
Solutions to homework set 10-12 (selected problems)

3.4 1(b,d).
The relation R of (b) is antisymmetric. This follows directly form the definition

of antisymmetric.
The relation R of (d) is not antisymmetric because (1/2, 1) ∈ R and (1, 1/2) ∈ R.

3.4 3(b).
Theorem: Let R be a relation on the set A that satisfies
(i) R is antisymmetric, (ii) R is symmetric, and (iii) Dom(R) = A.
Then R = IA.

Proof. Let (x, y) ∈ R.
Then x ∈ A and y ∈ A.
Since R is symmetric we have (y, x) ∈ R.
Since R is antisymmetric, we must have x = y.
Therefore (x, y) = (x, x) ∈ IA.
This proves that R ⊂ IA.
Now let (x, y) ∈ IA.
By definition of IA we have x ∈ A and y = x.
Since x ∈ A = Dom(R), we can choose z ∈ A such that (x, z) ∈ R.
Since R is symmetric, we also have (z, x) ∈ R.
Since R is antisymmetric we must have z = x.
It follows that (x, y) = (x, x) = (x, z) ∈ R.
This proves IA ⊂ R. �

3.4 6.
Set P = R× R.
Define R = {((a, b), (x, y)) ∈ P × P | a ≤ x and b ≤ y}

Theorem: R is a partial order on P .

Proof. We must show that R is reflexive, antisymmetric, and transitive.
This is the following three claims.
Claim 1: ∀p ∈ P : (p, p) ∈ R.
Let p ∈ P . Choose x, y ∈ R such that p = (x, y).
Since x ≤ x and y ≤ y, we have (p, p) = ((x, y), (x, y)) ∈ R.
Claim 2: ∀p, q ∈ P : ( (p, q) ∈ R and (q, p) ∈ R ) ⇒ p = q
Let p, q ∈ P .
Assume that (p, q) ∈ R and (q, p) ∈ R.
Choose a, b ∈ R such that p = (a, b).
Choose x, y ∈ R such that q = (x, y).
Since (p, q) ∈ R we have a ≤ x and b ≤ y.
Since (q, p) ∈ R we have x ≤ a and y ≤ b.
This implies that a = x and b = y.
Therefore p = q.
Claim 3: ∀p, q, r ∈ P : ( (p, q) ∈ R and (q, r) ∈ R ) ⇒ (p, r) ∈ R
Let p, q, r ∈ P .
Assume that (p, q) ∈ R and (q, r) ∈ R.
Choose a, b ∈ R such that p = (a, b).
Choose c, d ∈ R such that q = (c, d).
Choose e, f ∈ R such that r = (e, f).
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Since (p, q) ∈ R we have a ≤ c and b ≤ d.
Since (q, r) ∈ R we have c ≤ e and d ≤ f .
This implies that a ≤ e and b ≤ f .
Therefore (p, r) ∈ R. �

3.4 12(b).
Let A be a non-empty set.
The inclusion relation on the power set P(A) is defined by
R = {(S, T ) ∈ P(A)× P(A) | S ⊂ T}
I will not prove that R is a partial order on P(A).

Theorem:
∀B ∈ P(A) ∀x ∈ A : x /∈ B ⇒ ( B is an immediate predecessor of B ∪ {x} )

Proof. Let B ∈ P(A) and let x ∈ A.
Assume that x /∈ B.
Set D = B ∪ {x}.
We must show that B is an immediate predecessor of D.
This is equivalent to the following three claims.
Claim 1: B 6= D.
This is true because x /∈ B and x ∈ D.
Claim 2: (B,D) ∈ R.
This is true because B ⊂ D.
Claim 3: ∀C ∈ P(A) : ( (B,C) ∈ R and (C,D) ∈ R ) ⇒ ( C = B or C = D )
Let C ∈ P(A).
Assume that (B,C) ∈ R and (C,D) ∈ R.
Then B ⊂ C and C ⊂ D.
Case 1: Assume that x ∈ C.
Since C ⊂ D and D = B ∪ {x} ⊂ C ∪ {x} = C, it follows that C = D.
Case 2: Assume that x /∈ C. I will show that C = B.
Let y ∈ C.
Since C ⊂ D = B ∪ {x}, we must have y ∈ B ∪ {x}.
This implies that y ∈ B or y ∈ {x}.
Since y ∈ C and x /∈ C, we have y 6= x, hence y /∈ {x}.
Therefore y ∈ B.
This proves that C ⊂ B
Since we also have B ⊂ C by assumption, we obtain C = B.
We conclude that ( C = B or C = D ) is true. �

3.4 13(a,d). Let R be a rectangle with horizontal and vertical sides of positive
lengths.

