
Solving satisfiability using inclusion-exclusion

Anthony Zaleski∗

July 30, 2017

Abstract

Using Maple, we implement a SAT solver based on the principle of
inclusion-exclusion and the Bonferroni inequalities. Using randomly
generated input, we investigate the performance of our solver as a func-
tion of the number of variables and number of clauses. We also test it
against Maple’s built-in tautology procedure. Finally, we implement
the Lovász local lemma with Maple and discuss its applicability to
SAT.

1 Introduction to SAT

First, some terminology. A Boolean variable is a variable which can take
on values in {true, false}, or, equivalently, {0, 1} (e.g. x). A literal is a
Boolean variable or its negation (e.g. ¬x). Disjunction means “or” (∨)
and conjunction means “and” (∧). A disjunctive clause is a disjunction of
literals (e.g. x ∨ ¬y ∨ z); similarly, we can define the conjunctive clause. A
conjunctive normal form (CNF) is a conjunction of disjunctive clauses (e.g.
¬z ∧ (y ∨ z)∧ (x∨¬y)); similarly, we can define the disjunctive normal form
(DNF).

We say that a CNF S in the variables x1, . . . , xn is satisfiable iff there exists an
assignment of truth values to x1, . . . , xn that makes S true. For example, the
CNF in the previous paragraph is satisfiable: the first clause forces z = false;

∗Department of Mathematics, Rutgers University (New Brunswick), 110 Frelinghuysen
Road, Piscataway, NJ 08854-8019, USA.

1

then the second forces y = true; and the third forces x = true, giving us a
valid assignment. On the other hand, the CNF (x∨y)∧¬x∧¬y is, of course,
not satisfiable.

Given a CNF in n variables, one obvious way to determine its satisfiability
is to check all 2n assignments to the variables. There is an ongoing effort to
develop more efficient algorithms to determine satisfiability. We call these
algorithms “SAT solvers.” Currently, even the most efficient SAT solvers
are exponential time; one can always construct worst-case scenarios that
take long for the algorithm to analyze. In fact, SAT has been shown to be
NP-complete, so a polynomial time SAT solver would indeed be breaking
news.

Here, we shall certainly not present a polynomial-time algorithm, or even one
that is practically more competent than current solvers. Rather, we wish to
outline a simple, novel approach to solving SAT, analyze its strengths and
weaknesses, and discuss how it might be used as the basis for a more powerful
solver.

2 SAT and inclusion-exclusion

Suppose S = C1∧· · ·∧CN is a CNF with N clauses and n variables x1, . . . , xn.
Then, S is satisfiable iff ¬S = ¬C1 ∨ · · · ∨ ¬CN is not a tautology. So SAT
can be rephrased as “given an arbitrary DNF, determine if it is a tautology.”
We shall use this formulation in our approach.

Thus, let S = C1 ∨ · · · ∨ CN be a DNF with N clauses and n variables
x1, . . . , xn. We wish to determine if all 2n possible assignments to the vari-
ables result in S being true. We can interpret this probabilistically: If we pick
a uniform random assignment, is Pr[S = true] = 1? Equivalently, letting Ak

be the event that Ck is satisfied, is Pr[∪kAk] = 1?

Recall that we can compute the probability of such a union using the follow-
ing:
Proposition 2.1 (Principle of Inclusion-Exclusion). Let A1, . . . , AN be events
in a finite probability space. For I ⊂ [N], define

AI =
⋂
j∈I

Aj.

2

Then,

Pr[∪kAk] =
N∑
i=1

(−1)i+1
∑

I⊂[N],|I|=i

Pr[AI].

So our problem amounts to finding Pr[AI] for arbitrary I ⊂ [N], which is
easy: Let V be the set of literals appearing in the clauses {Cj : j ∈ I}; then,
Pr[AI] = 0 if V contains a variable and its negation, and Pr[AI] = 2−|V |

otherwise.

