The Seidel representation in quantum K-theory

Joint with Pierre-Emmanuel Chaput, Leonardo Mihalcea, Nicolas Perrin

Flag varieties
$X=G / P_{X}$ flag variety. $T \subset B \subset P_{X} \subset G$
$W=N_{G}(T) / T$ Weyl group. $\quad W_{X}=N_{P_{X}}(T) / T$ Weyl group of P_{X}. $W^{X} \subset W$ minimal representatives of cosets in W / W_{X}.

Schubert varieties: For $w \in W$ set $X_{w}=\overline{B w \cdot P_{X}}$ and $X^{w}=\overline{B^{-} w \cdot P_{X}}$ $w \in W^{X} \Rightarrow \operatorname{dim}\left(X_{w}\right)=\operatorname{codim}\left(X^{w}, X\right)=\ell(w)$

Quantum cohomology

Given $d \in H_{2}(X), u, v, w \in W$, define the Gromov-Witten invariant $\left\langle\left[X^{u}\right],\left[X^{v}\right],\left[X_{w}\right]\right\rangle_{d}=\# f: \mathbb{P}^{1} \rightarrow X$ of degree d such that $f(0) \in X^{u}, f(1) \in g . X^{v}$, and $f(\infty) \in X_{w}$ (if finitely many, otherwise zero)
$Q H(X)=H^{*}(X) \otimes_{\mathbb{Z}} \mathbb{Z}[q]$
$\left[X^{u}\right] \star\left[X^{v}\right]=\sum_{w, d}\left\langle\left[X^{u}\right],\left[X^{v}\right],\left[X_{w}\right]\right\rangle_{d} q^{d}\left[X^{w}\right]$
Theorem (Ruan-Tian, Kontsevich-Manin): $Q H(X)$ is an associative ring.

Cominuscule simple roots

A simple root β is cominuscule if coefficient of β in the highest root is 1 .

Seidel representation

For β cominuscule, choose $v_{\beta} \in W$ minimal such that $v_{\beta} \cdot \omega_{\beta}=w_{0} \cdot \omega_{\beta}$
Theorem (Chaput, Manivel, Perrin)

$$
\left[X^{v_{\beta}}\right] \star\left[X^{w}\right]=q^{d(\beta, w)}\left[X^{v_{\beta} w}\right]
$$

$\pi(\operatorname{Aut}(X)) \cong\left\{v_{\beta}: \beta\right.$ cominuscule $\} \cup\{1\} \leq W$
Group homomorphism: $\pi_{1}(\operatorname{Aut}(X)) \longrightarrow(Q H(X) /\langle q=1\rangle)^{\times}$

$$
v_{\beta} \mapsto\left[X^{v_{\beta}}\right]
$$

Curve neighborhoods

Given $\Omega \subset X$ and $d \in H_{2}(X)$, define
$\Gamma_{d}(\Omega)=\{x \in X \mid \exists C \subset X$ of degree d connecting x to $\Omega\}$
Theorem (BCMP) Ω Schubert variety $\Rightarrow \Gamma_{d}(\Omega)$ Schubert variety
$M_{d}=\overline{\mathcal{M}}_{0,3}(X, d)=\overline{\left\{f: \mathbb{P}^{1} \rightarrow X \text { of degree } d\right\}}$ Kontsevich moduli space.
Note: $\Gamma_{d}(\Omega)=\operatorname{ev}_{3}\left(\mathrm{ev}_{1}^{-1}(\Omega)\right)$
Define: $\quad M_{d}\left(X_{u}, X^{v}\right)=\operatorname{ev}_{1}^{-1}\left(X_{u}\right) \cap \mathrm{ev}_{2}^{-1}\left(X^{v}\right)$

$$
\Gamma_{d}\left(X_{u}, X^{v}\right)=\operatorname{ev}_{3}\left(M_{d}\left(X_{u}, X^{v}\right)\right)
$$

Quantum K-theory (Givental, Lee)