Let H be the set of all rectangles with horizontal and vertical sides of positive
lengths that are contained in R.

Consider the partial order ⊂ on H given by inclusion of rectangles.
Theorem 1: ∀S ∈ P(H) : R is an upper bound of S.

This is true because for each rectangle Q ∈ H we have Q ⊂ R.
Theorem 2: ∃S ∈ P(H) : S does not have a smallest upper bound.

Take S = ∅.
Then every rectangle Q ∈ H is an upper bound for S.
Assume that Q0 is a smallest upper bound for S.
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Then Q0 is a smallest element of H.

Therefore Q0 ⊂
⋂

Q∈H

Q = ∅.

It follows that Q0 = ∅ /∈ H, a contradiction.
Theorem 2a: ∀S ∈ P(H) : S 6= ∅ ⇒ S has a smallest upper bound.

This is a consequence of the fact that any non-empty bounded subset A of the
real numbers R has a smallest upper bound supA and a greatest lower bound inf A.

Assume that R is placed in a coordinate system (with horizontal x-axis and
vertical y-axis).

For any rectangle Q ∈ H we denote the lower-left corner of Q by (x1(Q), y1(Q))
and we denote the upper-right corner of Q by (x2(Q), y2(Q)).

Given two rectangles Q,Q′ ∈ H we then have Q ⊂ Q′ if and only if
(x1(Q) ≥ x1(Q

′) and y1(Q) ≥ y1(Q
′) and x2(Q) ≤ x2(Q

′) and y2(Q) ≤ y2(Q
′)).

Let S ∈ H and assume S 6= ∅.
Then the smallest upper bound for S is the unique rectangle Q′ satisfying:
x1(Q

′) = inf{x1(Q) | Q ∈ S}
y1(Q

′) = inf{y1(Q) | Q ∈ S}
x2(Q

′) = sup{x2(Q) | Q ∈ S}
y2(Q

′) = sup{y2(Q) | Q ∈ S}
Since Theorem 2a is strictly speaking not necessary in order to answer problem

3.3(a), I will not prove this. However this is not hard, one simply have to work
systematically with the definitions.
Theorem 3: ∃S ∈ P(H) : S does not have a smallest element.

Let Q1, Q2 ∈ H be rectangles contained in R such that Q1 6⊂ Q2 and Q2 6⊂ Q1.
Take S = {Q1, Q2}.
Since no element of S is a lower bound for S, S has no smallest element.

4.1 1(b,c,d,e).
(b) The set is not a function because 1 is paired with more than one integer.
(c) The relation is a function with domain {1, 2} and range {1, 2}. Another

possible codomain is Z.
(d) The relation is not a function because it contains (0, 0) and (0, π).
(e) The relation is not a function because it contains (1, 1) and (1, 2).

4.1 3(b). Let f = {(x, y) ∈ R× R | y = x2 + 5}.
Dom(f) = {x ∈ R | ∃y ∈ R : (x, y) ∈ f} = {x ∈ R | ∃y ∈ R : y = x2 + 5} = R.
Rng(f) = {y ∈ R | ∃x ∈ R : y = x2 + 5} = {y ∈ R | y ≥ 5}.
The set R is an alternative codomain.

4.1 13.
Theorem: ∅ is a function with domain ∅.
Proof. I will show that ∅ is a function from ∅ to ∅.

This means that:
∀x ∈ ∅ ∃y ∈ ∅ : (x, y) ∈ ∅.
This is true because every statement of the form ∀x ∈ ∅ : P (x) is true. �

Theorem: Let A and B be sets and let f : A → B be a function. Then the
following are equivalent:

(1) A = ∅
(2) f = ∅.
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(3) Rng(f) = ∅

Proof. (1) ⇒ (2): Assume A = ∅.
Since f ⊂ A×B = ∅, it follows that f = ∅.
(2) ⇒ (3): Assume f = ∅.
Then Rng(f) = {y ∈ B | ∃x ∈ A : (x, y) ∈ f} = ∅.
(3) ⇒ (1): Assume A 6= ∅.
Choose x ∈ A.
Since f is a function we can choose y ∈ B such that (x, y) ∈ f .
But then y ∈ Rng(f), so Rng(f) 6= ∅. �

4.2 5(b).
Consider the function f = {(x, y) ∈ R× R | y = 2x2 + 1}.
The inverse relation is f−1 = {(x, y) ∈ R× R | x = 2y2 + 1}.
This is not a function because (3,−1) ∈ f−1 and (3, 1) ∈ f−1, but −1 6= 1.

