Solution to HW 8

2.51 (b).

Theorem: $\forall n \in \mathbb{N}: n>33 \Rightarrow(\exists s, t \in \mathbb{Z}: s \geq 3 \wedge t \geq 2 \wedge n=4 s+5 t)$.
Proof. Define the predicate
$P(n): n>33 \Rightarrow(\exists s, t \in \mathbb{Z}: s \geq 3 \wedge t \geq 2 \wedge n=4 s+5 t)$
We must prove: $\forall n \in \mathbb{N}$: $P(n)$.
By the PCI, it is enough to show:
$\left(^{*}\right) \forall n \in \mathbb{N}:(P(1) \wedge P(2) \wedge \cdots \wedge P(n-1)) \Rightarrow P(n)$.
Let $n \in \mathbb{N}$.
Assume $P(1) \wedge P(2) \wedge \cdots \wedge P(n-1)$.
We must show that $P(n)$ is true.
Assume that $n>33$.
We consider two cases.
Case 1: Assume that $34 \leq n \leq 37$.
Set $s=40-n$ and $t=n-32$.
Then $s \geq 40-37=3$ and $t \geq 34-32=2$.
Furthermore, we have $4 s+5 t=4(40-n)+5(n-32)=5 n-4 n+4 \cdot 40-5 \cdot 32=n$.
It follows that $P(n)$ is true.
Case 2: Assume that $n \geq 38$.
By assumption we know that $P(n-4)$ is true.
Since $P(n-4)$ holds and $n-4>33$, we may choose $s, t \in \mathbb{Z}$ such that:
$s \geq 3$ and $t \geq 2$ and $n-4=4 s+5 t$.
Set $s^{\prime}=s+1$ and $t^{\prime}=t$.
Then we have $s^{\prime}, t^{\prime} \in \mathbb{Z}, s^{\prime} \geq 3, t^{\prime} \geq 2$, and $4 s^{\prime}+5 t^{\prime}=(4 s+5 t)+4=n$.
It follows that $P(n)$ is true.
We deduce that $\left({ }^{*}\right)$ is true, hence the theorem is true by the PCI.
2.5 2. Let $a_{1}=2, a_{2}=4$, and $a_{n+2}=5 a_{n+1}-6 a_{n}$ for all $n \geq 1$.

Theorem: $\forall n \in \mathbb{N}$: $a_{n}=2^{n}$.
Proof. Define the predicate
$P(n): a_{n}=2^{n}$.
We must prove: $\forall n \in \mathbb{N}: P(n)$.
By the PCI, it is enouth to show:
$(*) \forall n \in \mathbb{N}:(P(1) \wedge P(2) \wedge \cdots \wedge P(n-1)) \Rightarrow P(n)$.
Let $n \in \mathbb{N}$.
Assume $P(1) \wedge P(2) \wedge \cdots \wedge P(n-1)$.
We must show that $P(n)$ is true.
We consider 3 cases.
Case 1: If $n=1$, then $a_{n}=2=2^{n}$.
Case 2: If $n=2$, then $a_{n}=4=2^{n}$.
Case 3: Assume that $n \geq 3$.
Then $P(n-2)$ holds by assumption, so we have $a_{n-2}=2^{n-2}$.
And $P(n-1)$ holds by assumption, so we have $a_{n-1}=2^{n-1}$.
We therefore obtain:
$a_{n}=5 a_{n-1}-6 a_{n-2}=5 \cdot 2^{n-1}-6 \cdot 2^{n-2}=5 \cdot 2^{n-1}-3 \cdot 2^{n-1}=2 \cdot 2^{n-1}=2^{n}$.
This shows that $P(n)$ is true.
We deduce that $\left({ }^{*}\right)$ is true, hence the theorem is true by the PCI.

2.5 4(b).

$f_{1}=1, f_{2}=1, f_{3}=2, f_{4}=3, f_{5}=5$,
$f_{6}=8, f_{7}=13, f_{8}=21, f_{9}=34, f_{10}=55$.

2.5 5(b).

