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Abstract

This paper provides a quantitative version of the recent result of Knüpfer and Muratov
(Commun. Pure Appl. Math. 66 (2013), 1129–1162) concerning the solutions of an
extension of the classical isoperimetric problem in which a non-local repulsive term
involving Riesz potential is present. There it was shown that in two space dimensions
the minimizer of the considered problem is either a ball or does not exist, depending on
whether or not the volume constraint lies in an explicit interval around zero, provided
that the Riesz kernel decays sufficiently slowly. Here we give an explicit estimate for
the exponents of the Riesz kernel for which the result holds.

1 Introduction

This paper is concerned with a study of the following non-local extension of the classical
isoperimetric problem: minimize the energy

E(F ) = P (F ) + V (F ), (1)

among all Lebesgue measurable sets F ⊂ Rn, n ≥ 2, subject to the constraint |F | = m,
with some m > 0 fixed. Here P (F ) is the perimeter of the set F in the sense of De
Giorgi [1]:

P (F ) := sup

{∫
F
∇ · φdx : φ ∈ C1

c (Rn;Rn), |φ| ≤ 1

}
, (2)

and V (F ) describes a non-local repulsive interaction:

V (F ) :=

∫
F

∫
F

1

|x− y|α
dx dy, (3)
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for some α ∈ (0, n). Minimizers of this problem will be referred to as “minimizers of E
with mass m” in the rest of the paper.

The variational problem above arises in a number of contexts of mathematical physics,
most notably in the case of α = 1 and n = 3, when it corresponds to the classical Gamow’s
liquid drop model of an atomic nucleus [2–4]. Note that the case α = 1 is of particular
importance, since it corresponds to the repulsive Coulombic interaction and is, therefore,
also relevant to a wide variety of other physical situations, both in three and two space
dimensions (see the discussion in [5] for further details). In particular, during their studies
of a closely related Ohta-Kawasaki energy functional of diblock copolymer systems [6],
Choksi and Peletier asked if the minimizer of the above problem with n = 3 and α = 1 is a
ball whenever it exists [7] (see also [8] for an overview of the problem and recent results).
The answer to this question is not obvious at all, since the two terms in the energy in (1) are
in direct competition with each other: while the first term tends to put the mass together,
the second term favors spreading the mass apart as much as possible. As a consequence,
a single ball is no longer a minimizer if the value of m becomes sufficiently large, since for
large enough values of m it is advantageous to split the ball into two balls of equal volume
and move the resulting smaller balls far apart. A far more difficult question, however, is
whether the ball has the best shape among all competitors for the energy minimizers at a
given m > 0.

A rather detailed study of the variational problem described above was recently per-
formed by Knüpfer and Muratov [5,9] (see also [10–17] for some related recent work). Some
basic existence and non-existence properties of the minimizers of the considered variational
problem were established, together with the more detailed information about the shape of
the minimizers in certain parameter regimes [5, 9]. We summarize those findings under a
simplifying assumption of n ≤ 3, corresponding to the spatial dimensionality of the prob-
lems of physical interest. In this case it is known that a minimizer of E with mass m exists
for all m ≤ m1, for some m1 > 0 depending on α and n. If, furthermore, α < 2, then there
exist m0 > 0 and m2 > 0 depending on α and n such that the minimizer is a ball whenever
m ≤ m0, and minimizers do not exist whenever m > m2.

Clearly, if α < 2 and n ≤ 3, we have 0 < m0 ≤ m1 ≤ m2 < ∞. However, it is not
obvious whether one could choose m0 = m1 = m2, indicating that minimizers are balls
whenever they exist. A gap between the values of m0 and m1 would indicate existence of
non-radial minimizers for certain values of m. Similarly, a gap between the values of m1 and
m2 would indicate that the set of values of m for which minimizers exist is not a bounded
interval around the origin. Both of these possibilities would yield a negative answer to the
question of Choksi and Peletier for the problem under consideration. Moreover, even if
m0 = m1 = m2, it is not yet clear that those values are equal to mc1 > 0, the value of m
at which one ball of mass m has the same energy as two balls of mass 1

2m infinitely far
apart, which is what one would expect if the splitting mechanism into two equal size balls
were the dominant mechanism for reducing the energy at large masses.

Despite a general lack of understanding of the global structure of the energy minimizers

2



in the considered problem, some partial results currently exist in the case of sufficiently
slowly decaying kernels in (3) [9,13]. In [9], Knüpfer and Muratov showed that when n = 2
there exists a universal constant α0 > 0 such that the minimizer of the considered problem
is a ball whenever it exists, and one can choose m0 = m1 = m2 for all α < α0. This
result was recently extended by Bonacini and Cristoferi to higher dimensions [13]. At the
same time, it was also shown in [9] that when n = 2 and α ≤ α0, one can, in fact, choose
m0 = m1 = m2 = mc1, where the value of mc1 is explicitly given by

mc1(α) = π

(√2− 1
)

Γ
(
2− α

2

)
Γ
(
3− α

2

)
π
(

1− 2
α−2
2

)
Γ(2− α)

 2
3−α

, (4)

where Γ(z) is the Euler Gamma-function [18], confirming the global bifurcation picture
suggested by Choksi and Peletier [7, 8] in the case of n = 2 and α sufficiently small.