4.2 5(g).
Set A = R− {1} and B = R− {0}.
Consider the relation f = {(x, y) ∈ A×B | y = 1

1−x
}.

Then f is a function f : A → B.
(I will not prove this and we do not need to know that f is a function.)
The inverse relation is given by:
f−1 = {(x, y) ∈ B ×A | x = 1

1−y
} = {(x, y) ∈ B ×A | x(1− y) = 1}

= {(x, y) ∈ B ×A | 1− y = x−1} = {(x, y) ∈ B ×A | y = 1− x−1}.
Claim: f−1 : B → A is a function.
Must show: ∀x ∈ B ∃!y ∈ A : (x, y) ∈ f .
Let x ∈ B.
Since x ∈ R and x 6= 0, it follows that x−1 ∈ R.
It follows that 1− x−1 ∈ R.
Notice also that 1− x−1 6= 1, hence 1− x−1 ∈ A.
Since (x, 1− x−1) ∈ f , we have shown: ∃y ∈ A : (x, y) ∈ f .
Let y1, y2 ∈ A. Assume (x, y1) ∈ f and (x, y2) ∈ f .
Then we have y1 = 1− x−1 and y2 = 1− x−1, hence y1 = y2.
This finishes the proof that f−1 is a function.
Finally, for x ∈ B we have f−1(x) = 1− x−1.

4.2 15.
Let f : A → B and g : C → D be functions.
Define f × g = {((a, c), (b, d)) | (a, b) ∈ f and (c, d) ∈ g}.
(a) Claim: f × g : A× C → B ×D is a function.
We must show: ∀x ∈ A× C ∃!y ∈ B ×D: (x, y) ∈ f × g.
Let x ∈ A× C.
Choose a ∈ A and c ∈ C such that x = (a, c).
Set b = f(a), d = g(c), and y = (b, d).
Since (a, b) ∈ f and (c, d) ∈ g, we have (x, y) ∈ f × g.
Let y1, y2 ∈ B ×D.
Assume (x, y1) ∈ f × g and (x, y2) ∈ f × g.
Choose b1, b2 ∈ B and d1, d2 ∈ D such that y1 = (b1, d1) and y2 = (b2, d2).
Since (x, y1) ∈ f × g, we have (a, b1) ∈ f and (c, d1) ∈ g.
Since (x, y2) ∈ f × g, we have (a, b2) ∈ f and (c, d2) ∈ g.
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Since (a, b1) ∈ f and (a, b2) ∈ f and f is a function, it follows that b1 = b2.
Since (c, d1) ∈ g and (c, d2) ∈ g and g is a function, it follows that d1 = d2.
Therefore y1 = (b1, d1) = (b2, d2) = y2.
(b) Let (a, c) ∈ A× C.
Claim: (f × g)(a, c) = (f(a), g(c)).
Set b = f(a) and d = g(c).
Since (a, b) ∈ f and (c, d) ∈ g, we have ((a, c), (b, d)) ∈ f × g.
It follows that (f × g)(a, c) = (b, d) = (f(a), g(c)).

4.3 1(d).
Let f : R → R be given by f(x) = x3.
Claim: f is onto R.
Must show: ∀y ∈ R ∃x ∈ R: f(x) = y.
Let y ∈ R.
Set c = |y|+ 1.
Then c3 = |y|3 + 3|y|2 + 3|y|+ 1 > |y|.
It follows that f(−c) < y < f(c).
Notice that f is continuous on the closed interval [−c, c].
The intermediate value theorem therefore implies that:
∃x ∈ R: f(x) = y.
This is what we had to prove.

4.3 1(g).
Let f : R → R be defined by f(x) = sin(x).
Since we have −1 ≤ sin(x) ≤ 1 for all x ∈ R, it follows that 2 /∈ Rng(f).
Therefore f is not onto R.

4.3 1(h).
Let f : R× R → R be defined by f(x, y) = x− y.
Claim: f is onto R.
Must show: ∀z ∈ R ∃a ∈ R× R : f(a) = z.
Let z ∈ R.
Set a = (z, 0) ∈ R× R.
Then f(a) = f(z, 0) = z.