A closed subvariety $\Omega \subset X$ defines a K-theory class $\left[\mathcal{O}_{\Omega}\right] \in K(X)$
Euler characteristic: $\chi: K(X) \rightarrow \mathbb{Z} ; \chi(\mathcal{F})=\sum_{i \geq 0}(-1)^{i} \operatorname{dim} H^{i}(X, \mathcal{F})$
Define: $\quad \operatorname{QK}(X)=K(X) \otimes_{\mathbb{Z}} \mathbb{Z}[[q]]=K(X)[[q]]$

$$
\left[\mathcal{O}_{X_{u}}\right] \odot\left[\mathcal{O}_{X^{v}}\right]=\sum_{d} \operatorname{ev}_{3 *}\left[\mathcal{O}_{M_{d}\left(X_{u}, X^{\vee}\right)}\right] q^{d} \quad \in \operatorname{QK}(X)
$$

Note: $\quad \chi\left(\left[\mathcal{O}_{X_{w}}\right] \cdot \operatorname{ev}_{3 *}\left[\mathcal{O}_{M_{d}\left(X_{u}, X^{\vee}\right)}\right]\right)=\chi\left(\mathcal{O}_{M_{d}\left(X_{u}, X^{\vee}, g . X_{w}\right)}\right)$

$$
=\# M_{d}\left(X_{u}, X^{v}, g \cdot X_{w}\right) \text { when finite. }
$$

Define: $\quad \Psi: \operatorname{QK}(X) \rightarrow \operatorname{QK}(X) \quad ; \quad \psi=\sum_{d} q^{d} \mathrm{ev}_{3 *} \mathrm{ev}_{1}^{*}$

$$
\Psi\left(\left[\mathcal{O}_{\Omega}\right]\right)=\sum q^{d}\left[\mathcal{O}_{\Gamma_{d}(\Omega)}\right] \quad \text { if } \Omega \text { has rational singularities. }
$$

Theorem (BCMP) Givental's quantum K-theory product is

$$
\left[\mathcal{O}_{X_{u}}\right] \star\left[\mathcal{O}_{X^{v}}\right]=\Psi^{-1}\left(\left[\mathcal{O}_{X_{u}}\right] \odot\left[\mathcal{O}_{X^{v}}\right]\right)
$$

Some results about $\mathrm{QK}(X)$

Structure constants $N_{u, v}^{w, d} \in K(X): \quad\left[\mathcal{O}_{X^{u}}\right] \star\left[\mathcal{O}_{X^{v}}\right]=\sum_{w, d} N_{u, v}^{w, d} a^{d}\left[\mathcal{O}_{X^{w}}\right]$
Finiteness (BCMP [X comin], Kato $[G / B]$, Anderson-Chen-Tseng $[G / P]$):

$$
N_{u, v}^{w, d}=0 \text { for large } d .
$$

Qauntum $=$ affine (Kato):

$$
\operatorname{QK}(G / B)_{\text {loc }} \cong K_{0}(\mathrm{Gr})_{\mathrm{loc}}
$$

Functoriality (Kato):
Ring homomorphism $\operatorname{QK}(G / B) \rightarrow \operatorname{QK}(G / P)$
Chevalley formula (BCMP $[X$ comin], Lenart-Naito-Sagaki $[G / B]$)
Expansion of $\left[\mathcal{O}_{X_{\beta}}\right] \star\left[\mathcal{O}_{X^{w}}\right]$

Challenges

$N_{u, v}^{w, d} \neq 0 \Rightarrow \ell(w)+\int_{d} c_{1}\left(T_{X}\right) \geq \ell(u)+\ell(v)$
Equality $\Rightarrow N_{u, i}^{w, d}=\#$ curves in $X=$ structure constant of $Q H(X)$
Positivity Conjecture: $\quad(-1)^{\ell(u v w)+\int_{d} c_{1}\left(T_{X}\right)} N_{u, v}^{w, d} \geq 0$
Questions When is $N_{u, v}^{w, d} \neq 0$?
Which powers q^{d} occur in $\left[\mathcal{O}_{X^{u}}\right] \star\left[\mathcal{O}_{X^{v}}\right]$?
Theorem (Postnikov, Fulton-Woodward)
$\left[X^{u}\right] \star\left[X^{v}\right]$ contains unique minimal power q^{d}
$d=\operatorname{dist}\left(w_{0} \cdot X^{u}, X^{v}\right)=$ minimal degree of rat. curve from $w_{0} \cdot X^{u}$ to X^{v}
Example: $X=\mathrm{FI}(6), w=164532 .\left[X^{w}\right]^{2} \in Q H(X)$ has no max q-degree, and q-degrees do not form an interval. $\mathrm{QK}(X)$???