Whether such a picture remains valid for all n ≥ 2 and all α ∈ (0, n) is still far from
clear. In particular, as a starting point it would be interesting to know if one could choose
α0 = 2 for n = 2 in [9, Theorem 2.7]. At the very minimum, such a result would require
a quantitative version of the analysis of [9]. The goal of this paper is to provide such an
analysis. Here is our main result, which gives the following quantitative version of this
theorem.

Theorem 1.1. Let n = 2, let α ≤ 0.034, and let mc1 be given by (4). Then minimizers of
E with mass m exist if and only if m ≤ mc1, and every minimizer of E is a disk of radius√
m/π.

The proof of Theorem 1.1 mostly follows along the lines of [9], while keeping track of
the constants appearing in all the estimates. We recall that the strategy in proving [9,
Theorem 2.7] was to demonstrate, for all m ≤ M with M > 0 fixed, that for small
enough α > 0 depending only on M the minimizer, if it exists, must be a convex set
which is only a small perturbation of the disk of radius

√
m/π in the Hausdorff sense.

This is achieved by combining the quantitative version of the isoperimetric inequality with
suitable a priori upper bounds for the energy, together with a careful analysis of the rigidity
of disks with respect to small perturbations. This result is then combined with a non-
existence result for minimizers with m > M for some M > 0, which is uniform in α � 1.
Inevitably, this strategy is guaranteed to work only for sufficiently small values of α. Yet,
it is rather surprising that we were only able to prove our result for such a narrow range of
values of α, despite our attempts to strive for the best constants in the analysis wherever
possible. Perhaps this is an indication that the global bifurcation structure of the considered
variational problem may be more complex, and further non-perturbative studies of the
problem are needed.

The rest of the paper is organized as follows. In Sec. 2, we summarize several facts
about minimizers of E with mass m and state a few technical facts. In Sec. 3, we derive
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a tight upper bound on the minimal energy that scales linearly with m for large masses.
In Sec. 4, we give a quantitative version of the non-existence result for large masses. In
Sec. 5, we give a quantitative criterion about when minimizers are balls whenever they
exist. Finally, in Sec. 6 we put all the obtained estimates together and prove the main
Theorem. In this section, we also give a numerical estimate of the value of α0 ≈ 0.04273
that is slightly better than our analytical estimate.

Throughout the paper, all the constants may depend implicitly on α and ε, a parameter
related to m that appears in Sec. 5. These dependences will be suppressed whenever it
does not cause ambiguity in order to simplify the notation. The algebraic computations
were performed with the help of Mathematica 8.0 software.

2 Preliminaries

We start by collecting some basic facts about the considered variational problem. Even if we
stated the original problem in general spatial dimensionality, in two space dimensions the
minimization problem is equivalent to minimizing E among open sets with a C1 boundary.
This is because of the basic regularity property that minimizers of E inherit from being
quasi-minimizers of the perimeter (see, e.g., [19,20]). We have the following basic regularity
result for the minimizers of E (in the rest of the paper, we always assume that n = 2).

Proposition 2.1 ( [9], Proposition 2.1 ). Let m > 0 and let Ω be a minimizer of E among
all open sets with boundary of class C1 and |Ω| = m. Then

(i) ∂Ω is of class C2,β, for some β ∈ (0, 1), with the regularity constants depending only
on m and α.

(ii) Ω is bounded, connected and contains at most finitely many holes.

(iii) ∂Ω satisfies the Euler-Lagrange equation

κ(x) + 2v(x)− µ = 0, v(x) :=

∫
Ω

1

|x− y|α
dy, (5)

where κ(x) is the curvature (positive if Ω is convex) at x ∈ ∂Ω and µ ∈ R.

Note that since Ω in Proposition 2.1 is connected, we also have the following elementary
bound:

diam(Ω) ≤ 1

2
P (Ω), (6)

which will be repeatedly used throughout our paper.
Concerning the minimizers of E (in a wider class of sets of finite perimeter, also for

any dimension n ≥ 2 and any fixed α ∈ (0, n)), we know that their existence is guaranteed
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for all sufficiently small values of m [5, Theorem 3.1]. For n = 2, existence of minimizers
in the sense of Proposition 2.1 then follows, possibly after a redefinition of Ω on a set of
Lebesgue measure zero [5, Proposition 2.1]. In the context of the present paper, however,
we have the following quantitative improvement of the existence result in [9].

Proposition 2.2. Suppose that the minimizer of E with mass m, whenever it exists, is a
disk of radius

√
m/π for all m ≤ m0 with some m0 > mc1, where mc1 is defined in (4).

Then

(i) The minimizer exists and is a disk for all m ≤ mc1.

(ii) There is no minimizer for all mc1 < m ≤ m0.

Proof. The proof follows from [9, Lemma 3.6 and Proposition 8.8]. Indeed, suppose that
m ≤ m0. If the minimizer of E with mass m exists, it is a disk by assumption of the
proposition. However, by [9, Lemma 3.6] this is not possible if m > mc1, yielding the
second statement. To prove the first statement, suppose, by contradiction, that there is
no minimizer and m ≤ mc1. Then by [9, Proposition 8.8] and the assumption of the
proposition, for any measurable set F ⊂ R2 with |F | = m there is a set F̃ = ∪Ni=1BRi(xi),
a union of finitely many disjoint disks, such that |F̃ | = m and E(F̃ ) ≤ E(F ). Then,

again, repeatedly applying [9, Lemma 3.6], we have E
(
B√

m/π
(0)
)
< E(F̃ ), indicating

that B√
m/π

(0) is a minimizer of E with mass m, a contradiction.

