Solution to HW 9

3.2 5(c).

Define a relation V on \mathbb{R} by $V=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x=y$ or $x y=1\}$.
Claim: V is an equivalence relation on \mathbb{R}.
Proof. We must show that V is reflexive on \mathbb{R}, symmetric, and transitive.
Reflexive on \mathbb{R} : Let $x \in \mathbb{R}$. Since $x=x$, we have $(x, x) \in V$.
Symmetric: Let $x, y \in \mathbb{R}$. Assume that $(x, y) \in V$. Then $x=y$ or $x y=1$.
This implies that $y=x$ or $y x=1$, hence $(y, x) \in V$.
Transitive: Let $x, y, z \in \mathbb{R}$. Assume that $(x, y) \in V$ and $(y, z) \in V$.
Then we have $x=y$ or $x y=1$. And we have $y=z$ or $y z=1$.
Case 1: Assume that $x=y$ and $y=z$. Then $x=z$, hence $(x, z) \in V$.
Case 2: Assume that $x=y$ and $y z=1$. Then $x z=1$, hence $(x, z) \in V$.
Case 3: Assume that $x y=1$ and $y=z$. Then $x z=1$, hence $(x, z) \in V$.
Case 4: Assume that $x y=1$ and $y z=1$. Then $x=y^{-1}=z$, hence $(x, z) \in V$.
This finishes the proof that V is an equivalence relation on \mathbb{R}.
The equivalence class of 3 is
$3 / V=\{x \in \mathbb{R} \mid(x, 3) \in V\}=\{x \in \mathbb{R} \mid x=3$ or $3 x=1\}=\left\{3, \frac{1}{3}\right\}$.
The equivalence class of $\frac{-2}{3}$ is
$\left(\frac{-2}{3}\right) / V=\left\{x \in \mathbb{R} \left\lvert\,\left(x, \frac{-2}{3}\right) \in V\right.\right\}=\left\{x \in \mathbb{R} \left\lvert\, x=\frac{-2}{3}\right.\right.$ or $\left.\frac{-2}{3} x=1\right\}=\left\{\frac{-2}{3}, \frac{-3}{2}\right\}$.
The equivalence class of 0 is
$0 / V=\{x \in \mathbb{R} \mid(x, 0) \in V\}=\{x \in \mathbb{R} \mid x=0$ or $0 x=1\}=\{0\}$.

3.27.

Reflexive relations: (b), (c), (d).
Symmetric relations: (b), (c).
Transitive relations: (a), (b), (c).

3.212.

Let A be a set and let R and S be equivalence relations on A.
Claim: $R \cap S$ is an equivalence relation on A.
Proof. Since $R \subset A \times A$ and $S \subset A \times A$, it follows that $R \cap S \subset A \times A$. Therefore $R \cap S$ is a relation on A.

We must show that $R \cap S$ is reflexive on A, symmetric, and transitive.
Reflexive: Let $x \in A$. Since R is reflexive, we have $(x, x) \in R$. Since S is reflexive, we have $(x, x) \in S$. It follows that $(x, x) \in R \cap S$.

Symmetric: Let $x, y \in A$. Assume that $(x, y) \in R \cap S$. Since R is symmetric and $(x, y) \in R$, we have $(y, x) \in R$. Since S is symmetric and $(x, y) \in S$, we have $(y, x) \in S$. It follows that $(x, y) \in R \cap S$.

Transitive: Let $x, y, z \in A$. Assume that $(x, y) \in R \cap S$ and $(y, z) \in R \cap S$. Since R is transitive and $(x, y) \in R$ and $(y, z) \in R$, we have $(x, z) \in R$. Since S is transitive and $(x, y) \in S$ and $(y, z) \in S$, we have $(x, z) \in S$. It follows that $(x, z) \in R \cap S$.

This completes the proof that $R \cap S$ is an equivalence relation on A.
3.3 3(a). To be very descriptive, we need the following Lemma.

Lemma $\forall x \in \mathbb{R}:(x-1, x] \cap \mathbb{Z} \neq \emptyset$.