4.3 10.
Let f : R → R be an increasing function.
This means: ∀x1, x2 ∈ R : x1 < x2 ⇒ f(x1) < f(x2).
Claim: f is one-to-one.
We must show: ∀x1, x2 ∈ R: f(x1) = f(x2) ⇒ x1 = x2.
I will prove the equivalent statement: ∀x1, x2 ∈ R: x1 6= x2 ⇒ f(x1) 6= f(x2).
Let x1, x2 ∈ R.
Assume x1 6= x2.
Case 1: Assume x1 < x2.
Then f(x1) < f(x2), hence f(x1) 6= f(x2).
Case 2: Assume x2 < x1.
Then f(x2) < f(x1), hence f(x1) 6= f(x2).
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4.4 3(d).

Define G : (3,∞) → (5,∞) by G(x) =
5x− 5

x− 3
.

Define F : (5,∞) → (3,∞) by F (x) =
3x− 5

x− 5
.

Claim: F ◦G = I(3,∞) and G ◦ F = I(5,∞).
Let x ∈ (3,∞).
Set y = G(x). Then we have:
y = 5x−5

x−3 .
xy − 3y = 5x− 5
xy − 5x = 3y − 5
x = 3y−5

y−5 .

It follows that (F ◦G)(x) = F (G(x)) = F (y) = x.
Let x ∈ (5,∞).
Set y = F (x). Then we have:
y = 3x−5

x−5
xy − 5y = 3x− 5
xy − 3x = 5y − 5
x = 5y−5

y−3 .

It follows that (G ◦ F )(x) = G(F (x)) = G(y) = x.

4.4 6.
Let F : A → B and G : B → A be functions.
Claim:
(G ◦F = IA and F ◦G = IB) ⇒ (F is 1-1 and onto B, and G is 1-1 and onto A)
Proof: Assume that G ◦ F = IA and F ◦G = IB .
Then Theorem 4.4.4(a) implies that G = F−1.
Since F−1 is a function, it follows from Theorem 4.4.2(a) that F is one-to-one.
Since Rng(F ) = Dom(F−1) = Dom(G) = B, it follows that F is onto B.
A similar argument shows that G is 1-1 and onto A.

Note: To get the most out of the solutions to section 4.6, you need to figure out
what was on my scratch paper when I did the problems.

4.6 5(b).
Let (xn) be the sequence defined by xn = n+1

n
.

Claim: xn → 1 as n → ∞.
Must show: ∀ǫ > 0 ∃N ∈ N ∀n ∈ N : n > N ⇒ |xn − 1| < ǫ.
Let ǫ > 0.
Choose N ∈ N so large that N > 1

ǫ
.

Will show: ∀n ∈ N : n > N ⇒ |xn − 1| < ǫ.
Let n ∈ N.
Assume n > N .
Then |xn − 1| = |n+1

n
− 1| = 1

n
< 1

N
< ǫ.

4.6 5(c).
Define (xn) by xn = n2.
Claim: The sequence (xn) diverges.
Must show: ∼ ( ∃L ∈ R ∀ǫ > 0 ∃N ∈ N ∀n ∈ N : n > N ⇒ |xn − L| < ǫ )
Equivalently: ∀L ∈ R ∃ǫ > 0 ∀N ∈ N ∃n ∈ N : n > N ∧ |xn − L| ≥ ǫ
Let L ∈ R.
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Set ǫ = 1.
I will show: ∀N ∈ N ∃n ∈ N : n > N ∧ |xn − L| ≥ ǫ
Let N ∈ N.
Choose n ∈ N so large that n > max(N,L+ 1).
Then n2 ≥ n > L+ 1.
It follows that |xn − L| = n2 − L ≥ n− L > 1 = ǫ.

4.6 5(f).
Define (xn) by xn =

√
n+ 1−√

n.
Claim: xn → 0 as n → ∞.
Must show: ∀ǫ > 0 ∃N ∈ N ∀n ∈ N : n > N ⇒ |xn − 0| < ǫ
Let ǫ > 0.
Choose N ∈ N so large that N > 1

ǫ2
.

Will show: ∀n ∈ N : n > N ⇒ |xn − 0| < ǫ
Let n ∈ N.
Assume n > N .
Then 1 < ǫ2N < 4ǫ2n.
It follows that 1 < 2ǫ

√
n.

Therefore n+ 1 < n+ 2ǫ
√
n < n+ 2ǫ

√
n+ ǫ2 = (

√
n+ ǫ)2.

We deduce that
√
n+ 1 <

√
n+ ǫ.

Finally, we obtain |xn − 0| =
√
n+ 1−√

n < ǫ.