We will need several additional properties related to disks as test configurations. First
we give an explicit formula for the potential energy of a disk of radius R.

Lemma 2.3 ( [9], Corollary 3.5 ). We have

E(BR(0)) = 2πR+
2π2Γ(2− α)

Γ
(
2− α

2

)
Γ
(
3− α

2

) R4−α. (7)

Next, we introduce the potential associated with the unit disk:

vB(|x|) :=

∫
B1(0)

1

|x− y|α
dy. (8)

An explicit computation shows that [9, Lemma 3.8]

vB(r) =


(
π
rα

)
2F1

(
α
2 ,

α
2 ; 2; 1

r2

)
, r ≥ 1,(

2π
2−α

)
2F1

(
α−2

2 , α2 ; 1; r2
)
, r < 1.

(9)

where 2F1(a, b; c; z) is the hypergeometric function [18]. We also have the following useful
properties of vB.

5



Lemma 2.4. We have

vB(0) =
2π

2− α
. (10)

If also α < 1, we have vB ∈ C1([0,∞)) and∣∣∣∣dvB(1)

dr

∣∣∣∣ = max
r≥0

∣∣∣∣dvB(r)

dr

∣∣∣∣ =
πα(2− α)Γ(1− α)

2Γ2(2− α
2 )

. (11)

Proof. The formula in (10) follows from (9) by noting that 2F1

(
α−2

2 , α2 ; 1; 0
)

= 1. Smooth-
ness of vB follows from [9, Lemma 3.8]. Finally, to obtain (11), we differentiate the formula
in (9) twice with respect to r. We get for r > 1:

d2vB

dr2
=

1

4
παr−α−4

×
(

4(α+ 1)r2
2F1

(
α

2
,
α+ 2

2
; 2;

1

r2

)
+ α(α+ 2) 2F1

(
α

2
+ 1,

α

2
+ 2; 3;

1

r2

))
, (12)

and for r < 1:

d2vB

dr2
= −1

4
πα

(
α(α+ 2)r2

2F1

(α
2

+ 1,
α

2
+ 2; 3; r2

)
+ 4 2F1

(
α

2
,
α+ 2

2
; 2; r2

))
. (13)

An inspection of these formulas shows that vB(r) is a concave function for r < 1 and
a convex function for r > 1. Therefore, since dvB(0)/dr = 0 and dvB(∞)/dr = 0, the
derivative of vB(r) is negative for all r > 0 and reaches its absolute minimum at r = 1.
The second equality in (11) again follows from [9, Lemma 3.8].

Finally, we introduce the isoperimetric deficit of a measurable set F ⊂ R2:

D(F ) :=
P (F )√
4π|F |

− 1. (14)

The following quantitative version of the isoperimetric inequality due to Bonnesen will be
useful [21] (see also [22–24]).

Lemma 2.5 ( [21] ). Let F ⊂ R2 be a convex open set which is bounded. Then there exists
x0 ∈ R2 and r1, r2 satisfying 0 < r1 ≤ r2 such that Br1(x0) ⊆ F ⊆ Br2(x0) and

(r2 − r1)2

|F |
≤ (2 +D(F ))D(F ). (15)

Note that for D(F )� 1 the constant in the right-hand side of (15) is optimal [21–24].
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3 An upper bound for the minimal energy

In this section, we derive an ansatz-based upper bound for the minimal energy scaling
linearly with m for large m, which will be useful in a number of proofs. Our ansatz
consists of n disks of equal mass, spaced arbitrarily far apart. We choose n as a function
of m to optimize our bound.

For now, it is convenient to work in terms of R :=
√
m/π. We shall switch back to m

in the final step. Also, we shall focus on bounding the energy per unit area; this will then
yield a corresponding energy bound in terms of m. We define the constant

V0(α) := V (B1(0)) =
2π2Γ(2− α)

Γ(2− α
2 )Γ(3− α

2 )
, (16)

which is just the potential energy of a unit ball. Then E1(R) := 2πR+V0(α)R4−α denotes
the energy of one disk of radius R by Lemma 2.3. We denote the infimum of the energy ob-
tained by splitting the mass m = πR2 into n disks of equal radius by En(R) := nE1(R/

√
n).

Here we noted that the non-local interaction between these disks can be made arbitrarily
small by translating the disks sufficiently far apart. Finally, we define the correspond-
ing energy per unit area ρn(R) := En(R)/(πR2). For notational convenience we let
ρ(R) := ρ1(R) = E1(R)/(πR2). Note that

ρn(R) = nE1(R/
√
n)/(πR2) = ρ(R/

√
n). (17)

To find our upper bound, we characterize the envelope of the graphs of the sequence of
functions which are appropriate dilations of ρ(R), the energy per unit area of a single disk
of radius R. Three of these functions are illustrated in Figure 1. From this figure, one may
suspect that the envelope can be determined completely by locating the intersections of the
adjacent graphs. This is proved in the following sequence of lemmas, which are intended
to deal with the elementary, but rather tedious algebra involved.

Lemma 3.1. For n = 1, 2, . . ., the equation ρn(R) = ρn+1(R) has a unique positive solution
given by

Rcn :=

 2π
(√
n+ 1−

√
n
)

V0

(
n
α
2
−1 − (n+ 1)

α
2
−1
)
 1

3−α

.

