$2.29(\mathrm{~g})$.

Theorem: \forall sets $A, B, C:(A \cup B) \cap C \subset A \cup(B \cap C)$
Proof. Let A, B, C be sets.
Let $x \in(A \cup B) \cap C$.
Then $x \in A \cup B$ and $x \in C$.
In particular, we have $x \in A$ or $x \in B$.
If $x \in A$, then $x \in A \cup(B \cap C)$.
If $x \in B$, then $x \in B \cap C$, hence $x \in A \cup(B \cap C)$.
We conclude that $x \in A \cup(B \cap C)$, as required.

2.2 10(d).

Theorem: \forall sets $A, B, C, D:(C \subset A$ and $D \subset B) \Rightarrow(D-A \subset B-C)$.
Proof. Let A, B, C, D be sets.
Assume that $C \subset A$ and $D \subset B$.
Let $x \in D-A$.
Then $x \in D$ and $x \notin A$.
Since $x \in D$ and $D \subset B$, we have $x \in B$.
Since $x \notin A$ and $C \subset A$, we have $x \notin C$.
Therefore $x \in B-C$.

2.2 11(d).

Theorem: Let $A=\{1,2\}$ and $B=\{2\}$. Then $\mathcal{P}(A)-\mathcal{P}(B) \not \subset \mathcal{P}(A-B)$.
Proof. We have $\mathcal{P}(A)-\mathcal{P}(B)=\{\emptyset,\{1\},\{2\},\{1,2\}\}-\{\emptyset,\{2\}\}=\{\{1\},\{1,2\}\}$ and $\mathcal{P}(A-B)=\mathcal{P}(\{1\})=\{\emptyset,\{1\}\}$.
It follows that $\mathcal{P}(A)-\mathcal{P}(B) \not \subset \mathcal{P}(A-B)$.

2.2 11(f).

Theorem: Let $A=\{1,2,3\}, B=\{2,3\}, C=\{3\}$. Then $A-(B-C) \neq(A-B)-C$.
Proof. We have $A-(B-C)=\{1,2,3\}-\{2\}=\{1,3\}$ and $(A-B)-C=\{1\}-\{3\}=$ $\{1\}$, hence $A-(B-C) \neq(A-B)-C$.
$2.3 \mathbf{1}(\mathbf{h})$. Set $\Delta=(0, \infty)$. For $r \in \Delta$, set $A_{r}=[-\pi, r)$. Set $\mathcal{A}=\left\{A_{r}: r \in \Delta\right\}$.
Theorem: $\bigcup_{r \in \Delta} A_{r}=[-\pi, \infty)$ and $\bigcap_{r \in \Delta} A_{r}=[-\pi, 0]$.
Proof. The theorem is a consequence of the following four claims.
Claim 1: $\bigcup_{r \in \Delta} A_{r} \subset[-\pi, \infty)$.
Let $x \in \bigcup_{r \in \Delta} A_{r}$.
By definition of the union over \mathcal{A}, we may choose $r \in \Delta$ s.t. $x \in A_{r}=[-\pi, r)$.
Since $[-\pi, r) \subset[-\pi, \infty)$, it follows that $x \in[-\pi, \infty)$.
Claim 2: $[-\pi, \infty) \subset \bigcup_{r \in \Delta} A_{r}$.
Let $x \in[-\pi, \infty)$.
Set $r=x+4$.
Then $r \in \Delta$ and $x \in A_{r}$.
It follows that $x \in \bigcup_{r \in \Delta} A_{r}$.
Claim 3: $\bigcap_{r \in \Delta} A_{r} \subset[-\pi, 0]$.
Let $x \in \bigcap_{r \in \Delta} A_{r}$.
Then $x \in A_{1}=[-\pi, 1)$, so we must have $x \geq-\pi$.

We prove by contradiction that $x \leq 0$.
Suppose that $x>0$.
Set $r=x / 2$.
Since $x \in A_{r}$, we obtain $x<x / 2$, a contradiction.
We conclude that $-\pi \leq x \leq 0$, so $x \in[-\pi, 0]$.
Claim 4: $[-\pi, 0] \subset \bigcap_{r \in \Delta} A_{r}$.
Let $x \in[-\pi, 0]$.
We will show that: $\forall r \in \Delta: x \in A_{r}$.
Let $r \in \Delta$.
Then $-\pi \leq x \leq 0<r$, so we have $x \in[-\pi, r)=A_{r}$.
It follows that $x \in \bigcap_{r \in \Delta} A_{r}$.
$2.35(\mathbf{b})$. Let $\mathcal{A}=\left\{A_{\alpha}: \alpha \in \Delta\right\}$ be an indexed family of sets.
Theorem: $\left(\bigcup_{\alpha \in \Delta} A_{\alpha}\right)^{c}=\bigcap_{\alpha \in \Delta} A_{\alpha}^{c}$
Proof. Let x be any element of the universe. [Notice that a universe must be given, since otherwise the complement of a set has no meaning.]

The following list of statements are equivalent:
$x \in\left(\bigcup_{\alpha \in \Delta} A_{\alpha}\right)^{c} \Leftrightarrow$
$x \notin \bigcup_{\alpha \in \Delta} A_{\alpha} \Leftrightarrow$
$\sim\left(\exists \alpha \in \Delta: x \in A_{\alpha}\right) \quad \Leftrightarrow$
$\forall \alpha \in \Delta: x \notin A_{\alpha} \Leftrightarrow$
$\forall \alpha \in \Delta: x \in A_{\alpha}^{c} \quad \Leftrightarrow$
$x \in \bigcap_{\alpha \in \Delta} A_{\alpha}^{c}$.
Since x was arbitrary, we conclude that $\left(\bigcup_{\alpha \in \Delta} A_{\alpha}\right)^{c}=\bigcap_{\alpha \in \Delta} A_{\alpha}^{c}$.
2.312.