4.6 5(h).
Define (xn) by xn = 6

2n .
Claim: xn → 0 as n → ∞.
Must show: ∀ǫ > 0 ∃N ∈ N ∀n ∈ N : n > N ⇒ |xn − 0| < ǫ
let ǫ > 0.
Choose N ∈ N so large that N > 6

ǫ
.

Will show: ∀n ∈ N : n > N ⇒ |xn − 0| < ǫ
Let n ∈ N.
Assume n > N .
Then |xn − 0| = 6

2n < 6
n
< 6

N
< ǫ.

4.6 6.
Let (xn) and (yn) be sequences of real numbers, and let L,M, r ∈ R.
Assume that xn → L for n → ∞, and that yn → M for n → ∞.

(b) Define (zn) by zn = xn − yn.
Claim: zn → L−M as n → ∞.
Must show: ∀ǫ > 0 ∃N ∈ N ∀n ∈ N : n > N ⇒ |zn − (L−M)| ≤ ǫ
Let ǫ > 0.
Since xn → L, I can choose N1 ∈ N such that: ∀n ∈ N : n > N1 ⇒ |xn−L| ≤ ǫ

2 .
Since yn → M , I can choose N2 ∈ N such that: ∀n ∈ N : n > N2 ⇒ |yn−M | ≤ ǫ

2 .
Set N = max(N1, N2).
Will show: ∀n ∈ N : n > N ⇒ |zn − (L−M)| < ǫ.
Let n ∈ N.
Assume n > N .
Then n > N1 and n > N2.
It follows that:
|zn − (L−M)| = |(xn − L) + (M − yn)| ≤ |xn − L|+ |M − yn| < ǫ

2 + ǫ
2 = ǫ.
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(e) Define (zn) by zn = xnyn.
Claim: zn → LM as n → ∞.
Must show: ∀ǫ > 0 ∃N ∈ N ∀n ∈ N : n > N ⇒ |zn − LM | ≤ ǫ
Let ǫ > 0.
Since xn → L, I can choose N1 ∈ N such that:
∀n ∈ N : n > N1 ⇒ |xn − L| < min(1, ǫ

2(|M |+1) ).

Since yn → M , I can choose N2 ∈ N such that:
∀n ∈ N : n > N2 ⇒ |yn −M | < ǫ

2(|L|+1)

Set N = max(N1, N2).
Will show: ∀n ∈ N : n > N ⇒ |zn − LM | < ǫ.
Let n ∈ N.
Assume n > N .
Then we have |xn − L| < min(1, ǫ

2(|M |+1) ) and |yn −M | < ǫ
2(|L|+1) .

It follows that |xn| = |L+ xn − L| ≤ |L|+ |xn − L| ≤ |L|+ 1.
We obtain:
|zn − LM | = |xnyn − LM | = |xnyn − xnM + xnM − LM |
≤ |xnyn − xnM |+ |xnM − LM | = |xn| · |yn −M |+ |xn − L| · |M |
< (|L|+ 1) ǫ

2(|L|+1) +
ǫ

2(|M |+1) |M | < ǫ
2 + ǫ

2 = ǫ.

4.6 8(c).
Let (xn) be a sequences of real numbers, and let L ∈ R.
Assume that xn → L as n → ∞.
Let f : N → N be an increasing function.
This means that we have: ∀m,n ∈ N : m < n ⇒ f(m) < f(n).
Define a new sequence (yn) by setting yn = xf(n) for each n ∈ N.
Then (yn) is a subsequence of (xn).
Example: If f(n) = 2n, then (yn) = (x2, x4, x6, . . . ).

Claim 1: ∀n ∈ N : n ≤ f(n).
We prove this by induction on n.
Basis step: Since f(1) ∈ N, we have 1 ≤ f(1).
Inductive step: Let n ∈ N. Assume n ≤ f(n).
Since f is increasing, we have f(n) < f(n+ 1).
It follows that n+ 1 ≤ f(n) + 1 ≤ f(n+ 1).
We conclude by the PMI that Claim 1 is true.

Claim 2: yn → L as n → ∞.
Must show: ∀ǫ > 0 ∃N ∈ N ∀n ∈ N : n > N ⇒ |yn − L| ≤ ǫ
Let ǫ > 0.
Since xn → L, we may choose N ∈ N such that: ∀n ∈ N : n > N ⇒ |xn−L| < ǫ.
Will show: ∀n ∈ N : n > N ⇒ |yn − L| < ǫ.
Let n ∈ N.
Assume n > N .
Then f(n) ≥ n > N .
It follows that |yn − L| = |xf(n) − L| < ǫ.