Proof. Since R > 0, we can solve the equivalent equation En(R) = En+1(R). Solving

n

[
2πR√
n

+ V0

(
R√
n

)4−α
]

= (n+ 1)

[
2πR√
n+ 1

+ V0

(
R√
n+ 1

)4−α
]

for R gives the result.
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Figure 1: The energy per unit area ρn(R) for n = 1, 2, 3 (dotted lines), along with the
intersection points (Rcn, ρcn) and the minimum ρmin(R) (solid line) for α = 0.1.

Lemma 3.2. Suppose the four functions f1, f2, g1, g2 ∈ C1([0, 1]) satisfy

1. fi(0) = gi(1) = 0 for i = 1, 2;

2. 0 < f ′1(x) < f ′2(x) ∀x ∈ (0, 1);

3. 0 > g′1(x) > g′2(x) ∀x ∈ (0, 1).

Then for i = 1, 2 there exist unique xi ∈ (0, 1) such that fi(xi) = gi(xi) =: yi, with y1 < y2.

Proof. Existence of unique xi for i = 1, 2 follows from applying the intermediate value
theorem to hi := fi − gi. To prove y1 < y2, first consider f1(x) and g2(x). These also have
a unique intersection point; call it (x3, y3). Define h3 := f1 − g2. Then h3(0) = −g2(0) =
h2(0), and 0 < h′3 = f ′1−g′2 < f ′2−g′2 = h′2. So for x ∈ (0, 1), h2 and h3 are both increasing
and h3 < h2. So x3, the root of h3, satisfies x3 > x2. Since g2 is decreasing, we have
g2(x3) < g2(x2), which implies that y3 < y2. Similarly, by comparing the intersection of f1

and g2 to that of f1 and g1, we can show that y1 < y3. Combining with the above, we get
y1 < y2.

Lemma 3.3. Let f1, g1 and y1 be as in Lemma 3.2, and suppose g3(x) = g1(x+ a), where
0 < a < 1. Then the unique solution x4 ∈ (0, 1) of f1(x4) = g3(x4) =: y4 satisfies y4 < y1.

Proof. Analogous to that of Lemma 3.2.
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Lemma 3.4. Suppose f1 ∈ C2(R+) satisfies f ′′1 > 0 and attains its minimum at x0. Let
f2(x) := f1(x/a), where a > 1. Then

(i) f2 satisfies f ′′2 > 0 and attains its minimum at ax0.

(ii) There is a unique x1 ∈ (x0, ax0) such that f1(x1) = f2(x1).

(iii) For all x < x1 we have f1(x) < f2(x) and for all x > x1 we have f1(x) > f2(x).

(iv) Define a new function f3(x) := f2 (x+ (a− 1)x0) which is f2 shifted so its minimum
coincides with that of f1. Then |f ′3| ≤ |f ′1|, with equality only when x = x0.

Proof. (i) is obvious. To prove (ii), we use the fact that f1(x0) = f2(ax0) and f ′1 > 0, f ′2 < 0
for all x ∈ (x0, ax0). By a slightly modified version of Lemma 3.2, we know there is a unique
intersection point in (x0, ax0). Also, we see that now (iii) certainly holds in [x0, ax0]. The
possibility of intersection outside of this interval will be ruled out when we prove the rest
of (iii).

To prove f2(x) > f1(x) for x < x0, define the map σ : (x, y) 7→ (ax, y). Then σ maps
the graph of f1 on (0, x0/a) onto the graph of f2 on (0, x0). If x ∈ (0, x0/a), then σ maps
(x, f1(x)) to a point above the graph of f1, because f1 decreases on (0, x0). Similarly, since
f1(x) increases for x > x0, the image under σ of its graph on this interval lies below its
own graph. But this image is the graph of f2(x) for x > ax0. So f2(x) < f1(x) for all
x > ax0. This completes the proof of (iii).

Finally, in part (iv), f ′1(x0) = f ′3(x0) = 0. Also, f ′3(x) < 0 for x < x0 and f ′3(x) > 0 for
x > x0. Then, by the chain rule

f ′3(x) = f ′2 (x+ (a− 1)x0) =
1

a
f ′1

(
x+ (a− 1)x0

a

)
=

1

a
f ′1

(
x0 +

x− x0

a

)
. (18)

Suppose x > x0. Then

x0 < x0 +
x− x0

a
< x.

Since f ′1(x) is positive and increasing for x > x0, by (18) we get

0 < f ′3(x) < f ′1

(
x0 +

x− x0

a

)
< f ′1(x).

Now suppose x < x0. Then

x < x0 +
x− x0

a
< x0.

Since f ′1(x) is negative and increasing for x < x0, we get analogously

f ′1(x) < f ′1

(
x0 +

x− x0

a

)
< f ′3(x) < 0.

Thus part (iv) is proved.
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Lemma 3.5. For n = 1, 2, . . . , and α ≤ 1, ρn(R) has a positive second derivative for all
R > 0 and attains the unique minimum at

Rn :=
√
n

(
2π

V0(2− α)

) 1
3−α

.

Proof. First, we prove the n = 1 case by differentiating ρ twice:

ρ(R) =
2

R
+
V0

π
R2−α

ρ′(R) = − 2

R2
+
V0

π
(2− α)R1−α

ρ′′(R) =
4

R3
+

V0

πRα
(2− α)(1− α).

