
Solution to selected homework problems

Here are solutions to some selected problems from homework sets 2 and 3. Most
of the proofs consists of skeletons. You might benefit from identifying these skele-
tons, for example by drawing boxes around them. And from completing the skele-
tons in cases where I did not include the last line of them. Enjoy!

— Anders.

1.4 6(d).
Theorem: ∀a, b ∈ R : |a+ b| ≤ |a|+ |b|

Proof. Let a, b ∈ R. We must show that |a+ b| ≤ |a|+ |b|.
We consider 4 cases:
Case 1: Assume that a ≥ 0 and b ≥ 0.
Then a+ b ≥ 0, and we have |a| = a, |b| = b, and |a+ b| = a+ b.
It follows that |a+ b| = |a|+ |b|.
Case 2: Assume that a < 0 and b < 0.
Then a+ b < 0, and we have |a| = −a, and |b| = −b, and |a+ b| = −a− b.
It follows that |a+ b| = |a|+ |b|.
Case 3: Assume that a < 0 ≤ b.
Then |a| = −a and |b| = b.
We consider two subcases.
Case 3a: Assume that a+ b ≥ 0.
Then |a+ b| = a+ b.
It follows that |a+ b| = a+ b = −|a|+ |b| < |a|+ |b| (since |a| > 0.)
Case 3b: Assume that a+ b < 0.
Then |a+ b| = −a− b.
It follows that |a+ b| = −a− b = |a| − |b| ≤ |a|+ |b| (since |b| ≥ 0.)
Case 4: Assume that b < 0 ≤ a:
By interchanging a and b, we can use Case 3 to deduce that |a+ b| ≤ |a|+ |b|.
Since we have exhausted all possibilities for a and b, we conclude that |a+ b| ≤

|a|+ |b|.
Since a, b ∈ R were arbitrary, we have proved: ∀a, b ∈ R : |a+ b| ≤ |a|+ |b| �

1.4 9(c).
Theorem: ∀a, b, c ∈ R : (ab > 0 and bc < 0) ⇒

(∃x1, x2 ∈ R : x1 6= x2 and ax2
1 + bx1 + c = ax2

2 + bx2 + c = 0)

Proof. Let a, b, c ∈ R.
Assume that ab > 0 and bc < 0.
It follows that ab2c = (ab)(bc) < 0, hence ac < 0.
Set D = b2 − 4ac. Since ac < 0 we deduce that D > 0.
Set x1 = −b+

√

D

2a
and x2 = −b−

√

D

2a
.

Since D > 0 and a 6= 0, it follows that x1, x2 ∈ R and x1 6= x2.
Finally, a calculation shows that ax2

1 + bx1 + c = ax2
2 + bx2 + c = 0. �
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1.5 7(b).
Theorem: ∀a, b, c ∈ N : (a+ 1 divides b and b divides b+ 3) ⇔ (a = 2 and b = 3)

Proof. Let a, b, c ∈ N.
Assume that a = 2 and b = 3.
Then a+ 1 = 3 and b+ 3 = 6, so a+ 1 divides b and b divides b+ 3.
On the other hand, assume that a+ 1 divides b and b divides b+ 3.
Then b divides 3, so b = 1 or b = 3.
Since a+ 1 divides b and a+ 1 ≥ 2, we also have b ≥ 2.
It follows that b = 3.
Since a+ 1 divides 3 and a+ 1 ≥ 2, we must have a+ 1 = 3, hence a = 2. �

1.6 3.
Conjecture 1: ∀n ∈ N : (n is even and n > 2) ⇒ (∃p1, p2 ∈ N : p1 is prime and
p2 is prime and n = p1 + p2)
Conjecture 2: ∀m ∈ N : (m is odd and m > 5) ⇒ (∃p1, p2, p3 ∈ N : p1, p2, p3 are
primes and m = p1 + p2 + p3)
Theorem: Conjecture 1 implies Conjecture 2.

Proof. Assume that Conjecture 1 is true.
Let m ∈ N.
Assume that m is odd and m > 5.
Set n = m− 3.
Then n is even and n > 2.
According to Conjecture 1 we may choose p1, p2 ∈ N such that p1 and p2 are

primes and n = p1 + p2.
Take p3 = 3.
Then p1, p2, p3 are primes, and m = n+ p3 = p1 + p2 + p3. �

1.6 6(j).
Theorem: ∃L,G ∈ Z : (L < G and ∀x ∈ R : (L < x < G ⇒ 40 > 10− 2x > 12))

Proof. Take L = −2 and G = −1.
Then L < G.
I will show that: ∀x ∈ R : (L < x < G ⇒ 40 > 10− 2x > 12)
Let x ∈ R.
Assume that L < x < G.
This means that −2 < x < −1.
We deduce that 2 < −2x < 4, and therefore 12 < 10− 2x < 14 < 40. �


