The Seidel representation in quantum *K*-theory

Joint with Pierre-Emmanuel Chaput, Leonardo Mihalcea, Nicolas Perrin

Flag varieties

$$X=G/P_X$$
 flag variety. $T\subset B\subset P_X\subset G$

 $W = N_G(T)/T$ Weyl group. $W_X = N_{P_X}(T)/T$ Weyl group of P_X . $W^X \subset W$ minimal representatives of cosets in W/W_X .

Schubert varieties: For $w \in W$ set $X_w = \overline{Bw.P_X}$ and $X^w = \overline{B^-w.P_X}$ $w \in W^X \Rightarrow \dim(X_w) = \operatorname{codim}(X^w, X) = \ell(w)$

Quantum cohomology

Given $d \in H_2(X)$, $u, v, w \in W$, define the Gromov-Witten invariant $\langle [X^u], [X^v], [X_w] \rangle_d = \# f : \mathbb{P}^1 \to X$ of degree d such that $f(0) \in X^u$, $f(1) \in g.X^v$, and $f(\infty) \in X_w$ (if finitely many, otherwise zero)

$$QH(X) = H^*(X) \otimes_{\mathbb{Z}} \mathbb{Z}[q]$$
$$[X^u] \star [X^v] = \sum_{w,d} \langle [X^u], [X^v], [X_w] \rangle_d q^d [X^w]$$

Theorem (Ruan-Tian, Kontsevich-Manin): QH(X) is an associative ring.

Cominuscule simple roots

A simple root β is **cominuscule** if coefficient of β in the highest root is 1.

Seidel representation

For β cominuscule, choose $v_{\beta} \in W$ minimal such that $v_{\beta}.\omega_{\beta} = w_0.\omega_{\beta}$

Theorem (Chaput, Manivel, Perrin) $[X^{\nu_{\beta}}] \star [X^{w}] = q^{d(\beta,w)} [X^{\nu_{\beta}w}]$

 $\pi(\operatorname{Aut}(X)) \cong \{v_{\beta} : \beta \text{ cominuscule }\} \cup \{1\} \leq W$

Group homomorphism: $\pi_1(\operatorname{Aut}(X)) \longrightarrow (QH(X)/\langle q = 1 \rangle)^{\times}$ $v_{eta} \mapsto [X^{v_{eta}}]$

Curve neighborhoods

Given $\Omega \subset X$ and $d \in H_2(X)$, define $\Gamma_d(\Omega) = \{x \in X \mid \exists C \subset X \text{ of degree } d \text{ connecting } x \text{ to } \Omega \}$

Theorem (BCMP) Ω Schubert variety $\Rightarrow \Gamma_d(\Omega)$ Schubert variety

 $M_d = \overline{\mathcal{M}}_{0,3}(X,d) = \overline{\{f : \mathbb{P}^1 \to X \text{ of degree } d\}} \text{ Kontsevich moduli space.}$ Note: $\Gamma_d(\Omega) = \operatorname{ev}_3(\operatorname{ev}_1^{-1}(\Omega))$ Define: $M_d(X_u, X^v) = \operatorname{ev}_1^{-1}(X_u) \cap \operatorname{ev}_2^{-1}(X^v)$

$$\Gamma_d(X_u, X^v) = \operatorname{ev}_3(M_d(X_u, X^v))$$

Quantum *K*-theory (Givental, Lee)

A closed subvariety $\Omega \subset X$ defines a K-theory class $[\mathcal{O}_{\Omega}] \in \mathcal{K}(X)$ Euler characteristic: $\chi : \mathcal{K}(X) \to \mathbb{Z}$; $\chi(\mathcal{F}) = \sum_{i>0} (-1)^i \dim H^i(X, \mathcal{F})$

Define: $\mathsf{QK}(X) = \mathsf{K}(X) \otimes_{\mathbb{Z}} \mathbb{Z}[[q]] = \mathsf{K}(X)[[q]]$ $[\mathcal{O}_{X_u}] \odot [\mathcal{O}_{X^v}] = \sum_d \operatorname{ev}_{3*}[\mathcal{O}_{M_d(X_u,X^v)}] q^d \in \mathsf{QK}(X)$ Note: $\chi \left([\mathcal{O}_{X_w}] \cdot \operatorname{ev}_{3*}[\mathcal{O}_{M_d(X_u,X^v)}] \right) = \chi \left(\mathcal{O}_{M_d(X_u,X^v,g.X_w)} \right)$ $= \# M_d(X_u, X^v, g.X_w)$ when finite.