The second derivative is clearly positive for all R > 0. Hence ρ(R) attains the unique
minimum at R = R1, where

R1 =

(
2π

V0(2− α)

) 1
3−α

.

In the case of general n > 1, (17) and part (i) of Lemma 3.4 yield the result.

Lemma 3.6. For R > 0, let ρmin(R) := min
n∈N

ρn(R). If we partition R+ into disjoint

intervals

I1 := (0, Rc1],

In := (Rc(n−1), Rcn], n = 2, 3, . . . ,

then
R ∈ In =⇒ ρmin(R) = ρn(R).

Proof. First, by part (ii) of Lemma 3.4, we have that Rcn lie between the successive minima
of ρn, so they increase in n. By part (iii) of Lemma 3.4, we have

R < Rcn =⇒ ρn(R) < ρn+1(R) (19)

R > Rcn =⇒ ρn(R) > ρn+1(R). (20)

Suppose R ≤ Rcn, n ≥ 1. Then R ≤ Rcn < Rc(n+1) < · · · , and repeatedly using (19) gives

ρn(R) ≤ ρn+1(R) ≤ · · · .

The result of the Lemma for R ∈ I1 then follows immediately. Otherwise, suppose R >
Rc(n−1), where n > 1. Then R > Rc(n−1) > Rc(n−2) > · · · , so (20) gives

ρn(R) < ρn−1(R) < · · · < ρ1(R).

Thus R ∈ (Rc(n−1), Rcn] implies that ρn(R) ≤ ρk(R) for every k ∈ N, yielding the claim.
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Lemma 3.7. For α ≤ 1, the sequence ρcn := ρn(Rcn) is decreasing in n.

Proof. Let dn := Rc(n+1)−Rcn = Rc1(
√
n+ 1−

√
n) be the distance between the successive

minima described in Lemma 3.5. Clearly (dn) is decreasing. Now consider the graphs of
functions ρn(R) and ρn+1(R), whose unique intersection point is (Rcn, ρcn). Shift these
horizontally so that their minima are at R = 0 and R = dn, and call the new functions
whose graphs these are as f2 and g2, respectively. Note that the ρ-value of the intersection
of these new functions is still ρcn. Next, consider the graphs of ρn+1(R) and ρn+2(R), whose
intersection point is (Rc(n+1), ρc(n+1)). As before, slide these so their respective minima
are at R = 0 and R = dn, and call the new functions whose graphs these are as f1, g1. By
(17) and part (iv) of Lemma 3.4, f1, f2, g1, g2 satisfy, up to translations and dilations, the
hypotheses of Lemma 3.2. Thus, the intersection of the graphs of f1 and g1 lies below that
of f2 and g2.

Let g3 be g1 shifted to the left so that its minimum is now at dn+1 rather than dn. By
Lemma 3.3, the intersection point of the graphs of f1 and g3 is still below that of f2 and
g2. But the ρ-value of this intersection is ρc(n+1). Thus ρc(n+1) < ρcn for every n ∈ N.

Lemma 3.8. For α ≤ 1 and R ≥ Rc1, we have ρmin(R) ≤ ρc1.

Proof. Suppose R ≥ Rc1. Since ρmin(R) is convex between successive Rcn, it lies below the
piecewise linear function connecting the (Rcn, ρcn) points. By Lemma 3.7, this function
decreases.

We are now able to prove the main result of this section.

Proposition 3.9 (Upper Bound on Minimal Energy). If α ≤ 1 and Ω is a minimizer of
E with mass m ≥ mc1, where mc1 is defined in (4), then

E(Ω) ≤ mρc1 =
m

mc1
E
(
B√

mc1/π
(0)
)
.

Proof. In view of Lemma 3.8, testing E with a union of n ≥ 1 disks of mass m/n sufficiently
far apart and choosing n optimally, we get configurations whose energy can be made
arbitrarily close to mρc1. The desired inequality then follows.

4 Nonexistence of minimizers

The upper bound for the minimum of E obtained in the preceding section allows us to
find a condition guaranteeing nonexistence of minimizers as in [9]. Here, however, we will
further refine those estimates to ensure that the threshold value of m for non-existence
approaches mc1(0) ≈ 2.051 as α→ 0, which is sharp.

We introduce an auxiliary function

ρ0(R) :=
2

R
+

2απ1−α

ραc1
R2−2α, (21)
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where, as in Proposition 3.9, ρc1 = E1(Rc1)/(πR2
c1) and Rc1 =

√
mc1/π. Then we have

the following result concerning the roots of the equation ρ0(R) = ρc1 that exceed Rc1.

Lemma 4.1. For every α ≤ 1
2 there exists a unique value of R0 ≥ Rc1 such that ρ0(R0) =

ρc1. Moreover, if R > Rc1 then ρ0(R) > ρc1 if and only if R > R0.

Proof. First of all, observe that by (6) we have

πR2
c1ρc1 = E(BRc1(0)) = P (BRc1(0)) + V (BRc1(0))

≥ P (BRc1(0)) +
π2R4

c1(
1
2P (BRc1(0))

)α .
Therefore, P (BRc1(0)) < πR2

c1ρc1 and

πR2
c1ρc1 > 2πRc1 +

2απ2−α

ραc1
R4−2α
c1 = πR2

c1ρ0(Rc1).