Proof. Let $x \in \mathbb{R}$.
Choose $N \in \mathbb{Z}$ so large that $N>x$.
Set $S=\{m \in \mathbb{Z} \mid m \geq N-x\}$.
Then $S \subset \mathbb{N}$ and $S \neq \emptyset$.
By WOP, S contains a smallest element m_{0}.
Since $m_{0} \in S$ we have $N-m_{0} \leq x$.
Since $m_{0}-1 \notin S$ we have $N-m_{0}>x-1$.
It follows that $N-m_{0} \in(x-1, x] \cap \mathbb{Z}$.
Define $Q=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x-y \in \mathbb{Z}\}$.
The exercise tells us that Q is an equivalence relation on \mathbb{R}; I will not prove this.
The corresponding partition of \mathbb{R} is the family of subsets $\mathbb{R} / Q=\{x / Q \mid x \in \mathbb{R}\}$.
Set $I=[0,1) \subset \mathbb{R}$.
For $z \in I$, set $A_{z}=\{z+m \mid m \in \mathbb{Z}\}=\{y \in \mathbb{R} \mid z-y \in \mathbb{Z}\}$.
Define the family $\mathcal{P}=\left\{A_{z} \mid z \in I\right\}$.
Theorem: $\mathbb{R} / Q=\mathcal{P}$.
Proof. Let $S \in \mathbb{R} / Q$.
Then we can choose $x \in \mathbb{R}$ such that $S=x / Q$.
By the Lemma, we may choose $n \in(x-1, x] \cap \mathbb{Z}$.
Set $z=x-n$. Then $z \in I$.
Since $x-z \in \mathbb{Z}$ we obtain
$S=x / Q=\{y \in \mathbb{R} \mid(x, y) \in Q\}$ $=\{y \in \mathbb{R} \mid x-y \in \mathbb{Z}\}=\{y \in \mathbb{R} \mid z-y \in \mathbb{Z}\}=A_{z}$.
It follows that $S \in \mathcal{P}$.
Now let $S \in \mathcal{P}$.
Then we can choose $z \in I$ such that $S=A_{z}$.
Since $S=A_{z}=z / Q$, we obtain $S \in \mathbb{R} / Q$.

3.3 3(c).

Define $R=\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \sin (x)=\sin (y)\}$.
I will not show that this is an equivalence relation on \mathbb{R}.
Set $I=[-1,1]$.
For $z \in I$, set $B_{z}=\{y \in \mathbb{R} \mid \sin (y)=z\}$.
From calculus we know that the restriction of $\sin (x)$ to the interval $[-\pi / 2, \pi / 2]$ has an inverse function $\sin ^{-1}:[-1,1] \rightarrow[-\pi / 2, \pi / 2]$.

For each $z \in I$ we then have
$B_{z}=\left\{2 \pi m+\sin ^{-1}(z) \mid m \in \mathbb{Z}\right\} \cup\left\{\pi / 2+2 \pi m-\sin ^{-1}(z) \mid m \in \mathbb{Z}\right\}$.
I will not prove this.
Set $\mathcal{P}=\left\{B_{z} \mid z \in I\right\}$.
Theorem: $\mathbb{R} / R=\mathcal{P}$.
Proof. Let $S \in \mathbb{R} / R$.
Choose $x \in \mathbb{R}$ such that $S=x / R$.
Set $z=\sin (x)$.
Then $z \in I$ and $S=x / R=\{y \in \mathbb{R} \mid \sin (x)=\sin (y)\}=B_{z}$.
Therefore $S \in \mathcal{P}$.
Let $S \in \mathcal{P}$.
Choose $z \in I$ such that $S=B_{z}$.

Then $S=B_{z}=z / R$.
Therefore $S \in \mathbb{R} / R$.

3.3 6(e).

