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Abstract

In a previous paper (arXiv:1608.02262), we used computer-assisted
methods to find explicit expressions for the moments of the size of a
uniform random (n, n + 1)-core partition with distinct parts. In par-
ticular, we conjectured that the distribution is asymptotically normal.
However, our analysis hinged on a characterization of (n, n + 1)-core
partitions given by Straub, which is not readily generalized to other
families of simultaneous core partitions.

In another paper (arXiv:1611.05775) with Doron Zeilberger, we
made use of the characterization in terms of posets to analyze (2n +
1, 2n+3)-core partitions with distinct parts; here, the distribution was
found not to be asymptotically normal. Our method involved finding
recursive structure in the relevant sequence of posets. We remarked
that this method is applicable to other families of core partitions,
provided that one can understand the corresponding posets.

Here, we use the poset method (and, as before, a computer) to ana-
lyze (n, dn−1)-core partitions with distinct parts, where d is a natural
number. (This problem was introduced by Straub in arXiv:1601.07161.)
We exhibit formulas for the moments of the size, as functions of d with
n fixed, and vice versa. We conjecture that the distribution is asymp-
totically normal as n approaches infinity. Finally, we find formulas for
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the first few moments, as functions of both n and d.

Keywords: simultaneous core partitions, automated enumeration, combi-
natorial statistics, asymptotic normality
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1 Introduction

Figure 1: Young diagram of the partition 9 = 4+3+1+1, showing the hook
lengths of each box.

1.1 (s, t)-core partitions

Recall that the hook length of a box in the Young diagram of a partition is
the number of boxes to the right (the arm) plus the number of boxes below
it (the leg) plus one (the head). (We use the English convention for Young
diagrams; see Figure 1.) A partition is an s-core if its Young diagram avoids
hook length s and an (s, t)-core if it avoids hook lengths s and t [AHJ]. For
example, the partition 9 = 4 + 3 + 1 + 1 in Figure 1 is a (6, 8)-core but not
a (6, 7)-core.
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The number of (s, t)-core partitions is finite iff s and t are coprime, which
we shall assume from now on [AHJ]. Let Xs,t be the random variable “size
of an (s, t)-core partition,” where the sample space is the set of all (s, t)-core
partitions, equipped with the uniform distribution. In [EZ], with the help of
Maple, Zeilberger derived explicit expressions (as polynomials in s and t) for
the expectation, variance, and numerous higher moments of Xs,t. The origi-
nal paper noted that “From the ‘religious-fanatical’ viewpoint of the current
‘mainstream’ mathematician, they are ‘just’ conjectures, but nevertheless,
they are absolutely certain (well, at least as absolutely certain as most
proved theorems),” and a donation to the OEIS was offered for the theory to
make the results rigorous. Later, it was found that such theory did exist and
the results are entirely rigorous; see the updates at the paper’s site.

Zeilberger also computed some standardized central moments of Xs,t and the
limit of these expressions as s, t→∞ with s− t fixed. From this he conjec-
tured the limiting distribution. Perhaps surprisingly, it is abnormal.

1.2 (n, n+ 1)-core partitions with distinct parts

Things are not as easy if look at the random variable “size of an (s, t)-core
partition with distinct parts.” In this case, there does not seem to a single
formula for the moments in terms of s and t. However, we can consider
certain indexed families of core partitions and look for explicit formulas for
the moments.

For example, in [S], Straub remarks in a lemma that a partition with dis-
tinct parts is an (n, n+ 1)-core iff it has perimeter (largest hook length) less
than n. Using this, it is easy to show that the number of such partitions is
the Fibonacci number. Further, in [Z], we used Straub’s lemma and some
experimentation with Maple to derive explicit expressions for the moments,
as rational functions of Fibonacci numbers. Our results give strong evidence
that the limiting distribution as n→∞ is normal in this case.