Thus ρ0(Rc1) < ρc1. On the other hand, since ρ0(R) is continuous and ρ0(R) → +∞ as
R→ +∞, there exists R0 ≥ Rc1 such that ρ0(R0) = ρc1. Moreover, since

ρ′′0(R) =
4

R3
+

21+απ1−α

ραc1R
2α

(1− α)(1− 2α) > 0 ∀R > 0,

the function ρ0(R) is strictly convex and, hence, the value of R0 is unique. Finally, the last
statement follows from the fact that ρ0(R)− ρc1 changes sign from negative to positive as
R increases.

We now state the nonexistence result.

Proposition 4.2 (Nonexistence of Minimizers). Let α ≤ 1
2 and let m2 = πR2

0, where R0

is as in Lemma 4.1. Then there is no minimizer of E with mass m for any m > m2.

Proof. Suppose, to the contrary, that a minimizer Ω exists and m > m2. By Proposition
3.9 and (6) we have

mρc1 ≥ E(Ω) = P (Ω) + V (Ω) ≥ P (Ω) +
m2(

1
2P (Ω)

)α .
Therefore, we get P (Ω) ≤ mρc1 and, hence, with the help of the isoperimetric inequality
we obtain

ρc1 ≥
√

4π

m
+

2αm1−α

ραc1
= ρ0(

√
m/π),

which contradicts Lemma 4.1.

12
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Figure 2: Regions of guaranteed non-existence of minimizers. The dotted line shows the
plot of m2(α) from Proposition 4.2 and the solid line shows the plot of mc1(α) from (4),
both obtained numerically. Dark shaded area shows the region where minimizers of E
with mass m do not to exist. Light shaded area shows the region in which disks cannot be
minimizers.

We note that the value of m2 = m2(α) in Proposition 4.2 satisfies

lim
α→0

m2(α) = mc1(0).

This follows from the fact that the statement of Lemma 4.1 remains valid up to α = 0
and that limα→0 ρ0(R) = ρ(R) for every R > 0. Therefore, since ρ(R) is strictly increasing
when R > Rc1, we have that R0 = Rc1 in this case. The numerically computed dependence
of m2 on α in Proposition 4.2, alongside with mc1(α) from (4), is presented in Fig. 2. This
figure also shows regions in the (α,m)-plane in which minimizers of different kinds are
guaranteed to fail to exist.

5 Shape of minimizers

We now investigate under which conditions the unique, up to translations, minimizer of
E with mass m is a disk. This is to be expected in the regime of sufficiently small values
of m depending on α [9]. Here we quantify this statement by finding a mass m0 = m0(α)
below which the minimizer, if it exists, is a disk, and such that m0(α) diverges as α→ 0.

Let Ω be a minimizer of E with mass m. In this section it is convenient to introduce a

13



rescaling Ωε := Ω
√
π/m which ensures that |Ωε| = |B1(0)| = π. Here

ε :=
(m
π

) 3−α
2
, (22)

is the new parameter, whose smallness implies smallness of m. In terms of Ωε, we have√
π/mE(Ω) = Eε(Ωε), where [9]

Eε(Ωε) := P (Ωε) + εV (Ωε), (23)

and Ωε is a minimizer of Eε among all open bounded sets with boundary of class C1 and
area equal to π. Throughout the rest of this section, Ωε always stands for a minimizer of
Eε.

We wish to estimate the range of values of ε > 0 for which Ωε must be a unit disk. We
proceed via a sequence of lemmas.

Lemma 5.1 (Bound on isoperimetric deficit). If D(Ωε) is the isoperimetric deficit of Ωε

defined in (14), then

D(Ωε) < C0, C0(α, ε) :=
ε

2π

(
V0(α)− π2−α(

1 + ε
2πV0(α)

)α
)
> 0.

Proof. Testing the energy with a unit ball and using Lemma 2.3, we obtain

P (Ωε) + εV (Ωε) = E(Ωε) ≤ E(B1(0)) = 2π + εV0.

In particular, P (Ωε) ≤ 2π + εV0 and, therefore, by (6) we have

V (Ωε) ≥
2απ2

Pα(Ωε)
≥ π2−α(

1 + ε
2πV0

)α .
Combining the two inequalities above gives the result.

Remark 5.2. Observe that C0(α, ε) is a monotonically increasing function of ε for α fixed,
and that C0(α, ε) → 0 as α → 0 with ε fixed. In particular, in view of Fig. 2 minimizers
of Eε, if they exist, are small perturbations of unit disks for α� 1.

Lemma 5.3 (Bounds on potential). Let

v(x) :=

∫
Ωε

1

|x− y|α
dy (24)

be the potential associated with Ωε. Then we have

C1 < v(x) < C2 ∀x ∈ Ωε,

where

C1(α, ε) :=
π1−α

(1 + C0(α, ε))α
and C2(α) :=

2π

2− α
.

14



Proof. For any x ∈ Ωε, let vB be as in (8). Then

vB(0)− v(x) =

∫
B1(x)

1

|x− y|α
dy −

∫
Ωε

1

|x− y|α
dy

=

∫
B1(x)\Ωε

1

|x− y|α
dy −

∫
Ωε\B1(x)

1

|x− y|α
dy

> |B1(x) \ Ωε| − |Ωε \B1(x)| = 0,

since |Ω| = |B1(x)|. Therefore, v(x) is bounded from above by vB(0), whose value is given
by (10).