Cominuscule quantum K-theory

Assume from now that $X=G / P_{X}$ is cominuscule:
P_{X} is maximal parabolic, and excluded simple root γ is cominuscule.
If in addition G is simply laced, then X is also minuscule.
Minuscule: $\operatorname{Gr}(m, n), \operatorname{OG}(n, 2 n), Q^{2 n}, E_{6} / P_{6}, E_{7} / P_{7}$
Cominuscule: LG(n,2n), $Q^{2 n+1}$
Theorem (BCMP) X minuscule or quadric \Rightarrow Positivity Conjecture is true

Degrees in quantum products

Theorem (Postnikov, BCMP)
X cominuscule \Rightarrow powers q^{d} in $\left[X^{u}\right] \star\left[X^{v}\right]$ form integer interval.
Theorem (BCMP)
X cominuscule \Rightarrow powers q^{d} in $\left[\mathcal{O}_{X^{u}}\right] \star\left[\mathcal{O}_{X^{v}}\right]$ form integer interval.
X minuscule or quadric:
$\left[\mathcal{O}_{X^{u}}\right] \star\left[\mathcal{O}_{X^{v}}\right]$ contains exactly same powers q^{d} as $\left[X^{u}\right] \star\left[X^{v}\right]$
$X=\mathrm{LG}(n, 2 n):$
$\left[\mathcal{O}_{X^{u}}\right] \star\left[\mathcal{O}_{X^{v}}\right]$ contains same powers q^{d} as $\left[X^{u}\right] \star\left[X^{v}\right]$,
plus possibly one extra power.
$N_{u, v}^{w, d}$ has the conjectured sign when q^{d} occurs in $\left[X^{u}\right] \star\left[X^{v}\right]$.

Seidel representation in quantum K-theory

Recall: $v_{\beta} \in W$ is minimal such that $v_{\beta} \cdot \omega_{\beta}=w_{0} \cdot \omega_{\beta}$.
Example: $v_{\gamma} \in W^{X}$ largest element, $X^{v_{\gamma}}=\left\{v_{\gamma} \cdot P_{X}\right\}$
Theorem (BCMP) $\left[\mathcal{O}_{X^{\vee} \beta}\right] \star\left[\mathcal{O}_{X^{w}}\right]=q^{d(\beta, w)}\left[\mathcal{O}_{X^{\vee} \beta^{w}}\right]$

Application: Pieri formula for $X=O G(n+1,2 n+2)$

Schubert varieties in X can be indexed by strict partitions $\lambda=\left(\lambda_{1}>\lambda_{2}>\cdots>\lambda_{\ell}>0\right)$

(n rows)

Shapes of Seidel elements v_{β} :

Theorem (Kresch, Tamvakis): Pieri Formula for $\left[X^{(p)}\right] \star\left[X^{\lambda}\right] \in Q H(X)$.
$\left[\mathcal{O}_{X^{(n)}}\right] \star\left[\mathcal{O}_{X^{\lambda}}\right]= \begin{cases}{\left[\mathcal{O}_{X^{(n, \lambda)}}\right]} & \text { if } \lambda_{1}<n, \\ q\left[\mathcal{O}_{X^{\left(\lambda_{2}, \ldots, \lambda_{\ell}\right)}}\right] & \text { if } \lambda_{1}=n .\end{cases}$

Pieri formula for $K(X)$

Let $\lambda \subset \nu$ be strict partitions. Skew shape: $\nu / \lambda=\nu \backslash \lambda$.
A KOG tableau of shape ν / λ is a labeling of the boxes in ν / λ with integers such that
(1) All rows and columns are strictly increasing, and
(2) Each label is either \leq all labels south-west of it, or \geq all labels south-west of it.