1.3 The poset characterization

Unfortunately, we do not see how to generalize the characterization above to
other indexed families of partitions. However, there is another characteriza-
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tion of (s, t)-core partitions due to Anderson [A].

Given coprime s and t, define the poset

Ps,t := N \ (sN + tN), (1.1)

where N = {0, 1, 2, 3, . . . , }, where the partial-order relation c ≤P d holds
whenever d − c can be expressed as αs + βt for some α, β ∈ N. (It can be
shown that Ps,t is finite with largest element st− s− t.)

Anderson defined a bijection between (s, t)-core partitions and order ideals
of Ps,t. (Under our convention, a subset I of a poset P is an order ideal iff
x ∈ I, y ≤P x =⇒ y ∈ I.) Further, the hook lengths of the boxes in the
leftmost column in the partition’s Young diagram correspond to the labels
of the order ideal.

Now, a partition has distinct parts iff there are no consecutive hook lengths
in the leftmost column. Thus:

(s, t)-core partitions with distinct parts are bijective to order ideals of
Ps,t with no consecutive labels.

1.4 (2n+1, 2n+3)-core partitions with distinct parts

So, given a family of core partitions, we have a corresponding sequence of
posets which we can hopefully understand. In [ZZ], we plotted some of the
posets corresponding to (2n + 1, 2n + 3)-core partitions with distinct parts
and were able to see a recursive structure. This led to recursions for the
generating functions of the partitions. We were again able to derive explicit
expressions for the moments in terms of n and show that the distribution of
size is not asymptotically normal as n→∞.

2 (n, dn−1)-core partitions with distinct parts

In [S], Straub generalizes the problem in Section 1.2 by considering (n, dn−1)-
core partitions with distinct parts, where n and d are natural numbers. He
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proves in Theorem 4.1 that the number of such partitions, call it Nd(n),
satisfies a generalized Fibonacci recurrence:

Nd(1) = 1, Nd(2) = d,

Nd(n) = Nd(n− 1) + dNd(n− 2).
(2.1)

Of course, this reduces to the usual Fibonacci numbers when d = 1. Note
that we can view Nd(n) as a sequence of polynomials in d.

Here, we shall use the poset characterization in Section 1.3 to easily recover
Straub’s result and discover new conjectures about the distribution of the
sizes of the partitions.

2.1 Understanding the posets

By Section 1.3, we know that (n, dn− 1)-core partitions with distinct parts
are bijective with order ideals of Pn,dn−1 containing no consecutive labels. We
can use the procedure PW in the Maple package Armin accompanying [ZZ] to
plot Pn,dn−1 for various n and d.

For example, Figure 2 depicts the poset P4,19, i.e., the n = 4, d = 5 case.
(When plotting Ps,t, we use the convention to increment s in the ↓ direction
and t in the ← direction. Thus, the largest label, st − s − t, is in the lower
left corner.) It is easy to show that this general trapezoidal shape persists for
arbitrary values of n and d. We can also see Pn,dn−1 as a colonnade of n− 1
vertical pillars with heights d(n− 1)− 1, d(n− 2)− 1, . . . , d− 1. Further, the
tops of the pillars have labels 1, 2, . . . , n− 1.

2.2 Characterizing the order ideals

Next, we recover the recursion (2.1) by enumerating the order ideals of Pn,dn−1
with no consecutive labels.

Referring to the n = 4, d = 5 example, let I be an order ideal of P4,19. Let
Ik be the part of I contained in the kth pillar.

• If I1 = ∅, then I is isomorphic to an order ideal of Pn−1,d(n−1)−1 =
P3,5·3−1.
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Figure 2: The poset P4,19 = P4,4·5−1.

• Otherwise, let x be the largest member of I1. Then x ∈ {1, 1+n, . . . , 1+
(d− 1)n} = {1, 5, 9, 13, 17}. For if 21 ∈ I1, then 1, 2 ∈ I, contradicting
the assumption that I contains no consecutive labels. So there are
d = 5 choices for I1. Further, I2 must be empty; otherwise, again, we
have 1, 2 ∈ I. Thus the remainder of I is isomorphic to an order ideal
of Pn−2,d(n−2)−1 = P2,5·2−1.