This idea is easily implemented to produce a simple SAT solver which always
terminates with a correct answer. Such a solver, along with some test results,
is briefly outlined in [GC].

However, notice that the sums in Proposition 2.1 grow with the number of
clauses. Luckily, we have the Bonferroni inequalities, which tell us that we
can compute the outer sum partially and still get a bound on the probability
we are after:
Proposition 2.2 (Bonferroni Inequalities). With the notation of Proposition
2.1, let 1 ≤ k ≤ N . Then,

Pr[∪kAk] ./
k∑

i=1

(−1)i+1
∑

I⊂[N],|I|=i

Pr[AI],

where ./ means ≤ if k is odd and ≥ if k is even.

Using the Bonferroni inequalities and looping over k, we can get a sequence
of upper and lower bounds on Pr[∪kAk]. If at some point we find that
Pr[∪kAk] < 1 or Pr[∪kAk] ≥ 1, then we can exit the loop and determine that
S is not a tautology or a tautology, respectively. In the worst case, we have
to go up to k = N , but (hopefully) we arrive at a decision after significantly
less steps.

2.1 Details of the algorithm

The method outlined above is implemented in the Maple package sat.txt;
see Section 5 for instructions to obtain the package.

3

We encode a DNF as a set of sets of integers: For example, {{1,-2},{3}} cor-
responds to (x1∧¬x2)∨x3. The Merge procedure is the equivalent of conjunc-
tion: Merge({-1,2},{2,3}) returns {-1,2,3}, while Merge({1,2},{-2,3})
returns false since these two clauses are “incompatible,” i.e., not simulta-
neously satisfiable.

The main procedure is Taut. It inputs a DNF S and threshold K. We initialize
P=0 and N=nops(S), the number of clauses. For k from 1 to K, we compute
the kth term in the inclusion-exclusion sum and add it to P. For the sake
of efficiency, a table is used to keep track of all compatible conjunctions of
k clauses in S, so that at the kth stage, the table has at most N choose k

entries. If we obtain a conclusive bound at some point in the loop, we return
[ans,k], where the first entry is true or false, depending on whether we
found S to be a tautology. If we complete the whole loop without coming to
a conclusion, we return [P,k].

3 Testing the solver

To test our solver, we use the procedure RandNF(n,N,M), which generates a
random DNF with N clauses in n variables, each containing M uniform random
literals. By default, M=3, which we shall assume from now on.

The procedure MetaTaut(n,N,K,M) runs Taut on M random DNFs with n

variables and N clauses and threshold K, and it records the run time and
output of each trial.

The procedure MetaTaut(n,N,K,M) does the same, but instead of our solver,
it uses Maple’s built-in tautology procedure.

3.1 Runtimes

As one would expect, our solver seems to perform most competently when
there are lots of variables but not too many clauses.

For example, Figure 1 shows a histogram of runtimes resulting from using
Taut on 1000 random DNFs generated by RandNF(100,10). In all of these
cases, our solver arrived at the correct answer by the third step of the loop,

4

Figure 1: As shown in these runtime frequency plots, when the variable to
clause ratio is high enough, our solver (left) out-performs Maple (right).

and the longest runtime was .006s. As Figure 1 shows, the Maple solver
performed slower in this case.

Further, we tested Taut on 10 random DNFs generated by RandNF(1000,20),
and it decided each of them was not a tautology by the seventh inclusion-
exclusion step. The runtimes ranged from 2-58 minutes, with an average of
19. In this case, using MapleTaut resulted in an overflow error.

On the other hand, Figure 2 shows the results when 100 random DNFs
generated by RandTaut(100,20) are used. Already, the number of clauses is
enough to make our solver slower than Maple. In fact, in this case, only fifteen
of the 100 random DNFs are solvable by Taut with threshold k = 6.

