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1. The main result

The title of this talk refers to a recent paper [4] with Mihalcea, but my talk is
also closely related to joint work with Chaput, Mihalcea, and Perrin [2].

Let X be a non-singular complex variety, let Ω ⊂ X be a closed subvariety, and
let d ∈ H2(X) = H2(X;Z) be a degree. The curve neighborhood Γd(Ω) is defined
as the closure of the union of all rational curves in X of degree d that meet Ω. For
example, if X = P

1 × P
1 and Ω = P

1 × {0}, then H2(X) = Z ⊕ Z, and we have
Γ(1,0)(Ω) = Ω and Γ(0,1)(Ω) = X.

I will focus on the case where X = G/P is a generalized flag variety, defined
by a semisimple complex Lie group G and a parabolic subgroup P . I also fix a
maximal torus T and a Borel subgroup B such that T ⊂ B ⊂ P ⊂ G. In this case
it was proved in [2] that, if Ω is irreducible, then Γd(Ω) is irreducible. Notice also
that Γd(Ω) is B-stable whenever Ω is B-stable. It follows that if Ω is a Schubert
variety in X, then Γd(Ω) is also a Schubert variety.

It is natural to ask which Schubert variety this is. In other words, if we know
the Weyl group element representing Ω, then what is the Weyl group element
representing Γd(Ω)? This question is related to several aspects of the quantum
cohomology and quantum K-theory of homogeneous spaces, including two-point
Gromov-Witten invariants, the (equivariant) quantum Chevalley formula [6, 7], the
minimal powers of the deformation parameter q that appear in quantum products
of Schubert classes [6], and a degree distance formula for cominuscule varieties [5]
that played an important role in a generalization of the kernel-span technique from
[1] and the quantum equals classical theorem from [3].

Let W = NG(T )/T be the Weyl group of G and let WP = NP (T )/T ⊂ W
be the Weyl group of P . We let WP ⊂ W denote the subset of minimal length
representatives for the cosets in W/WP . Each element w ∈ W defines a Schubert
variety X(w) = Bw.P ⊂ X; if w ∈ WP then dimX(w) = ℓ(w). The set of T -fixed
points in X is XT = {w.P | w ∈ WP }. We let R be the root system of G, with
positive roots R+ and simple roots ∆ ⊂ R+.

We describe the curve neighborhood of a Schubert variety in terms of the Hecke
product of Weyl group elements, which can be defined as follows. For w ∈ W and
β ∈ ∆ we set

w · sβ =

{

w sβ if ℓ(wsβ) > ℓ(w);

w if ℓ(wsβ) < ℓ(w).

Given an additional element w′ ∈ W and a reduced expression w′ = sβ1
sβ2

· · · sβℓ
,

we then define w ·w′ = w · sβ1
· sβ2

· . . . · sβℓ
∈ W , where the simple reflections are

Hecke-multiplied to w in left to right order. This defines an associative monoid
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product on W . The Hecke product is compatible with the Bruhat order on W , for
example we have v ≤ v′ ⇒ u · v · w ≤ u · v′ · w for all u, v, v′, w ∈ W .

Given a positive root α ∈ R+ with sα /∈ WP , let Cα ⊂ X be the unique T -
stable curve that contains the points 1.P and sα.P . The main result of [4] is the
following theorem, which makes it straightforward to compute the Weyl group
element representing the curve neighborhood Γd(X(w)).

Theorem 1. Assume that 0 < d ∈ H2(X), and let α ∈ R+ be any positive

root that is maximal with the property that [Cα] ≤ d ∈ H2(X). Then we have

Γd(X(w)) = Γd−[Cα](X(w · sα)).

We remark that the homology group H2(X) can be identified with the coroot
lattice of R modulo the coroots corresponding to P , in such a way that the class
[Cα] ∈ H2(X) is the image of the coroot α∨. Theorem 1 therefore makes simul-
taneous use of the orderings of roots and coroots, which gives rise to interesting
combinatorics.

2. Degree distance formula

Theorem 1 can be used to give simple proofs of several well known results
concerning the quantum cohomology of generalized flag varieties. Here we will
sketch a proof of the degree distance formula for cominuscule varieties due to
Chaput, Manivel, and Perrin [5].

Assume that X = G/P where P is a maximal parabolic subgroup of G, and let
γ ∈ ∆ be the unique simple root such that sγ /∈ WP . Then H2(X) = Z has rank
one, and the generator [X(sγ)] ∈ H2(X) can be identified with 1 ∈ Z. The variety
X is called cominuscule if, when the highest root ρ ∈ R+ is expressed as a linear
combination of simple roots, the coefficient of γ is one. This implies that ρ = wP .γ
where wP denotes the longest element in WP . In particular, since ρ∨ − γ∨ is a
linear combination of the coroots of P , we obtain [Cρ] = [Cγ ] = 1 ∈ H2(X). Given
any effective degree d ∈ H2(X), it therefore follows from Theorem 1 that

Γd(X(w)) = Γd−1(X(w · sγ)) = · · · = X(w · sγ · sγ · . . . · sγ)

where sγ is repeated d times. Since sρ = wP sγwP , this identity is equivalent to
the expression

(1) Γd(X(w)) = X(w · wP sγ · wP sγ · . . . · wP sγ) ,

with wP sγ repeated d times.
Given two points x, y ∈ X, let d(x, y) denote the smallest possible degree of

a rational curve in X from x to y. This number is determined by the following
result from [5].

Corollary (Chaput, Manivel, Perrin). Let u ∈ WP . Then d(1.P, u.P ) is the

number of occurrences of sγ in any reduced expression for u.

Proof. For d ∈ H2(X), it follows from (1) that u.P ∈ Γd(X(1)) if and only if u has
a reduced expression with at most d occurrences of sγ . Now set d = d(1.P, u.P )
and observe that u.P ∈ Γd(X(1))r Γd−1(X(1)). We deduce that u has a reduced
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expression with exactly d occurrences of of sγ . The corollary now follows from
Stembridge’s result [8] that u is fully commutative, i.e. any reduced expression for u
can be obtained from any other by interchanging commuting simple reflections. �
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