Theorem: $\forall n \in \mathbb{N}: \operatorname{gcd}\left(f_{n}, f_{n+1}\right)=1$.
Proof. (i) Basis step:
For $n=1$ we have $\operatorname{gcd}\left(f_{n}, f_{n+1}\right)=\operatorname{gcd}\left(f_{1}, f_{2}\right)=\operatorname{gcd}(1,1)=1$.
(ii) Inductive step: Let $n \in \mathbb{N}$.

Assume that $\operatorname{gcd}\left(f_{n}, f_{n+1}\right)=1$.
Then we obtain
$\operatorname{gcd}\left(f_{n+1}, f_{n+2}\right)=\operatorname{gcd}\left(f_{n+1}, f_{n}+f_{n+1}\right)=\operatorname{gcd}\left(f_{n+1}, f_{n}\right)=1$.
(iii) Conclude by PMI: $\forall n \in \mathbb{N}$: $\operatorname{gcd}\left(f_{n}, f_{n+1}\right)=1$.

2.58.

Theorem:
$\forall a, b \in \mathbb{Z}: \quad(a, b) \neq(0,0) \Rightarrow$ (there is a smallest positive linear comb. of a and $b)$.
Proof. Let $a, b \in \mathbb{Z}$.
Assume that $(a, b) \neq(0,0)$.
Consider the set of positive linear combinations of a and b :
$S=\{n \in \mathbb{N} \mid \exists s, t \in \mathbb{Z}: n=s a+t b\}$.
Since $(a, b) \neq(0,0)$, we must have $a \neq 0$ or $b \neq 0$.
It follows that $|a|+|b|>0$, hence $|a|+|b| \in \mathbb{N}$.
Notice that $|a|+|b|$ is a linear combination of a and b.
In fact, we may choose $s \in\{1,-1\}$ such that $|a|=s a$.
And we may choose $t \in\{1,-1\}$ such that $|b|=t b$.
Then we have $|a|+|b|=s a+t b$.
We deduce that $|a|+|b| \in S$.
This shows that S is not empty.
Since S is a non-empty subset of \mathbb{N},
it follows from the WOP that S has a smallest element m.
This integer m is the smallest linear combination of a and b.

$3.15(\mathrm{~g}, \mathrm{~h})$.

Define the relations
$R=\{(1,5),(2,2),(3,4),(5,2)\}$,
$S=\{(2,4),(3,4),(3,1),(5,5)\}$, and
$T=\{1,4),(3,5),(4,1)\}$.
Then $S \circ T=\{(3,5)\}$ and $R \circ(S \circ T)=\{(3,2)\}$.
And we have $R \circ S=\{(3,5),(5,2)\}$ and $(R \circ S) \circ T=\{(3,2)\}$.

3.19.

Let $R \subset A \times B$ and $S \subset B \times C$ be relations.
Then $S \circ R \subset A \times C$ is a relation from A to C.
(a) Claim: $\operatorname{Dom}(S \circ R) \subset \operatorname{Dom}(R)$.

Let $x \in \operatorname{Dom}(S \circ R)$.
By definition of the domain of a relation,
we may choose $z \in C$ such that $(x, z) \in S \circ R$.
By definition of the composition of two relations,
we may choose $y \in B$ such that $(x, y) \in R$ and $(y, z) \in S$.
Since $(x, y) \in R$, it follows that $x \in \operatorname{Dom}(R)$.
(b) Take $A=B=C=\{1,2\}$.

Set $R=I_{\{1,2\}}=\{(1,1),(2,2)\}$ and $S=\{(1,1)\}$.
Then $S \circ R=\{(1,1)\}$.
We have $\operatorname{Dom}(S \circ R)=\{1\} \subsetneq\{1,2\}=\operatorname{Dom}(R)$.
(c) We always have $\operatorname{Rng}(S \circ R) \subset \operatorname{Rng}(S)$.

The opposite inclusion is not true in the following example.
Take $A=B=C=\{1,2\}$.
Set $R=\{(1,1)\}$ and $S=I_{\{1,2\}}=\{(1,1),(2,2)\}$.
Then $S \circ R=\{(1,1)\}$.
We have $\operatorname{Rng}(S \circ R)=\{1\} \subsetneq\{1,2\}=\operatorname{Rng}(S)$.