Let $\mathcal{P}=\{A, B\}$ where $A=\{x \in \mathbb{Z} \mid x<3\}$ and $B=\mathbb{Z}-A$.
Then \mathcal{P} is a partition of \mathbb{Z} (this will not be proved).
The corresponding equivalence relation is defined by:
$R=\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid \exists S \in \mathcal{P}: x \in S$ and $y \in S\}$.
Set $Q=\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid(x<3$ and $y<3)$ or $(x \geq 3$ and $y \geq 3)\}$.
Theorem: $R=Q$.
Proof. Let $(x, y) \in R$.
Choose $S \in \mathcal{P}$ such that $x \in S$ and $y \in S$.
By definition of \mathcal{P} we must have $S=A$ or $S=B$.
Case 1: Assume that $S=A$.
Then $x<3$ and $y<3$, so $(x, y) \in Q$.
Case 2: Assume that $S=B$.
Then $x \geq 3$ and $y \geq 3$, so $(x, y) \in Q$.
This proves that $R \subset Q$.
The proof that $Q \subset R$ is similar, by considering the same two cases.

3.3 7(b).

For $a \in \mathbb{R}$, set $A_{a}=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y=a-x^{2}\right\}$.
Set $\mathcal{P}=\left\{A_{a} \mid a \in \mathbb{R}\right\}$.
Theorem: \mathcal{P} is a partition of $\mathbb{R} \times \mathbb{R}$.
Proof. According to the definition of a partition, we must prove claims 1-3 below.
Claim 1: $\forall S \in \mathcal{P}: S \neq \emptyset$.
Let $S \in \mathcal{P}$.
Choose $a \in \mathbb{R}$ such that $S=A_{a}$.
Since $(0, a) \in A_{a}$, it follows that $S \neq \emptyset$.
Claim 2: $\bigcup_{S \in \mathcal{P}} S=\mathbb{R} \times \mathbb{R}$
Let $(x, y) \in \bigcup_{S \in \mathcal{P}} S$.
Choose $S \in \mathcal{P}$ such that $(x, y) \in S$.
Choose $a \in \mathbb{R}$ such that $S=A_{a}$.
Since $(x, y) \in A_{a}$ and $A_{a} \subset \mathbb{R} \times \mathbb{R}$, we obtain $(x, y) \in \mathbb{R} \times \mathbb{R}$.
Let $(x, y) \in \mathbb{R} \times \mathbb{R}$.
Set $a=x^{2}+y$.
Then $(x, y) \in A_{a}$.
Since $A_{a} \in \mathcal{P}$, this implies that $(x, y) \in \bigcup_{S \in \mathcal{P}} S$.
Claim 3: $\forall S, T \in \mathcal{P}: S=T$ or $S \cap T=\emptyset$.
Let $S, T \in \mathcal{P}$.
Choose $a, b \in \mathbb{R}$ such that $S=A_{a}$ and $T=A_{b}$.
Case 1: If $a=b$ then $S=T$ holds.
Case 2: Assume that $a \neq b$.
In this case I will show that $S \cap T=\emptyset$.
If this is false, then choose $(x, y) \in S \cap T$.
Since $(x, y) \in A_{a}$ we have $a=x^{2}+y$.
Since $(x, y) \in A_{b}$ we have $b=x^{2}+y$.
It follows that $a=b$, a contradiction.

We conclude that Claim 3 is true.

3.3 7(c).

Let Q be the equivalence relation corresponding to the partition \mathcal{P}.
Then Q is a relation on the set $\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}$, i.e. $Q \subset \mathbb{R}^{2} \times \mathbb{R}^{2}$.
It is given by:
$Q=\left\{\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in \mathbb{R}^{2} \times \mathbb{R}^{2} \mid \exists a \in \mathbb{R}:\left(x_{1}, y_{1}\right) \in A_{a}\right.$ and $\left.\left(x_{2}, y_{2}\right) \in A_{a}\right\}$
$=\left\{\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in \mathbb{R}^{2} \times \mathbb{R}^{2} \mid \exists a \in \mathbb{R}: y_{1}+x_{1}^{2}=a\right.$ and $\left.y_{2}+x_{2}^{2}=a\right\}$
$=\left\{\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in \mathbb{R}^{2} \times \mathbb{R}^{2} \mid y_{1}+x_{1}^{2}=y_{2}+x_{2}^{2}\right\}$.