Define: $\Psi : \mathsf{QK}(X) \to \mathsf{QK}(X)$; $\Psi = \sum_d q^d \operatorname{ev}_{3*} \operatorname{ev}_1^*$ $\Psi([\mathcal{O}_{\Omega}]) = \sum q^d [\mathcal{O}_{\Gamma_d(\Omega)}]$ if Ω has rational singularities.

Theorem (BCMP) Givental's quantum *K*-theory product is $[\mathcal{O}_{X_u}] \star [\mathcal{O}_{X^v}] = \Psi^{-1}([\mathcal{O}_{X_u}] \odot [\mathcal{O}_{X^v}])$

Some results about QK(X)

Structure constants $N_{u,v}^{w,d} \in K(X)$: $[\mathcal{O}_{X^u}] \star [\mathcal{O}_{X^v}] = \sum_{w,d} N_{u,v}^{w,d} q^d [\mathcal{O}_{X^w}]$

Finiteness (BCMP [X comin], Kato [G/B], Anderson-Chen-Tseng [G/P]): $N_{u,v}^{w,d} = 0$ for large d.

Qauntum = affine (Kato):

 $\mathsf{QK}(G/B)_{\mathsf{loc}} \cong K_0(\mathsf{Gr})_{\mathsf{loc}}$

Functoriality (Kato):

Ring homomorphism $QK(G/B) \rightarrow QK(G/P)$

Chevalley formula (BCMP [X comin], Lenart-Naito-Sagaki [G/B]) Expansion of $[\mathcal{O}_{X^{s_{\beta}}}] \star [\mathcal{O}_{X^{w}}]$

Challenges

$$\begin{split} N_{u,v}^{w,d} &\neq 0 \implies \ell(w) + \int_{d} c_{1}(T_{X}) \ge \ell(u) + \ell(v) \\ \text{Equality} \implies N_{u,v}^{w,d} = \# \text{ curves in } X = \text{ structure constant of } QH(X) \\ \text{Positivity Conjecture:} \quad (-1)^{\ell(uvw) + \int_{d} c_{1}(T_{X})} N_{u,v}^{w,d} \ge 0 \\ \text{Questions} \quad \text{When is } N_{u,v}^{w,d} \neq 0? \end{split}$$

uestions When is $N_{u,v}^{w,v} \neq 0$? Which powers q^d occur in $[\mathcal{O}_{X^u}] \star [\mathcal{O}_{X^v}]$?

Theorem (Postnikov, Fulton-Woodward)

 $[X^u] \star [X^v]$ contains unique minimal power q^d

 $d = dist(w_0.X^u, X^v) = minimal degree of rat. curve from <math>w_0.X^u$ to X^v

Example: X = FI(6), w = 164532. $[X^w]^2 \in QH(X)$ has no max q-degree, and q-degrees do not form an interval. QK(X) ???

Cominuscule quantum *K*-theory

Assume from now that $X = G/P_X$ is **cominuscule**: P_X is maximal parabolic, and excluded simple root γ is cominuscule.

If in addition G is simply laced, then X is also **minuscule**.

Minuscule: Gr(m, n), OG(n, 2n), Q^{2n} , E_6/P_6 , E_7/P_7 Cominuscule: LG(n, 2n), Q^{2n+1}

Theorem (BCMP) X minuscule or quadric \Rightarrow Positivity Conjecture is true

Degrees in quantum products

Theorem (Postnikov, BCMP)

X cominuscule \Rightarrow powers q^d in $[X^u] \star [X^v]$ form integer interval.

Theorem (BCMP)

X cominuscule \Rightarrow powers q^d in $[\mathcal{O}_{X^u}] \star [\mathcal{O}_{X^v}]$ form integer interval.

X minuscule or quadric:

 $[\mathcal{O}_{X^u}]\star[\mathcal{O}_{X^v}]$ contains exactly same powers q^d as $[X^u]\star[X^v]$

$$\begin{split} X &= \mathsf{LG}(n, 2n): \\ [\mathcal{O}_{X^u}] \star [\mathcal{O}_{X^v}] \text{ contains same powers } q^d \text{ as } [X^u] \star [X^v], \\ & \text{ plus possibly one extra power.} \\ N^{w,d}_{u\,v} \text{ has the conjectured sign when } q^d \text{ occurs in } [X^u] \star [X^v]. \end{split}$$