To summarize, if I is an order ideal of Pn,dn−1 with no consecutive labels,
then either I is isomorphic to an order ideal of Pn−1,d(n−1)−1, or I1 has d
options and the rest of I is isomorphic to an order ideal of Pn−2,d(n−2)−1.
This proves (2.1).

From the above observation, we have the following characterization:

Any order ideal of Pn,dn−1 with no consecutive labels is of the form
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I = I1 ∪ · · · ∪ In−1, where

– Each Ik is either empty or of the form {k, k + n, · · · , k + ikn},
where ik ≤ d− 1 if k < n− 1, and in−1 < d− 1.

– If Ik is nonempty, then Ik+1 is empty.

In short: To make an order ideal, we hang strings of beads from the tops of
the pillars in such a way the strings are not too long and adjacent pillars are
not both decorated.

2.3 Computing the generating function

Our ultimate goal is to investigate the distribution of the size of (n, dn− 1)-
core partitions with distinct parts. To this end, we define the generating
function

Gd,n(q) :=
∑
p

q|p|, (2.2)

where p ranges over (n, dn − 1)-core partitions with distinct parts, and |p|
denotes the size of the partition p, i.e., the sum of its parts. We shall give
an efficient scheme for computing Gd,n(q) for fixed d and n.

Proceeding as in [ZZ], we first compute the auxiliary generating function

Fd,n(q, t) :=
∑
I

qw(I)t|I|, (2.3)

where I ranges over all order ideals of Pn,dn−1 with no consecutive labels;
w(I) is the sum of the labels in I; and |I| is the number of labels in I. Then,
as explained in [ZZ], we can obtain Gd,n(q) by replacing occurrences of tk in
Fd,n(q, t) with q−k(k−1)/2.

To compute Fd,n(q, t), we use the reasoning of the previous section, but this
time we keep track of the weight of the order ideal.

First, we introduce yet another auxiliary generating function. For 1 ≤ k ≤
n− 1, let P k

n,dn−1 be the sub-poset of Pn,dn−1 obtained by chopping off every-

thing to the left of the kth column (note P 1
n,dn−1 = Pn,dn−1). Define F k

d,n(q, t)

as in (2.3), except I ranges over order ideals of P k
n,dn−1 with no consecutive

labels (note F 1
d,n(q, t) = Fd,n(q, t)).
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By the reasoning of the previous section, the first column of an order ideal
of P k

n,dn−1 is either empty or of the form {k, k + n, · · · , k + in}, where 0 ≤
i ≤ d− 1). Since the latter set has weight

q
∑i

j=0(k+jn)ti+1 = q(i+1)(in/2+k)ti+1,

we have the recursion

F k
d,n(q, t) = F k+1

d,n (q, t) +

(
d−1∑
i=0

q(i+1)(in/2+k)ti+1

)
F k+2
d,n (q, t) for 1 ≤ k ≤ n− 2;

F n−1
d,n (q, t) =

d−2∑
i=0

q(i+1)(in/2+k)ti+1;

F n
d,n(q, t) := 1.

(2.4)

Note that this is a recursion in the auxiliary index k, not in n and d.

Given n and d, we can use (2.4) to find F 1
d,n(q, t) = Fd,n(q, t). Finally, we

make the substitution tk → q−k(k−1)/2 to find Gd,n(q). All of this is done in
the procedure Gdn in the Maple package.

3 Distribution of the size

Given fixed n and d, we can pick a uniform random (n, dn−1)-core partition
with distinct parts, and consider its its size, call it Xn,d. Then Xd,n is a
random variable, so it makes sense to inquire about its distribution. Since
Gd,n is the generating function for Xd,n, we can easily compute as many
moments of the distribution as we please, for fixed n and d.