Also, we should point out that, in the situations where our method does
seem promising, it seems that it almost always returns false. So, as it is,
it probably has little practical use. Further, we are only testing it against
a na ive built-in Maple tautology function, rather than a sophisticated SAT
solver.

5

Figure 2: With a lower variable-to-clause ratio, our solver (left) loses to
Maple (right).

3.2 Thresholds

Recall that, in Taut(S,k), the argument k is the threshold, that is, the num-
ber of inclusion-exclusion summands computed before the procedure quits.
Now, we investigate how the required threshold is related to the number of
variables n and number of clauses N.

The procedure HowManyFinished(n,N,k,M) runs Taut with threshold k on
M random DNFs generated by RandNF(n,N), and it outputs the proportion
of conclusive runs. In other words, it estimates success probability that a
DNF generated by RandNF(n,N) is solvable by our algorithm with threshold
k.

Empirical evidence shows a phase shift behavior in the success probability If
we fix n and k and vary N . Namely, there appears to be a critical number of
clauses Nc(n, k) at which the graph of the success probability has an inflection
point. Of course, we have Nc > k, with Nc increasing in k.

Some plots exhibiting this phase shift are shown in Figure 3. Note that
this behavior is reminiscent of the satisfiability phase shift studied in [XW],
where the behavior of the probability of a random CNF being satisfiable as a
function of the ratio of the number of variables and clauses is studied.

6

Figure 3: Here, n and N correlate with the number of variables and clauses,
respectively; k is the threshold used in our solver; and P is the proportion
of times our solver was successful, based on 200 runs with random DNFs.

7

4 SAT and the Lovász local lemma

4.1 Computerizing the local lemma

Given some “bad events” A = {A1, . . . , AN}, the Lovász local lemma can be
used to verify that there is a positive probability that none of them occurs.
Suppose G is a dependency graph on the vertex set A: That is, events in A
are mutually independent of their non-neighbors in G. Let Γ(A) denote the
neighborhood of A in G. Then the following holds:
Proposition 4.1 (Asymmetric Lovász local lemma). Suppose there exists a
weight function x : A → [0, 1) such that

∀A ∈ A, Pr(A) ≤ x(A)
∏

B∈Γ(A)

(1− x(B)).

Then Pr(
⋂

i A
c
i) > 0.

In applications, the weight function x(A) is usually found ad hoc. If we
assume each vertex of the dependency graph has degree ≤ d and set x ≡
1/(d + 1), we obtain the following:
Proposition 4.2 (Symmetric Lovász local lemma). Suppose each event Ai

satisfies Pr(Ai) ≤ p and is independent of all but at most d of the other
events. If

ep(d + 1) ≤ 1,

then Pr(
⋂

i A
c
i) > 0.

The procedure LLLs(P,G) in the Maple package checks if the events Ai satisfy
the symmetric local lemma, where the lists P and G satisfyP [i] = Pr(Ai) and
G[i] = {j : Aj ∈ Γ(Ai)}.

Computerizing the asymmetric local lemma is harder, since, as far as we
know, there is no systematic and efficient way to look for a valid weight
function x. Somewhat arbitrarily, the procedure LLL(P,G) uses the weight
function x(A) = 1/(|Γ(A)| + 1). The motivation for this choice is that,
when the dependency graph is uniform, it reduces to the symmetric local
lemma.

8

4.2 Applying the local lemma to SAT

The article [G] addresses a theoretical application of the local lemma to SAT,
focusing on using it to derive combinatorial conditions for the satisfiability of
CNFs. Here, present a computer application of the local lemma to SAT.

Let us return to the setup in Section 2. We have a DNF S = C1 ∨ · · · ∨ CN

with variables x1, . . . , xn, which are assigned true/false values uniformly at
random. We let Ak be the event that Ck is true. Then S is not a tautology
iff there is a positive probability that none of the events Ak occurs. So we
can apply the local lemma.

