+1$.
We obtain:
$\left|z_{n}-L M\right|=\left|x_{n} y_{n}-L M\right|=\left|x_{n} y_{n}-x_{n} M+x_{n} M-L M\right|$
$\leq\left|x_{n} y_{n}-x_{n} M\right|+\left|x_{n} M-L M\right|=\left|x_{n}\right| \cdot\left|y_{n}-M\right|+\left|x_{n}-L\right| \cdot|M|$
$<(|L|+1) \frac{\epsilon}{2(|L|+1)}+\frac{\epsilon}{2(|M|+1)}|M|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.
4.6 8(c).

Let $\left(x_{n}\right)$ be a sequences of real numbers, and let $L \in \mathbb{R}$.
Assume that $x_{n} \rightarrow L$ as $n \rightarrow \infty$.
Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be an increasing function.
This means that we have: $\forall m, n \in \mathbb{N}: m<n \Rightarrow f(m)<f(n)$.
Define a new sequence $\left(y_{n}\right)$ by setting $y_{n}=x_{f(n)}$ for each $n \in \mathbb{N}$.
Then $\left(y_{n}\right)$ is a subsequence of $\left(x_{n}\right)$.
Example: If $f(n)=2 n$, then $\left(y_{n}\right)=\left(x_{2}, x_{4}, x_{6}, \ldots\right)$.
Claim 1: $\forall n \in \mathbb{N}: n \leq f(n)$.
We prove this by induction on n.
Basis step: Since $f(1) \in \mathbb{N}$, we have $1 \leq f(1)$.
Inductive step: Let $n \in \mathbb{N}$. Assume $n \leq f(n)$.
Since f is increasing, we have $f(n)<f(n+1)$.
It follows that $n+1 \leq f(n)+1 \leq f(n+1)$.
We conclude by the PMI that Claim 1 is true.

Claim 2: $y_{n} \rightarrow L$ as $n \rightarrow \infty$.
Must show: $\forall \epsilon>0 \exists N \in \mathbb{N} \forall n \in \mathbb{N}: n>N \Rightarrow\left|y_{n}-L\right| \leq \epsilon$
Let $\epsilon>0$.
Since $x_{n} \rightarrow L$, we may choose $N \in \mathbb{N}$ such that: $\forall n \in \mathbb{N}: n>N \Rightarrow\left|x_{n}-L\right|<\epsilon$.
Will show: $\forall n \in \mathbb{N}: n>N \Rightarrow\left|y_{n}-L\right|<\epsilon$.
Let $n \in \mathbb{N}$.
Assume $n>N$.
Then $f(n) \geq n>N$.
It follows that $\left|y_{n}-L\right|=\left|x_{f(n)}-L\right|<\epsilon$.