Using this information, we can investigate how the moments behave as func-
tions of n and d. We consider two cases: n is variable and d is fixed, and vice
versa. In each case, we consider the behavior of Xd,n as the variable tends
to infinity; in particular, we address the question of asymptotic normality.
Finally, we derive formulas for the first few moments as functions of both n
and d.
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3.1 Varying d and fixing n

First, we introduce some terminology. Given a natural number k, let us
denote

mk(d, n) :=

[(
q
d

dq

)k

Gd,n(q)

]
q=1

the kth “pre-moment” of Xd,n. Thus,

Mk(d, n) :=
mk

Gd,n(1)
=

mk

Nd(n)
= E[Xk

d,n]

is the kth (straight) moment of Xd,n. For example, the mean is µd,n =
M1.

We denote the kth central moment by

M c
k(d, n) := E[(Xd,n − µ)k].

For example, the variance is σ2
d,n := M c

2 .

Finally, the kth standardized moment is

M s
k(d, n) :=

M c
k

σk
.

Note that the central, straight, and standardized moments can easily be
computed from the pre-moments.

Now, for numeric values of d and n, we can easily compute all the quantities
above. Analyzing moment data for many values of d and n confirms the
following:
Conjecture 3.1. For each n, the kth pre-moment mk(d, n) of Xd,n is a
polynomial in d. Further, the degree of this polynomial is 2k + bn/2c.

For example, our experimental evidence indicates that
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{ lim
d→∞

M s
k(d, 3)}∞k=3 = 2/7

√
5,

15

7
,
100

77

√
5,

6625

1001
,
750

143

√
5, . . .

≈ .641, 2.14, 2.91, 6.62, 11.7, . . .

{ lim
d→∞

M s
k(d, 4)}∞k=3 ≈ .162, 2.08, 1.19, 6.20, 7.05, . . .

{ lim
d→∞

M s
k(d, 5)}∞k=3 ≈ .237, 2.22, 1.76, 7.43, 10.8, . . .

{ lim
d→∞

M s
k(d, 6)}∞k=3 ≈ .052, 2.36, .671, 7.80, 5.15, . . .

. . .

{ lim
d→∞

M s
k(d, 10)}∞k=3 ≈ −0.001, 2.62, .130, 10.1, 2.17, . . . .

(3.1)

Recall that the standard normal distribution has moments 0, 1, 0, 3, 0, 15, . . . .
The sequences above seem to approach this as n → ∞, leading us to the
following:
Conjecture 3.2. For each fixed n, the distribution of Xd,n is not asymptot-
ically normal; in fact, (Xd,n−µd,n)/σd,n tends to some abnormal distribution
Xn as d → ∞. However, Xn is asymptotically normal; that is, (Xn − µ)/σ
tends to the standard normal distribution as n→∞.

3.2 Varying n and fixing d

Next, we fix d, and look at Xd,n as a sequence of random variables indexed
by n. The d = 1 case was already addressed in [ZZ], where we found that
the pre-moments are given by polynomials in n and the Fibonacci numbers.
In light of (2.1), we might expect the same to be true for arbitrary d, except
we use the generalized Fibonacci numbers, Nd(n):
Conjecture 3.3. For each d, the kth pre-moment mk(d, n) of Xd,n is of the
form a(n)Nd(n) + b(n)Nd(n+ 1), where a and b are polynomials in n.

Again, experimental evidence verifies this claim. The one anomalous case
seems to be d = 2, for which Nd(n) = 2n−1. In this case, our methods do not
yield nice formulas for the moments.

Upon computing the limits standardized moments, we do get the familiar
sequence 0, 1, 0, 3, 0, 15, . . . in this case, leading to the following:
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Conjecture 3.4. For fixed d, the distribution of Xd,n is asymptotically nor-
mal. That is, (Xd,n− µd,n)/σd,n approaches the standard normal distribution
as n→∞.