We form a dependency graph G by joining Ai and Aj iff the clauses Ci and
Cj have common variables. Also, Pr(Ai) = 2−ni , where ni is the number of
literals in Ci; for example, for 3-SAT, Pr(Ai) = 1/8.

The procedure DNFtoPG(S) converts the DNF S to a pair P,G, which can
be passed to one of the LLL procedures. If the procedure returns true, then
we can conclude that S was not a tautology; otherwise, this method is in-
conclusive.

Unfortunately, LLLs rarely succeeds at detecting a non-tautology, and LLL is
only slightly better. For example, out of 100 non-tautologies generated by
RandNF(100,10), only 26 were detected by LLLs and 37 by LLL. Out of 100
non-tautologies generated by RandNF(100,15), only 2 were detected by LLLs

and 3 by LLL. We expect that this is due to the behavior of the dependency
graph. It would be interesting to develop a “clever” asymmetric local lemma
algorithm that tailors the weight function to work for the given dependency
graph.

5 Using the Maple package

The Maple package sat.txt accompanying this paper may be found at the
following URL:
http://www.math.rutgers.edu/~az202/Z.

To use the Maple package, place sat.txt in the working directory and exe-
cute read(‘sat.txt‘);.

9

http://www.math.rutgers.edu/~az202/Z

To see the main procedures, execute Help();. For help on a specific proce-
dure, use Help(<procedure name>);.

Here are some things to try:

• Taut({{-3,1,4},{-2,-1,4}},2); determines if (¬x3∧x1∧x4)∨(¬x2∧
¬x1 ∧ x2) is a tautology using inclusion-exclusion with threshold 2.

• MapleTaut({{-3,1,4},{-2,-1,4}}); determines if (¬x3 ∧ x1 ∧ x4) ∨
(¬x2 ∧ ¬x1 ∧ x2) is a tautology using Maple’s tautology procedure.

• RandNF(10,4); generates a random DNF with approximately 10 vari-
ables and 4 clauses.

• MetaTaut(5,25,8,10); runs Taut(RandNF(5,25),8) 10 times.

• LLL(DNFtoPG({{-3,1,4},{-2,-1,4}})); determines if the LLL ap-
plies to the given DNF (if true is returned, then it is not a tautology).

• MetaLLL(100,10,100); applies the local lemma to 100 DNFs gener-
ated by RandNF(100,10) and outputs the proportion of non-tautologies
detected by LLL and the actual proportion of non-tautologies.

Acknowledgement

The author thanks Dr. Doron Zeilberger for introducing this project to him
and guiding his research in the right direction.

6 References

[G] Heidi Gebauer, Robin A. Moser, Dominik Scheder, and Emo Welzl, The
Lovász Local Lemma and Satisfiability, in: Efficient Algorithms, Part
I, pp. 30-54, Susanne Albers, Helmut Alt, and Stefan N aher (eds.).
Heidelberg: Springer-Verlag, 2009.

[GC] Gábor Kusper and Csaba Biró, Solving SAT by an Iterative Version
of the Inclusion-Exclusion Principle, 2015 17th International Sympo-

10

sium on Symbolic and Numeric Algorithms for Scientific Computing
(SYNASC), Timisoara, 2015, pp. 189-190.

[XW] Ke Xu and Wei Li, The SAT phase transition,
http://www.math.ucsd.edu/~sbuss/CourseWeb/Math268_2007WS/satphase.

pdf

11

http://www.math.ucsd.edu/~sbuss/CourseWeb/Math268_2007WS/satphase.pdf
http://www.math.ucsd.edu/~sbuss/CourseWeb/Math268_2007WS/satphase.pdf

	Introduction to SAT
	SAT and inclusion-exclusion
	Details of the algorithm

	Testing the solver
	Runtimes
	Thresholds

	SAT and the Lovász local lemma
	Computerizing the local lemma
	Applying the local lemma to SAT

	Using the Maple package
	References