On the other hand, with the help of Lemma 5.1 and (6) we obtain

v(x) ≥ 2απ

Pα(Ωε)
=

π1−α

(1 +D(Ωε))α
> C1,

which yields the lower bound.

Lemma 5.4 (Convexity). There exists a unique ε = ε0(α) > 0 which solves

1

1 + C0(α, ε)
+ 2ε(C1(α, ε)− C2(α)) = 0. (25)

Furthermore, if ε < ε0 then Ωε is strictly convex.

Proof. First, in view of Remark 5.2 observe that since C2 > C1 and since C1(α, ε) is
decreasing as a function of ε, the left-hand side of (25) is a monotonically decreasing
continuous function of ε. Therefore, existence of a unique solution of (25) is guaranteed
by the fact that its left-hand side approches unity as ε → 0, while tending to −∞ when
ε→ +∞.

By Proposition 2.1 (after rescaling), the Euler-Lagrange equation for ∂Ωε at x ∈ ∂Ωε

is
κ(x) + 2εv(x)− µ = 0, (26)

where κ is curvature (positive if Ωε is convex) and µ ∈ R is the Lagrange multiplier.
Integrating (26) over the outer portion ∂Ω0

ε of the boundary ∂Ωε with respect to arclength
and using Lemmas 5.1 and 5.3 yields

µ =
2π

|∂Ω0
ε|

+ 2εv̄ ≥ 2π

P (Ωε)
+ 2εv̄ >

1

1 + C0
+ 2εC1,

where v̄ is the average of v over ∂Ω0
ε. Then by (26) and Lemma 5.3, we have

κ(x) = µ− 2εv(x) >
1

1 + C0
+ 2ε(C1 − C2),

which is positive under the assumption of the Lemma.
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Lemma 5.5 (Confinement to an annulus). If Ωε is convex, there exist x0 ∈ R2 and δ ≥ 0
such that

B1−δ(x0) ⊆ Ωε ⊆ B1+δ(x0)

and

δ ≤
√
πD(Ωε)(D(Ωε) + 2), (27)

with the convention that B1−δ(x0) = ∅ if δ ≥ 1.

Proof. By Lemma 2.5, there exist x0 ∈ R2 and 0 < r1 ≤ 1 ≤ r2 such that Br1(x0) ⊆ Ωε ⊆
Br2(x0) and r2 − r1 ≤

√
πD(Ωε)(D(Ωε) + 2). Hence 1 − r1 ≤

√
πD(Ωε)(D(Ωε) + 2) and

r2 − 1 ≤
√
πD(Ωε)(D(Ωε) + 2), and the result follows.

We are now ready to prove a quantitative criterion which guarantees that the minimizer
of Eε, if it exists and is convex, is a unit disk for a given value of ε. The proof follows the
ideas in the proof of [9, Proposition 7.5] in a quantitative way.

Proposition 5.6 (Minimizers are disks). There exists a unique ε = ε1(α) > 0 solving

εC3(α, ε)
[
εC3(α, ε)C0(α, ε)

(
C0(α, ε) + 2

)
+ 2
]

= 1, (28)

where

C3(α, ε) :=
π2α(2− α)Γ(1− α)

2Γ2(2− α
2 )

(
1 +

2

3

√
πC0(α, ε)(C0(α, ε) + 2)

)
. (29)

Furthermore, if ε < ε1 and Ωε is convex, then Ωε is a unit disk.

Proof. In view of Remark 5.2, the left-hand side of (29) increases monotonically from zero
to infinity as ε runs from zero to infinity. Hence there is a unique solution to (28).

Now, testing Eε with B1(x0), where x0 is as in Lemma 5.5, gives

P (Ωε) + εV (Ωε) = Eε(Ωε) ≤ Eε(B1(x0)) = 2π + εV0,

which is equivalent to

D(Ωε) ≤
ε

2π
(V0 − V (Ωε)) =:

ε

2π
∆V. (30)

Combining (27) and (30) then gives

δ2 ≤ ε

2
∆V

( ε

2π
∆V + 2

)
. (31)
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On the other hand, arguing as in [9, Eqs. (7.14) and (7.15)] and applying Lemma 2.4, we
then find that

∆V ≤ 2

∫
B1(x0)4Ωε

|vB(|x− x0|)− vB(1)| dx

≤ 2

∣∣∣∣dvB(1)

dr

∣∣∣∣ ∫
B1+δ(x0)\B1(x0)

(|x− x0| − 1) dx

= 4π

∣∣∣∣dvB(1)

dr

∣∣∣∣ ∫ δ

0
t(1 + t)dt

= 2π

∣∣∣∣dvB(1)

dr

∣∣∣∣ (1 +
2

3
δ

)
δ2, (32)

where to arrive at the second line in (32) we reflected all the points of the set B1\Ωε with
respect to ∂B1(x0). Furthermore, since in view of Lemmas 5.1 and 5.5 we have

δ ≤
√
πC0(C0 + 2), (33)

from (32) and (11) we get

∆V ≤ 2δ2C3. (34)

Therefore, substituting the inequality in (34) back to (31) and then using (33) again yields
that either δ = 0 or

εC3(α, ε)
[
εC3(α, ε)C0(α, ε)

(
C0(α, ε) + 2

)
+ 2
]
≥ 1. (35)

Since the latter is impossible by our assumption, the rest of the proposition is proved.