Theorem (B-Ravikumar) $\left[\mathcal{O}_{X^{(\rho)}}\right] \cdot\left[\mathcal{O}_{X^{\lambda}}\right]=\sum_{\nu} C_{p, \lambda}^{\nu}\left[\mathcal{O}_{X^{\nu}}\right] \quad$ in $K(X)$ $C_{p, \lambda}^{\nu}=(-1)^{|\nu / \lambda|-p} \#$ KOG-tableau of shape ν / λ with content $\{1, \ldots, p\}$

Example: $\nu=(5,3,1), \lambda=(4,1), p=3$. Then $C_{3, \lambda}^{\nu}=-4$.

Pieri formula for $\mathrm{QK}(X)$

Compute $\left[\mathcal{O}_{X^{(p)}}\right] \star\left[\mathcal{O}_{X^{\lambda}}\right]$ in $\operatorname{QK}(X)$

Assume $\lambda_{1}<n$:
$\left[X^{(p)}\right] \star\left[X^{\lambda}\right]$ has no q-terms $\Rightarrow\left[\mathcal{O}_{X^{(p)}}\right] \star\left[\mathcal{O}_{X^{\lambda}}\right]$ has no q-terms.
$\left[\mathcal{O}_{X(p)}\right] \star\left[\mathcal{O}_{X^{\lambda}}\right]=\left[\mathcal{O}_{X^{(p)}}\right] \cdot\left[\mathcal{O}_{X^{\lambda}}\right]=\sum_{\nu} C_{p, \lambda}^{\nu}\left[\mathcal{O}_{X^{\nu}}\right]$

Assume $\lambda_{1}=n$:
Set $\bar{\lambda}=\left(\lambda_{2}, \lambda_{3}, \ldots, \lambda_{\ell}\right)$.
$\left[\mathcal{O}_{X^{(p)}}\right] \star\left[\mathcal{O}_{X^{\lambda}}\right]=\left[\mathcal{O}_{X^{(p)}}\right] \star\left[\mathcal{O}_{X^{\bar{\lambda}}}\right] \star\left[\mathcal{O}_{X^{(n)}}\right]=\sum_{\nu} C_{p, \bar{\lambda}}^{\nu}\left[\mathcal{O}_{X^{\nu}}\right] \star\left[\mathcal{O}_{X^{(n)}}\right]$

Proof Methods

$X=G / P_{X}$ cominuscule.
Diameter: $\quad d_{X}(2)=\operatorname{dist}\left(1 . P_{X}, w_{0} \cdot P_{X}\right)$
Write $\quad\left[\mathcal{O}_{X_{u}}\right] \star\left[\mathcal{O}_{X^{\vee}}\right]=\sum_{d \geq 0}\left(\left[\mathcal{O}_{X_{u}}\right] \star\left[\mathcal{O}_{X^{\vee}}\right]\right)_{d} q^{d}$
Known: $\quad\left(\left[\mathcal{O}_{X_{u}}\right] \star\left[\mathcal{O}_{X^{v}}\right]\right)_{d}=0$ for $d>d_{X}(2)$.
Let $0 \leq d \leq d_{X}(2)$.
Choose $x, y \in X$ with $\operatorname{dist}(x, y)=d$.
$\Gamma_{d}(x, y)=$ union of curves of degree d through x, y.

Quantum = Classical Construction

Example: $X=\operatorname{Gr}(m, n)=\left\{V \subset \mathbb{C}^{n} \mid \operatorname{dim}(V)=m\right\}$
Let $V_{1}, V_{2} \in X$ and set $d=\operatorname{dist}\left(V_{1}, V_{2}\right)=m-\operatorname{dim}\left(V_{1} \cap V_{2}\right)$
Set $A=V_{1} \cap V_{2}, B=V_{1}+V_{2}$.
$\Gamma_{d}\left(V_{1}, V_{2}\right)=\{V \in X \mid A \subset V \subset B\}=\operatorname{Gr}(d, 2 d)$
Note: $\Gamma_{d}\left(V_{1}, V_{2}\right)$ is determined by the point

$$
\omega=(A, B) \text { in } \quad Y_{d}:=\mathrm{FI}(m-d, m+d ; n)
$$

Notation: $\Gamma_{\omega}=\operatorname{Gr}(d, B / A) \subset X$

Incidence variety:
$Z_{d}=\left\{(\omega, x) \in Y_{d} \times X \mid x \in \Gamma_{\omega}\right\}=\mathrm{FI}(m-d, m, d+d ; n)$
Projections: $\quad q_{d}: Z_{d} \rightarrow Y_{d} \quad$ and $\quad p_{d}: Z_{d} \rightarrow X$.