Theorem: For each $n \in \mathbb{N}$ set $A_{n}=(0,1 / n)$. Then we have:
(1) $\forall n \in \mathbb{N}: A_{n} \subset(0,1)$.
(2) $\forall n, m \in \mathbb{N}: A_{n} \cap A_{m} \neq \emptyset$.
(3) $\bigcap_{n \in \mathbb{N}} A_{n}=\emptyset$.

Proof of (1). Let $n \in \mathbb{N}$. Since $1 / n \leq 1$, it follows that $A_{n}=(0,1 / n) \subset(0,1)$.
Proof of (2). Let $n, m \in \mathbb{N}$.
Case 1: If $n \leq m$, then $A_{m} \subset A_{n}$, hence $A_{n} \cap A_{m}=A_{m} \neq \emptyset$.
Case 2: If $n>m$, then $A_{n} \subset A_{m}$, hence $A_{n} \cap A_{m}=A_{n} \neq \emptyset$.
Proof of (3). Assume that $\bigcap_{n \in \mathbb{N}} A_{n} \neq \emptyset$.
Then we may choose $x \in \bigcap_{n \in \mathbb{N}} A_{n}$.
This implies: $\forall n \in \mathbb{N}: x \in A_{n}=(0,1 / n)$.
Since $x \in A_{1}$, we must have $0<x<1$.
Choose $n \in \mathbb{N}$ so that $n>1 / x$.
Since $x>1 / n$, it follows that $x \notin(0,1 / n)=A_{n}$.
This contradiction shows that our initial assumption was false.
We conclude that $\bigcap_{n \in \mathbb{N}} A_{n}=\emptyset$.
2.3 14. Let \mathcal{A} and \mathcal{B} be two families of pairwise disjoint sets. [Make sure to review exactly what a pairwise disjoint family is!]

Set $\mathcal{C}=\mathcal{A} \cap \mathcal{B}$ and $\mathcal{D}=\mathcal{A} \cup \mathcal{B}$.
Theorem (a): \mathcal{C} is a pairwise disjoint family of sets.

Proof. Let $X, Y \in \mathcal{C}$. We must show that $X=Y$ or $X \cap Y=\emptyset$.
Since $\mathcal{C} \subset \mathcal{A}$, we have $X, Y \in \mathcal{A}$.
Since \mathcal{A} is pairwise disjoint, we deduce that $X=Y$ or $X \cap Y=\emptyset$, as required.
Theorem (c): $\left(\bigcup_{A \in \mathcal{A}} A\right) \cap\left(\bigcup_{B \in \mathcal{B}} B\right)=\emptyset \Rightarrow \mathcal{D}$ is pairwise disjoint.
Proof. Assume that $\left(\bigcup_{A \in \mathcal{A}} A\right) \cap\left(\bigcup_{B \in \mathcal{B}} B\right)=\emptyset$.
Let $X, Y \in \mathcal{D}$. We must show that $X=Y$ or $X \cap Y=\emptyset$.
Since $\mathcal{D}=\mathcal{A} \cup \mathcal{B}$, we have $(X \in \mathcal{A}$ or $X \in \mathcal{B})$ and $(Y \in \mathcal{A}$ or $Y \in \mathcal{B})$.
Case 1: Assume that $X \in \mathcal{A}$ and $Y \in \mathcal{A}$.
Since \mathcal{A} is pairwise disjoint, we must have $X=Y$ or $X \cap Y=\emptyset$.
Case 2: Assume that $X \in \mathcal{B}$ and $Y \in \mathcal{B}$.
Since \mathcal{B} is pairwise disjoint, we must have $X=Y$ or $X \cap Y=\emptyset$.
Case 3: Assume that $X \in \mathcal{A}$ and $Y \in \mathcal{B}$.
Then $X \subset \bigcup_{A \in \mathcal{A}} A$ and $Y \subset \bigcup_{B \in \mathcal{B}} B$.
Since $\left(\bigcup_{A \in \mathcal{A}} A\right) \cap\left(\bigcup_{B \in \mathcal{B}} B\right)=\emptyset$, we deduce that $X \cap Y=\emptyset$.
Case 4: Assume that $X \in \mathcal{B}$ and $Y \in \mathcal{A}$.
By interchanging X and Y, it follows from Case 3 that $X \cap Y=\emptyset$.
Since we have exhausted all possibilities, we conclude $X=Y$ or $X \cap Y=\emptyset$.
Theorem: Let $\mathcal{A}=\{\{1\}\}$ and $\mathcal{B}=\{\{1,2\}\}$, and set $\mathcal{D}=\mathcal{A} \cup \mathcal{B}$. Then \mathcal{A} and \mathcal{B} are both pairwise disjoint families of sets, but \mathcal{D} is not pairwise disjoint.
Proof. It follows directly from the definition that both \mathcal{A} and \mathcal{B} are pairwise disjoint families of sets.

We have $\mathcal{D}=\{\{1\},\{1,2\}\}$.
This family is not pairwise disjoint, since the members $X=\{1\}$ and $Y=\{1,2\}$ of \mathcal{D} do not satisfy that $X=Y$ or $X \cap Y=\emptyset$.