3.3 Varying n and d

Finally, it is possible (but computationally taxing) to obtain a single formula
for the kth moment as a function of both k and d. In the previous section, we
fixed d and k, we and used GuessRecPol to fit the sequence {mk(d, n)}∞n=2

to the ansatz a(n)Nd(n) + b(n)Nd(n + 1), where a(n) and b(n) are polyno-
mials. However, using the methods Section 3.1, we can fix only k and look
at {mk(d, n)}∞n=2 as a sequence of polynomials in d. Further, due to Maple’s
ability to handle linear systems with symbolic coefficients, GuessRecPol can
still be applied to this sequence. Of course, now a(n) and b(n) will be poly-
nomials in n whose coefficients are rational functions in d:
Conjecture 3.5. The kth pre-moment mk(d, n) of Xd,n is of the form A(n, d)Nd(n)+
B(n, d)Nd(n + 1), where A and B are degree 2k polynomials in n whose co-
efficients are rational functions in d.

Due to the amount of data needed to fit the kth moment to the ansatz, it
takes a few minutes even to generate the formula for the 3rd moment.

3.4 Sample formulas for the moments

Here, we present a small taste of the conjectures yielded by our Maple pack-
age. In the first two conjectures to follow, we could easily have presented
formulas for many more moments, but we omit them to save space. See the
next section for instructions to replicate these results and many more for
yourself.

In general, we conjectured that Mk(d, n) is a rational function in d for n fixed.
However, for n = 3 the straight moments seem to be polynomials:
Conjecture 3.6. The expectation of Xd,3 is d2/3 + d/4 − 1/12, and the
variance is 4d4/45 + d3/12− d2/144 + d/24 + 31/720.

Here is an example where we fix d.
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Conjecture 3.7. The expectation of X3,n is

25

39
n2 − 479

507
n+

406

507
+
N3(n+ 1)

N3(n)

(
− 1

39
n2 +

29

169
n− 158

507

)
.

Finally, here is the expectation once and for all, in terms of both n and
d:
Conjecture 3.8. The expectation of Xd,n is

(5 d3 + 7 d2 + d− 1)n2

24(4 d+ 1)
− (8 d5 + 21 d4 + 7 d3 − d2 + 3 d− 2)n

24(16 d3 − 24 d2 − 15 d− 2)

+
17 d4 + 13 d3 − 9 d2 − 7 d− 2

12(16 d3 − 24 d2 − 15 d− 2)
+
Nd(n+ 1)

Nd(n)

·
(
− (d2 − 1)n2

24(4 d+ 1)
− (2 d4 − 9 d3 − 16 d2 − 3 d+ 2)n

8(16 d3 − 24 d2 − 15 d− 2)
− d4 + 20 d3 + 9 d2 − 20 d− 10

12 (d− 2) (4 d+ 1)2

)
.

Note that this formula is singular at d = 2, explaining anomaly mentioned
earlier. However, we can still make sense of the d = 2 case by first plugging
in a numeric value of n, (so that the Nd’s become polynomials in d), then
taking the limit as d → 2. So this formula effectively works for all n and
d.

4 Using the Maple package

The Maple package core2.txt accompanying this paper may be found at
the following URL:
http://www.math.rutgers.edu/~az202/Z.

To use the Maple package, place core2.txt in the working directory and
execute read(‘core.txt‘);.

To see the main procedures, execute Help();. For help on a specific proce-
dure, use Help(<procedure name>);.

Here are some things to try:

• Gdn(q,3,7); gives the generating function (according to size) of (3, 3 ·
7− 1)-core partitions with distinct parts.
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• MdnK(d,3,1); and McdnK(d,3,2); reproduce Conjecture 3.6.

• MdnK(3,n,1); reproduces Conjecture 3.7.

• MdnK(d,n,1); reproduces Conjecture 3.8.

• map(p->limit(p,d=infinity),MsdnK(d,3,7)); reproduces the first
equation in (3.1).
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