Seidel representation in quantum *K*-theory

Recall: $v_{\beta} \in W$ is minimal such that $v_{\beta}.\omega_{\beta} = w_0.\omega_{\beta}$. Example: $v_{\gamma} \in W^X$ largest element, $X^{v_{\gamma}} = \{v_{\gamma}.P_X\}$

Theorem (BCMP) $[\mathcal{O}_{X^{\nu_{\beta}}}] \star [\mathcal{O}_{X^{w}}] = q^{d(\beta,w)} [\mathcal{O}_{X^{\nu_{\beta}w}}]$

Application: Pieri formula for X = OG(n + 1, 2n + 2)

Schubert varieties in X can be indexed by strict partitions $\lambda = (\lambda_1 > \lambda_2 > \cdots > \lambda_\ell > 0)$

Shapes of Seidel elements v_{β} :

Theorem (Kresch, Tamvakis): Pieri Formula for $[X^{(p)}] \star [X^{\lambda}] \in QH(X)$.

$$[\mathcal{O}_{X^{(n)}}] \star [\mathcal{O}_{X^{\lambda}}] = \begin{cases} [\mathcal{O}_{X^{(n,\lambda)}}] & \text{if } \lambda_1 < n, \\ q [\mathcal{O}_{X^{(\lambda_2,\dots,\lambda_{\ell})}}] & \text{if } \lambda_1 = n. \end{cases}$$

Pieri formula for K(X)

Let $\lambda \subset \nu$ be strict partitions. Skew shape: $\nu/\lambda = \nu \smallsetminus \lambda$.

A KOG tableau of shape ν/λ is a labeling of the boxes in ν/λ with integers such that

(1) All rows and columns are strictly increasing, and

(2) Each label is either \leq all labels south-west of it, or \geq all labels south-west of it.

Theorem (B-Ravikumar)
$$[\mathcal{O}_{X^{(p)}}] \cdot [\mathcal{O}_{X^{\lambda}}] = \sum_{\nu} C^{\nu}_{p,\lambda} [\mathcal{O}_{X^{\nu}}]$$
 in $\mathcal{K}(X)$

 $C^{
u}_{p,\lambda}=(-1)^{|
u/\lambda|-p}$ # KOG-tableau of shape u/λ with content $\{1,\ldots,p\}$

Example: $\nu = (5, 3, 1)$, $\lambda = (4, 1)$, p = 3. Then $C_{3,\lambda}^{\nu} = -4$.

Pieri formula for QK(X)

Compute $[\mathcal{O}_{X^{(p)}}] \star [\mathcal{O}_{X^{\lambda}}]$ in $\mathsf{QK}(X)$

Assume $\lambda_1 < n$: $[X^{(p)}] \star [X^{\lambda}]$ has no *q*-terms $\Rightarrow [\mathcal{O}_{X^{(p)}}] \star [\mathcal{O}_{X^{\lambda}}]$ has no *q*-terms. $[\mathcal{O}_{X^{(p)}}] \star [\mathcal{O}_{X^{\lambda}}] = [\mathcal{O}_{X^{(p)}}] \cdot [\mathcal{O}_{X^{\lambda}}] = \sum_{\nu} C^{\nu}_{p,\lambda} [\mathcal{O}_{X^{\nu}}]$

Assume $\lambda_1 = n$: Set $\overline{\lambda} = (\lambda_2, \lambda_3, \dots, \lambda_{\ell})$. $[\mathcal{O}_{X^{(p)}}] \star [\mathcal{O}_{X^{\lambda}}] = [\mathcal{O}_{X^{(p)}}] \star [\mathcal{O}_{X^{\overline{\lambda}}}] \star [\mathcal{O}_{X^{(n)}}] = \sum_{\nu} C^{\nu}_{p,\overline{\lambda}} [\mathcal{O}_{X^{\nu}}] \star [\mathcal{O}_{X^{(n)}}]$

Proof Methods

 $X = G/P_X$ cominuscule.

Diameter: $d_X(2) = dist(1.P_X, w_0.P_X)$

Write
$$[\mathcal{O}_{X_u}] \star [\mathcal{O}_{X^v}] = \sum_{d \ge 0} ([\mathcal{O}_{X_u}] \star [\mathcal{O}_{X^v}])_d q^d$$

Known: $([\mathcal{O}_{X_u}] \star [\mathcal{O}_{X^v}])_d = 0$ for $d > d_X(2)$.

Let $0 \leq d \leq d_X(2)$.

Choose $x, y \in X$ with dist(x, y) = d.

 $\Gamma_d(x, y) =$ union of curves of degree *d* through x, y.