The dependences of m(ε0) (thin solid line) and m(ε1) on α (dotted/solid line) com-
puted numerically are presented in Fig. 3. These curves, together with the curve mc1(α)
(dashed/solid line) separate the parameters into several regions (see the caption for an
explanation). Specifically, the region below the thick solid line indicates the parameters
for which the minimizer of E with mass m exists and is a disk, while the region above the
solid line and below the dotted line is where no minimizers exist. Our numerical results
indicate that one can chose m0(α) = m(ε1(α)), using Proposition 5.6 and Eq. (22). Then
for any mass m ∈ (0,m0(α)), the minimizer, provided it exists, is a disk.

6 Proof of the main Theorem

Figure 4 summarizes our results obtained numerically from evaluating the different criteria
of existence and non-existence obtained in the preceding sections. From this figure one
can see that the curve m2(α), above which nonexistence of minimizers holds, intersects

17



0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0

1

2

3

4

5

Α

m

minimizers are disks

no minimizers

minimizers
convex

if exist

disks are not minimizers

Figure 3: Regions of guaranteed convexity and existence of minimizers. The thin solid line
shows the plot of m(ε0(α)) from Lemma 5.4 and Eq. (22), the dotted line shows the plot
of m(ε1(α)) from Proposition 5.6 and Eq. (22), the dashed line shows the plot of mc1(α),
and the thick solid line encloses the region in which minimizers exist and are disks. Light
gray area shows the region where minimizers are convex, if they exist. Medium gray area
shows the region where there are no minimizers. Dark gray area shows the region in which
minimizers exist and are disks.

the curve m0(α), below which minimizers must be disks, at α = α0 ≈ 0.04273. This
indicates that the statement of Theorem 1.1 should hold below this value of α. In the
rest of this section, we give an analytical proof of this fact with a slightly reduced value
of α0. The only difficulty at this point is that the dependences of m0, m2 and mc1 on
α are given by extremely complicated algebraic formulas and, therefore, their qualitative
behavior (e.g., monotonicity) is not easy to establish. Instead, we simply estimate those
functions explicitly for α ∈ (0, α0], using the known behavior of the Gamma function and
other functions appearing in the estimates. Note that our analytical estimates below are
rather ad hoc and are not intended to be completely optimal. We believe that α0 = 0.0427,
which comes from our numerical results, should give essentially the best constant with our
approach. Proving this fact would be an extremely tedious exercise in calculus, which we
decided not to pursue.

Proof of Theorem 1.1. Since Γ(z) is a monotonically increasing function of z for z ≥ 1.966
and a monotonically decreasing function of z for 0 < z ≤ 1, for all 0 < α ≤ 0.034 we can
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Figure 4: Summary of the numerical results. Above the solid line no minimizers exist;
below the dotted line minimizers, if they exist, are disks; above the dashed/thick solid
line (lighter gray region) disks are not minimizers; below the solid line (dark gray region)
minimizers are disks.

bound its values that appear in our estimates as follows:

0.986 ≤ Γ(2− α) ≤ 1,

0.992 ≤ Γ
(

2− α

2

)
≤ 1,

1.968 ≤ Γ
(

3− α

2

)
≤ 2,

1 ≤ Γ(1− α) ≤ 1.021.

Then from (4) we find that 2.007 ≤ mc1(α) ≤ 2.087.
Next, define (here and everywhere below the constants are as in the previous sections,

with the parametric dependences always indicated)

F1(α, ε) := εC3(α, ε)
[
εC3(α, ε)C0(α, ε)

(
C0(α, ε) + 2

)
+ 2
]
− 1.

Assume ε ≤ 0.846 and 0 < α ≤ 0.034. Using the bounds above, we then get

C0(α, ε) ≤ 0.121,

C3(α, ε) ≤ 0.557,

F1(α, ε) < 0.
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By Proposition 5.6, it then follows that ε1(α) > 0.846, and, hence, m(ε1) > 2.806, for
0 < α ≤ 0.034.

Similarly, we can define

F2(α, ε) :=
1

1 + C0(α, ε)
− 2ε(C2(α)− C1(α, ε)).

We find that if ε ≤ 0.846 and 0 < α ≤ 0.034, then

C1(α, ε) ≥ 3.009,

C2(α) ≤ 3.196,

F2(α, ε) ≥ 0.575 > 0.

Therefore, by Lemma 5.4 we have ε0(α) > 0.846 and, hence, m(ε0) > 2.806 for 0 < α ≤
0.034.

Finally, we wish to obtain an upper bound for m2(α). Define

F3(α,R) := ρ0(α,R)− ρc1(α),

and recall that

ρc1(α) =
2

Rc1(α)
+
V0(α)

π
R2−α
c1 (α).

Then for 0 < α ≤ 0.034 and R = 0.945 we have

0.799 ≤ Rc1(α) ≤ 0.815

ρc1(α) ≤ 4.656,

ρ0(α,R) ≥ 4.677,

F3(α,R) ≥ 0.021 > 0.

Thus, by Proposition 4.2 and the arguments in the proof of Lemma 4.1 we have R0(α) <
0.945 and, hence, m2(α) < 2.806 for 0 < α ≤ 0.034.

In conclusion, m2(α) < min (m(ε0),m(ε1)) for every α ∈ (0, 0.034], which proves the
result.
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