Solution to HW 4

1.79.
(c) We have $36=(-5) \cdot(-7)+1$, so the quotient is -7 and the remainder is 1 .
(d) We have $-36=5 \cdot(-8)+4$, so the quotient is -8 and the remainder is 4 .
1.711.
(c) The common divisors of 18 and -54 are $1,-1,2,-2,3,-3,6,-6,9,-9,18,-18$. We have $\operatorname{gcd}(18,-54)=18$.
(d) The common divisors of -8 and -52 are $1,-1,2,-2,4$, and -4 . We have $\operatorname{gcd}(-8,-52)=4$.
1.7 13. (a) We have $\operatorname{gcd}(13,15)=1=7 \cdot 13-6 \cdot 15$.
(b) We have $\operatorname{gcd}(26,32)=2=5 \cdot 26-4 \cdot 32$.
(c) We have $\operatorname{gcd}(9,30)=3=1 \cdot 30-3 \cdot 9$.
1.716.

Let p be a prime number and let a be a positive integer.
(a) Assume that $\operatorname{gcd}(p, a)=p$. Then p is a common divisor of p and a. It follows that $p \mid a$. This proves $\operatorname{gcd}(p, a)=p \Rightarrow p \mid a$.

Assume that $p \mid a$. Then the set of common divisors of p and a is equal to the set of divisors of p. Since p is the largest divisor of itself, it follows that $\operatorname{gcd}(p, a)=p$. This proves $p \mid a \Rightarrow \operatorname{gcd}(p, a)=p$.

We conclude that $\operatorname{gcd}(p, a)=p \Leftrightarrow p \mid a$.
Note: part (a) holds without the assumption that p is prime.
(b) Assume that $\operatorname{gcd}(p, a)=1$. Then p is not a common divisor of p and a. It follows that $p \nmid a$. This proves $\operatorname{gcd}(p, a)=1 \Rightarrow p \nmid a$.

Assume that $p \nmid a$. Since p is a prime number, the set of divisors of p is $\{-p,-1,1, p\}$. Since p and $-p$ are not divisors of a, it follows that the set of common divisors of p and a is $\{-1,1\}$. Therefore $\operatorname{gcd}(p, a)=1$. This proves $p \nmid a$ $\Rightarrow \operatorname{gcd}(p, a)=1$.

We conclude that $\operatorname{gcd}(p, a)=1 \Leftrightarrow p \nmid a$.
1.717.

Let q be a natural number greater than 1 .
Assume that q satisfies: $\forall a, b \in \mathbb{Z}:(q \mid a b) \Rightarrow(q|a \bigvee q| b)$.
Claim: q is a prime number.
By definition this means $q>1$ and the positive divisors of q are 1 and q.
Let $a \in \mathbb{N}$ be any positive divisor of q. We must show that $a \in\{1, q\}$.
Since $a \mid q$, we may choose $b \in \mathbb{Z}$ such that $q=a b$.
Since $a, b \in \mathbb{Z}$ and $q \mid a b$, it follows from our assumption that $q \mid a$ or $q \mid b$.
Case 1: Assume that $q \mid b$.
Then we may choose $s \in \mathbb{Z}$ such that $b=s q$.
But then $q=a b=a s q$, so we must have $a s=1$.
Since a divides 1 and $a>0$, we obtain $a=1$.
Case 2: Assume that $q \mid a$.
Arguing as in Case 1 we deduce that $b=1$.
Since $q=a b$, this implies that $a=q$.
Since Case 1 or Case 2 apply, we have proved that $a \in\{1, q\}$.
This finishes the proof that q is a prime number.