Quantum = Classical Construction

Example:
$$X = Gr(m, n) = \{V \subset \mathbb{C}^n \mid \dim(V) = m\}$$

Let $V_1, V_2 \in X$ and set $d = dist(V_1, V_2) = m - dim(V_1 \cap V_2)$
Set $A = V_1 \cap V_2$, $B = V_1 + V_2$.
 $\Gamma_d(V_1, V_2) = \{V \in X \mid A \subset V \subset B\} = Gr(d, 2d)$
Note: $\Gamma_d(V_1, V_2)$ is determined by the point
 $\omega = (A, B)$ in $Y_d := Fl(m - d, m + d; n)$.

Notation: $\Gamma_{\omega} = \operatorname{Gr}(d, B/A) \subset X$

Incidence variety:

$$Z_d = \{(\omega, x) \in Y_d \times X \mid x \in \Gamma_\omega\} = \mathsf{Fl}(m - d, m, d + d; n)$$

 $\text{Projections:} \quad q_d: Z_d \to Y_d \quad \text{and} \quad p_d: Z_d \to X.$

Quantum = Classical Theorem

$$\begin{split} Z_d(X_u, X^v) &= q_d^{-1}(q_d p_d^{-1}(X_u) \cap q_d p_d^{-1}(X^v)) \\ &= \{(\omega, z) \in Z_d \mid \Gamma_\omega \cap X_u \neq \emptyset \text{ and } \Gamma_\omega \cap X^v \neq \emptyset\} \end{split}$$

Quantum = Classical Theorem for QH: $([X_u] \star [X^v])_d = p_{d*}[Z_d(X_u, X^v)]$

$$Z_{d-1,1}(X_u, X^{\nu}) = \{(\omega, z) \in Z_d \mid \exists x \in \Gamma_{\omega} \cap X_u \text{ and } y \in \Gamma_{\omega} \cap X^{\nu} \\ \text{ such that } \text{dist}(x, y) \leq d-1\}.$$

Quantum = Classical Theorem for QK:

$$([\mathcal{O}_{X_{u}}] \star [\mathcal{O}_{X^{v}}])_{d} = p_{d*}[\mathcal{O}_{Z_{d}(X_{u},X^{v})}] - p_{d*}[\mathcal{O}_{Z_{d-1,1}(X_{u},X^{v})}]$$

Main idea in proof

 $\Gamma_d(X_u, X^v)$ = union of degree *d* curves connecting X_u to X^v .

 $\Gamma_{d-1,1}(X_u, X^v) = \{ z \in X \mid \exists \text{ degree } d-1 \text{ curve } C \text{ connecting } X_u \text{ to } X^v, \text{ and a line connecting } z \text{ to } C \}$

Set $d_{\max}(u, v) = \max$ power of q in $[X_u] \star [X^v]$.

We prove that:

$$(1) \quad p_{d*}[\mathcal{O}_{Z_{d}(X_{u},X^{v})}] = [\mathcal{O}_{\Gamma_{d}(X_{u},X^{v})}]$$

$$(2) \quad p_{d*}[\mathcal{O}_{Z_{d-1,1}(X_{u},X^{v})}] = [\mathcal{O}_{\widetilde{\Gamma_{d-1,1}(X_{u},X^{v})}}] \quad \text{if } (X,d) \neq (\mathsf{LG}, d_{\mathsf{max}}(u,v)+1)$$

$$(3) \quad d \leq d_{\mathsf{max}}(u,v) \Rightarrow \Gamma_{d-1,1}(X_{u},X^{v}) \subset \Gamma_{d}(X_{u},X^{v}) \text{ is a divisor.}$$

$$(4) \quad d > d_{\mathsf{max}}(u,v) \Rightarrow \Gamma_{d-1,1}(X_{u},X^{v}) = \Gamma_{d}(X_{u},X^{v})$$

Brion's positivity theorem \Rightarrow classes in (1) and (2) have alternating signs!

Seidel product with a point

$$\begin{split} [\mathcal{O}_{\mathsf{pt}}] \star [\mathcal{O}_{X^{v}}] &= [\mathcal{O}_{\mathsf{\Gamma}_{d}(1.P_{X},X^{v})}]q^{d} \\ \text{where } d &= \mathsf{dist}(1.P_{X},X^{v}) = d_{\mathsf{max}}(\mathsf{pt},v) \end{split}$$

Notice:
$$\Gamma_{d-1,1}(1.P_X, X^v) = \emptyset$$

We show that $\Gamma_d(1.P_X, X^v)$ is a Schubert variety in X.