Quantum $=$ Classical Theorem

$$
\begin{aligned}
Z_{d}\left(X_{u}, X^{\vee}\right) & =q_{d}^{-1}\left(q_{d} p_{d}^{-1}\left(X_{u}\right) \cap q_{d} p_{d}^{-1}\left(X^{\vee}\right)\right) \\
& =\left\{(\omega, z) \in Z_{d} \mid \Gamma_{\omega} \cap X_{u} \neq \emptyset \text { and } \Gamma_{\omega} \cap X^{\vee} \neq \emptyset\right\}
\end{aligned}
$$

Quantum = Classical Theorem for $Q H$:

$$
\left(\left[X_{u}\right] \star\left[X^{\vee}\right]\right)_{d}=p_{d *}\left[Z_{d}\left(X_{u}, X^{v}\right)\right]
$$

$Z_{d-1,1}\left(X_{u}, X^{v}\right)=\left\{(\omega, z) \in Z_{d} \mid \exists x \in \Gamma_{\omega} \cap X_{u}\right.$ and $y \in \Gamma_{\omega} \cap X^{v}$ such that $\operatorname{dist}(x, y) \leq d-1\}$.

Quantum $=$ Classical Theorem for QK:

$$
\left(\left[\mathcal{O}_{X_{u}}\right] \star\left[\mathcal{O}_{X^{v}}\right]\right)_{d}=p_{d *}\left[\mathcal{O}_{Z_{d}\left(X_{u}, X^{\vee}\right)}\right]-p_{d *}\left[\mathcal{O}_{Z_{d-1,1}\left(X_{u}, X^{\vee}\right)}\right]
$$

Main idea in proof

$\Gamma_{d}\left(X_{u}, X^{v}\right)=$ union of degree d curves connecting X_{u} to X^{v}.
$\Gamma_{d-1,1}\left(X_{u}, X^{v}\right)=\left\{z \in X \mid \exists\right.$ degree $d-1$ curve C connecting X_{u} to X^{v}, and a line connecting z to C \}

Set $d_{\max }(u, v)=$ maximal power of q in $\left[X_{u}\right] \star\left[X^{v}\right]$.
We prove that:
(1) $p_{d *}\left[\mathcal{O}_{Z_{d}\left(X_{u}, X^{\vee}\right)}\right]=\left[\mathcal{O}_{\Gamma_{d}\left(X_{u}, X^{\vee}\right)}\right]$
(2) $p_{d *}\left[\mathcal{O}_{Z_{d-1,1}\left(X_{u}, X^{\vee}\right)}\right]=\left[\mathcal{O}_{\Gamma} \widetilde{\Gamma_{d-1,1}\left(X_{u}, X^{v}\right)}\right] \quad$ if $(X, d) \neq\left(\mathrm{LG}, d_{\max }(u, v)+1\right)$
(3) $d \leq d_{\max }(u, v) \Rightarrow \Gamma_{d-1,1}\left(X_{u}, X^{v}\right) \subset \Gamma_{d}\left(X_{u}, X^{v}\right)$ is a divisor.
(4) $d>d_{\max }(u, v) \Rightarrow \Gamma_{d-1,1}\left(X_{u}, X^{v}\right)=\Gamma_{d}\left(X_{u}, X^{v}\right)$

Brion's positivity theorem \Rightarrow classes in (1) and (2) have alternating signs!

Seidel product with a point

$\left[\mathcal{O}_{\text {pt }}\right] \star\left[\mathcal{O}_{X^{v}}\right]=\left[\mathcal{O}_{\left.\Gamma_{d\left(1 . P_{X}\right.}, X^{v}\right)}\right] q^{d}$
where $d=\operatorname{dist}\left(1 . P_{X}, X^{\vee}\right)=d_{\max }(\mathrm{pt}, v)$
Notice: $\Gamma_{d-1,1}\left(1 . P_{X}, X^{\vee}\right)=\emptyset$
We show that $\Gamma_{d}\left(1 . P_{X}, X^{\vee}\right)$ is a Schubert variety in X.

